
Tutorial from 23.04.2020
I’m really willing to answer your questions and comments.
I will grant additional points if someone indicates any “not-entirely-trivial”

mistake in the notes!
Homework deadline: 24:00 on Wednesday 29.04

1 Solutions of the homework problems
Exercise 1 (‹). Let X Ď 2ω be a set such that for every α P 2ω and every
n P N we have

α P X ô α1 R X,

where α1 is the same as α except that α1pnq “ 1 ´ αpnq. In other words,
for every two sequences α, α1 P 2ω that differ on exactly one position, X
contains exactly one of them. Prove that such a set exists using the axiom of
choice. Prove that every set X satisfying the above condition does not have
Baire Property.

Consider a relation on 2ω such that α „ β iff α differs from β on finitely
many positions. Clearly „ is an equivalence relation. Let X0 be a selector
of „ that contains a single point from each equivalence class of „. Notice
that for each α P 2ω there is a unique α1 P X0 such that α „ α1. Define X as
containing those points α such that the respective α1 P X0 satisfying α „ α1

differs from α on an even number of positions. It is easy to check that X has
the claimed properties.

Assume for the sake of contradiction that X has Baire Property. In that
case also 2ω ´X must have Baire Property, so without loss of generality we
can assