I'm really willing to answer your questions and comments.
I will grant additional points if someone indicates any "not-entirely-trivial" mistake in the notes!

Homework deadline: 24:00 on Wednesday 29.04

1 Solutions of the homework problems

Exercise 1 (\star). Let $X \subseteq 2^{\omega}$ be a set such that for every $\alpha \in 2^{\omega}$ and every $n \in \mathbb{N}$ we have

$$
\alpha \in X \Leftrightarrow \alpha^{\prime} \notin X,
$$

where α^{\prime} is the same as α except that $\alpha^{\prime}(n)=1-\alpha(n)$. In other words, for every two sequences $\alpha, \alpha^{\prime} \in 2^{\omega}$ that differ on exactly one position, X contains exactly one of them. Prove that such a set exists using the axiom of choice. Prove that every set X satisfying the above condition does not have Baire Property.

Consider a relation on 2^{ω} such that $\alpha \sim \beta$ iff α differs from β on finitely many positions. Clearly \sim is an equivalence relation. Let X_{0} be a selector of \sim that contains a single point from each equivalence class of \sim. Notice that for each $\alpha \in 2^{\omega}$ there is a unique $\alpha^{\prime} \in X_{0}$ such that $\alpha \sim \alpha^{\prime}$. Define X as containing those points α such that the respective $\alpha^{\prime} \in X_{0}$ satisfying $\alpha \sim \alpha^{\prime}$ differs from α on an even number of positions. It is easy to check that X has the claimed properties.

Assume for the sake of contradiction that X has Baire Property. In that case also $2^{\omega}-X$ must have Baire Property, so without loss of generality we can assume that X is meagre in some basic set $N_{s} \subseteq 2^{\omega}$. From that moment on we restrict our attention to N_{s} and $X \cap N_{s}$ - in other words, we assume that $s=\langle \rangle$.

Let n be any position and let $f: 2^{\omega} \rightarrow 2^{\omega}$ be the function that swaps the position number 0 of each sequence, i.e. $f(\alpha)(0)=1-\alpha(0)$ and for $n>0$ we have $f(\alpha)(n)=\alpha(n)$. Notice that f is a homeomorphism of 2^{ω} and $f \circ f=\operatorname{id}_{2^{\omega}}$. Let $X^{\prime}=f(X)$. Since X is meagre and f is a homeomorphism, X^{\prime} is also meagre. Notice that $2^{\omega}=X \cup X^{\prime}$, because each sequence $\alpha \in 2^{\omega}$ either belongs to X or does not belong to X but then $f(\alpha)$ belongs to X. Contradiction, because 2^{ω} cannot be a union of two meagre sets.

Exercise $2(\star)$. Let $\sigma\left(\boldsymbol{\Sigma}_{1}^{1}\right)$ be the σ-algebra generated by analytic sets $\boldsymbol{\Sigma}_{1}^{1}$. Let $\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{1}\right)$ be the family of sets obtained via the Souslin operation applied to coanalytic sets. Prove that $\sigma\left(\boldsymbol{\Sigma}_{1}^{1}\right) \subsetneq \mathcal{A}\left(\boldsymbol{\Pi}_{1}^{1}\right)$ (two tasks: prove the inclusion and prove that it is strict).

First take $S=\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{1}\right) \cap\left[\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{1}\right)\right]^{\text {c }}$. Observe that both $\boldsymbol{\Sigma}_{1}^{1}$ and $\boldsymbol{\Pi}_{1}^{1}$ are contained in S. Also, S is closed under countable unions and countable intersections, because the operation \mathcal{A} has these properties. Therefore, S is a σ-algebra. Thus, $\sigma\left(\Sigma_{1}^{1}\right) \subseteq S$.

To prove that the inclusion is strict, we will show that $\sigma\left(\boldsymbol{\Sigma}_{1}^{1}\left(\mathbb{N}^{\omega}\right)\right) \neq$ $S\left(\mathbb{N}^{\omega}\right)$. To achieve that, we use Exercise 7 from homework: we need to construct a universal set for $\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{1}\right)$ and notice that $\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{1}\right)$ is a boldface pointclass. Then $\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{1}\right) \neq \mathcal{A}\left(\boldsymbol{\Pi}_{1}^{1}\right)^{\mathrm{c}}$ while $S=S^{\mathrm{c}}$.

First, notice that if $f: X \rightarrow Y$ is a continuous function and $B \in \mathcal{A}\left(\Pi_{1}^{1}(Y)\right.$ witnessed by $B=\mathcal{A}\left(B_{s}\right)$ then $f^{-1}(B) \in \mathcal{A}\left(\Pi_{1}^{1}(X)\right.$ because one can take the scheme $\left(f^{-1}\left(B_{s}\right)\right)_{s \in \mathbb{N}<\omega}$ and use the fact that Π_{1}^{1} is itself a boldface pointclass.

We will construct a $\left(\mathbb{N}^{\omega}\right)^{\mathbb{N}^{<\omega}}$-universal set for $\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{1}\left(\mathbb{N}^{\omega}\right)\right)$ and then use the fact that $\left(\mathbb{N}^{\omega}\right)^{\mathbb{N}^{<\omega}}$ is homeomorphic with \mathbb{N}^{ω}. Fix a \mathbb{N}^{ω}-universal set U_{Π} for $\Pi_{1}^{1}\left(\mathbb{N}^{\omega}\right)$. Consider $U_{\mathcal{A} \Pi}$ defined as:

$$
U_{\mathcal{A} \Pi}=\left\{(\alpha, x) \in\left(\mathbb{N}^{\omega}\right)^{\mathbb{N}^{<\omega}} \times \mathbb{N}^{\omega} \mid \exists \eta \in \mathbb{N}^{\omega} . \forall n \in \mathbb{N} .\left(\alpha\left(\eta \upharpoonright_{n}\right), x\right) \in U_{\Pi}\right\} .
$$

First notice that $U_{\mathcal{A} \Pi} \in \mathcal{A}\left(\Pi_{1}^{1}\right)$ because for each $s \in \mathbb{N}^{<\omega}$ the set

$$
U_{s} \stackrel{\text { def }}{=}\left\{(\alpha, x) \in\left(\mathbb{N}^{\omega}\right)^{\mathbb{N}^{<\omega}} \times \mathbb{N}^{\omega} \mid(\alpha(s), x) \in U_{\Pi}\right\}
$$

is coanalytic and $U_{\mathcal{A} \Pi}=\mathcal{A}\left(U_{s}\right)$. Now, if $A \in \mathcal{A}\left(\Pi_{1}^{1}\right)$ is obtained as $A=\mathcal{A}\left(A_{s}\right)$ for some $A_{s} \in \Pi_{1}^{1}$ then there exist α_{s} such that $A_{s}=\left(U_{\Pi}\right)_{\alpha_{s}}$ by universality of U_{Π}. Let $\alpha=\left(\alpha_{s}\right)_{s \in \mathbb{N}^{<\omega}}$ be a member of $\left(\mathbb{N}^{\omega}\right)^{\mathbb{N}^{<\omega}}$. It is now easy to check that $A=\left(U_{\mathcal{A} \Pi}\right)_{\alpha}$.

2 Additional remark

I was asked to provide a proper argument for a previous exercise.
Exercise 3. Take any set X and any family of sets $\Gamma \subseteq \mathrm{P}(X)$. Assume that Γ contains \varnothing and X. Show that $\mathcal{A} \mathcal{A} \Gamma=\mathcal{A} \Gamma$.

This proof is based on the argument in Kechris, Proposition 25.6.
Clearly it is enough to show that $\mathcal{A} \mathcal{A} \Gamma \subseteq \mathcal{A} \Gamma$. Let $A=\mathcal{A}\left(s \mapsto P_{s}\right)$ with $P_{s} \in \mathcal{A}$, i.e. $P_{s}=\mathcal{A}\left(t \mapsto Q_{s, t}\right)$ (to avoid confusion, by $\mathcal{A}\left(r \mapsto A_{r}\right)$ I denote the Souslin operation on the parameter r). It is easy to check that

$$
x \in A \Longleftrightarrow \exists \alpha \in \mathbb{N}^{\omega} . \exists \beta \in\left(\mathbb{N}^{\omega}\right)^{\omega} . \forall m . \forall n . x \in Q_{\alpha \upharpoonright_{m}, z(m) \upharpoonright_{n}} .
$$

Fix a bijection $\iota: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that $m \leqslant \iota(m, n)$ and $p<n \Rightarrow \iota(m, p)<$ $\iota(m, n)$ (the zig-zag function from page 6 of tutorial_3_26.pdf is good). Let ι_{0}^{-1} and ι_{1}^{-1} be the respective coordinates of the reverse function, i.e. for every $k \in \mathbb{N}$ we have $\iota\left(\iota_{0}^{-1}(k), \iota_{1}^{-1}(k)\right)=k$.

Our aim is to encode witnesses $(\alpha, \beta) \in \mathbb{N}^{\omega} \times\left(\mathbb{N}^{\omega}\right)^{\omega}$ as single sequences in \mathbb{N}^{ω} using the above function shuffling the coordinates. We will encode $(\alpha, \beta) \in \mathbb{N}^{\omega} \times\left(\mathbb{N}^{\omega}\right)^{\omega}$ by $w \in \mathbb{N}^{\omega}$ defined as

$$
w(k) \stackrel{\text { def }}{=} \iota\left(\alpha(k), \beta\left(\iota_{0}^{-1}(k)\right)\left(\iota_{1}^{-1}(k)\right)\right) .
$$

Notice a tiny difference with the previous approach: we not only mix the coordinates using ι but also mix the actual values: a single number (coordinate) in w codes a coordinate of α together with a coordinate of one of the sequences β. This gives the desired bijection.

Note that if we know $w \upharpoonright_{\iota(m, n)}$ then we can determine $\alpha \upharpoonright_{m}$ (because each coordinate of α goes into w via ι) and also $\beta(m) \upharpoonright_{n}$ (because the function ι is sufficiently monotone). This gives rise to a pair of functions $\varphi, \psi: \mathbb{N}^{<\omega} \rightarrow$ $\mathbb{N}^{<\omega}$ such that if w encodes (α, β) in the above sense and $s=w \upharpoonright_{\iota(m, n)}$ then $\varphi(s)=\alpha \upharpoonright_{m}$ and $\psi(s)=\beta(m) \upharpoonright_{n}$ (notice that the length of s determines the values of m and n).

Put $R_{s}=Q_{\varphi(s), \psi(s)}$ and notice that

$$
x \in A \Leftrightarrow x \in \mathcal{A}\left(s \mapsto R_{s}\right) .
$$

3 New material

The new lecture provides tools for showing that sets with Baire Property are well-behaved. The first main result, Kuratowski-Ulam theorem is a cate-gory-based analogue of the Fubini theorem:
Theorem 3.1 (Fubini). If $A \subseteq X \times Y$ is a measurable set then almost all sections of A are measurable in X and Y respectively. Moreover, A has measure 0 if and only if almost all its sections have measure 0.
[[there is also the part about commuting integrals but that piece is boring]]
Exercise 4 (Corollary from page 7 of the lecture notes). Let X and Y be Polish spaces, $A \subseteq X$ and $B \subseteq Y$. Then:

- $A \times B \in \operatorname{MGR}(X \times Y)$
if and only if
$(A \in \operatorname{MGR}(X)$ or $B \in \operatorname{MGR}(Y))$.
- $A \times B \in \operatorname{BP}(X \times Y)-\operatorname{MGR}(X \times Y)$
if and only if
$(A \in \mathrm{BP}(X)-\operatorname{MGR}(X)$ and $B \in \mathrm{BP}(Y)-\operatorname{MGR}(Y))$.
A subset $A \subseteq \prod_{n \in \mathbb{N}} X_{n}$ is called a tail set if for every $\alpha, \beta \in \prod_{n \in \mathbb{N}} X_{n}$ that differ on only finitely many coordinates, we have $\alpha \in A \Leftrightarrow \beta \in A$.

Then an important result called a $0-1$ law is proved: every set that is a tail set and has Baire Property, must either be meagre (small) or comeagre (big), see pages 7-8 of the lecture notes. This can be used to show that certain sets do not have Baire Property, because of their combinatorial structure.

Recall that a set is called perfect if it is closed and has no isolated points. In that case it must contain a copy of the Cantor set.

Exercise 5. Let X be a perfect (no isolated points) Polish space. Construct a Bernstein set A in X such that neither A nor $X-A$ contain any non-empty perfect set.

Sub-hint: order all the perfect sets in a sequence and proceed by transfinite induction.

Exercise 6. Prove that if $A \subseteq X$ is a Bernstein set in a perfect Polish space X then A does not have Baire Property.

An ideal on a set X is any non-empty family I of subsets of X that is closed under taking subsets and unions (an ideal is like a σ-ideal but without σ (countable unions)). We say that I is proper if $X \notin I$.

Notice that for each non-empty subset $C \in X$ the family $\{A \subseteq X \mid$ $C \cap A=\varnothing\}$ is a maximal proper ideal. Such ideals are called principal. However, there are other ideals as well.

Exercise 7. Show that there exists an ideal I on \mathbb{N} that is maximal among those proper ideals that contain $\{A \subseteq \mathbb{N}||A|<\infty\}$. We call such an ideal MAX - FIN.

Notice that MAX - FIN can be identified with the set of characteristic functions of its elements - a subset of 2^{ω}.
Exercise 8. Prove that MAX - FIN does not have Baire Property in 2^{ω}.
You may use the fact that every ideal, viewed as a subset of 2^{ω} is a tail set.

The next part of the material is devoted to Mycielski-Kuratowski theorem and its variants:

Theorem 3.2. If X is a non-empty perfect Polish spaces and A is comeagre in X^{2} then there exists a copy of the Cantor set $C \subseteq X$ such that

$$
\left\{(x, y) \in C^{2} \mid x \neq y\right\} \subseteq A
$$

As discussed in the lecture notes, the diagonal $\{(x, x) \mid x \in X\}$ is meagre in X^{2} and therefore we need to exclude it from the left-hand side of the above formula.

Notice that if X is uncountable then X contains a perfect Polish space $X^{\prime} \subseteq X$ as a subset. However, a comeagre subset of X might no longer be comeagre in X^{\prime}. Thus, the assumption that X is perfect plays an important role here, as illustrated by the following exercise.

Exercise 9. Give an example of a countable comeagre G subset of some (non-perfect) Polish space X.

In such a case there cannot be any copy of the Cantor set inside G.
The proof of the Mycielski-Kuratowski theorem is based on an inductive construction of a Cantor scheme $\left(V_{s}\right)_{s \in 2^{<\omega}}$, whose limit set $\bigcup_{\alpha \in 2^{\omega}} \bigcap_{n \in \mathbb{N}} V_{\alpha \uparrow_{n}}$ is C. During the construction, the following lemma is used that allows to adjust the sets appropriately: having fixed $\left(V_{s}\right)_{s \in 2^{n}}$ construct the sets $\left(V_{s}\right)_{s \in 2^{n+1}}$.
Exercise 10. Assume that U is an open dense set in X^{2} and let $\left\{G_{i}^{\prime} \mid i \leqslant m\right\}$ be a finite collection of open non-empty sets in X. Then there exist open non-empty sets $G_{i} \subseteq G_{i}^{\prime}$ for $i \leqslant m$ such that if $i \neq j$ then $G_{i} \times G_{j} \subseteq U$.
Exercise 11. Let $(\leqslant) \subseteq[0,1] \times[0,1]$ be a well-order of type ω_{1} (it implies Continuum Hypothesis). Show that $\leqslant i s$ not measurable w.r.t. the standard Lebesgue measure λ on $[0,1]$.

Show also that \leqslant does not have Baire Property, because it contradicts Mycielski-Kuratowski theorem.

In fact the assumption on the shape of $\leqslant\left(\omega_{1}\right)$ can be skipped and the set is still not measurable / does not have Baire property. However, it makes the arguments a bit simpler.

4 New homework

The above theorems, as stated, require our set to be comeagre in the product space X^{n}. We can weaken that by either allowing different spaces on different coordinates (i.e. $\prod_{i \leqslant n} X_{i}$) or considering A that is moderately big in the sense that $A \in \operatorname{BP}\left(X^{n}\right)-\operatorname{MGR}\left(X^{n}\right)-A$ needs to have Baire Property and not be small. These two variants are called Galvin theorems.

Exercise 12 (Galvin). Let X_{1}, \ldots, X_{n} be non-empty perfect Polish spaces. If A is comeagre in $\prod_{i \leqslant n} X_{i}$ then there exist copies of the Cantor set C_{1}, \ldots, C_{n} in X_{1}, \ldots, X_{n} respectively such that $\prod_{i \leqslant n} C_{i} \subseteq A$.

Let X be a non-empty perfect Polish space and $n \geqslant 1$. If $A \in \operatorname{BP}\left(X^{n}\right)-$ $\operatorname{MGR}\left(X^{n}\right)$ (i.e. A has Baire Property but is not meagre) then there exist copies of the Cantor set C_{1}, \ldots, C_{n} in X such that $\prod_{i \leqslant n} C_{i} \subseteq A$.

In the case of the above exercise, please be very careful and explicit in the argumentation - I will treat as a mistake statements like ,,analogously as in the lecture", „it is easy to check", etc... In other words, I'd like your solutions to be fully stand-alone and complete.

Please choose one exercise or another this time!
Exercise 13 (*). Show that there exists a copy of the Cantor set $C \subseteq \mathbb{R}$ whose members are linearly independent over \mathbb{Q} : if $x_{1}, \ldots, x_{n} \in C$ are pairwise distinct and $\sum_{i \leqslant n} q_{i} \cdot x_{i}=0$ for some rational numbers $q_{1}, \ldots, q_{n} \in \mathbb{Q}$ then all the numbers q_{i} equal 0 .

5 Hints

Hint to Exercise 4 Consider the first item. The right-to-left implication is obvious. Consider the left-to-right implication and assume that $A \notin \operatorname{MGR}(X)$. Then by Kuratowski-Ulam we know that

$$
\begin{aligned}
& \operatorname{MGR}(Y) \ni\left\{y \in Y \mid(A \times B)^{y} \notin \operatorname{MGR}(X)\right\}= \\
& \quad=\{y \in Y \mid y \in B \wedge A \notin \operatorname{MGR}(X)\}=B .
\end{aligned}
$$

For the second item, the right-to-left implication is obvious (please make sure that you know why $A \times B$ has Baire Property!). Assume that $A \times B \in$ $\mathrm{BP}(X \times Y)-\operatorname{MGR}(X \times Y)$. Apply Kuratowski-Ulam to notice that if A does not have Baire property then B is meagre, in which case the first item
implies that $A \times B$ is meagre - contradiction. Analogously, B must have Baire Property. Now, if any of them were meagre, again the first item would imply that $A \times B$ is meagre.

Hint to Exercise 5 As X has a countable basis, there is at most continuum many closed subsets of X. Consider an enumeration of all perfect subsets of X in a sequence $\left(F_{\alpha}\right)_{\alpha<\mathfrak{c}}$. Notice that each perfect subset of X has cardinality continuum itself. Proceed inductively for $\alpha<\mathfrak{c}$, constructing two sequences of points $x_{\alpha}, y_{\alpha} \in X$, such that $x_{\alpha}, y_{\alpha} \in F_{\alpha}$, and all the points $\left\{x_{\alpha}, y_{\alpha} \mid \alpha<\mathfrak{c}\right\}$ are pairwise distinct. At each stage, the cardinality of the set of points defined so far is $\alpha<\mathfrak{c}$ and the cardinality of F_{α} is \mathfrak{c} so another two points $x_{\alpha}, y_{\alpha} \in F_{\alpha}$ exist. At the end of the construction, $A=\left\{x_{\alpha} \mid \alpha<\mathfrak{c}\right\}$ intersects each perfect set and the same holds for its complement (because of the points $y_{\alpha} \notin A$).

Hint to Exercise 6 Assume contrarily and by the symmetry assume that A is not meagre (otherwise take the complement of A). Then $A=U \triangle M$ for non-empty open U and meagre M contained in a meagre F_{σ} set F. Consider $U-F$ in the Polish space U. It is a G_{δ} set that is dense in U. If $U-F$ was countable then one could obtain U as a meagre F_{σ} : union of F with the singletons of members of $U-F$ (we use the fact that U is perfect here). Therefore, $U-F$ is an uncountable G_{δ}.

By the perfect set property for Polish spaces, it means that $U-F$ contains a perfect subset - this subset is contained in A, a contradiction.

Hint to Exercise 7 The union of a chain of ideals not containing \mathbb{N} is an ideal not containing \mathbb{N}, so one can obtain a maximal ideal by KuratowskiZorn lemma.

Hint to Exercise 8 We first argue that MAX - FIN is a tail set. Take two sequences (or sets) $\alpha, \beta \in 2^{\omega}$ that differ on finitely many positions. Assume by the symmetry that $\alpha \in$ MAX - FIN. We need to show that $\beta \in$ MAX - FIN as well. However, there exists a finite set A_{0} such that $\alpha \cup A_{0} \supseteq \beta$ (treated as sets). As $A_{0} \in$ MAX - FIN, also $\alpha \cup A_{0} \in$ MAX - FIN and therefore $\beta \in$ MAX - FIN as well.

Thus, if MAX - FIN had Baire Property then it would either be meagre or comeagre. Observe that if $\alpha \in 2^{\omega}$ is any set and $\alpha^{c} \in 2^{\omega}$ is the complement of α then (by maximality) MAX - FIN contains exactly one of $\alpha, \alpha^{\mathrm{c}}$.

Moreover, the function $\alpha \mapsto \alpha^{\mathrm{c}}$ is a homeomorphism of 2^{ω}. Thus, either both MAX - FIN and its complement are meagre or both are comeagre. In both cases we have a contradiction.

Hint to Exercise 11 Notice that for each $y \in[0,1]$ the section \leqslant^{y} is at most countable (because the order type of \leqslant is ω_{1}). On the other hand, each section \leqslant_{x} is co-countable. Therefore, all the sections \leqslant^{y} have measure 0 , while all the sections \leqslant_{x} have measure 1. Contradiction to Fubini's theorem.

Hint to Exercise 9 Consider the space $2^{\leqslant \omega}$ of finite or infinite sequences. Let the topology be the one taken from the space 3^{ω} via the injection that maps $\alpha \in 2^{\omega}$ into itself, and $s \in 2^{<\omega}$ into $\hat{s} 22^{\wedge} 2 \cdots \in 3^{\omega}$. In this space, each finite sequence is an isolated point. Moreover, if $s_{0}<s_{1} \prec \ldots$ then this sequence is convergent to the limit $\bigcup_{n \in \mathbb{N}} s_{n} \in 2^{\omega}$. Since each $s \in 2^{<\omega}$ is an isolated point, the family $2^{<\omega}$ is an open subset of our space. Moreover, this set is dense, because of the above observation.

Hint to Exercise 10 This is an easy inductive argument: we can begin with $G_{i}=G_{i}^{\prime}$ and then inductively make the sets smaller. For $j=1, \ldots$ consider the current value of the set G_{j} and consider each of the previous sets G_{i} for $i<j$. Apply the following operation shrink to G_{j} and G_{i} :
given two non-empty open sets H and K in X and a dense open subset of X^{2}, there exists non-empty open subsets $\hat{H} \subseteq H$ and $\hat{K} \subseteq K$ such that $\hat{H} \times \hat{K} \subseteq U$, because U is dense so intersects $H \times K$ and in this intersection has some basic open set, which is of the form $V_{1} \times V_{2}$ for some basic open sets V_{1}, V_{2} of X. Take them as \hat{H} and \hat{K}.

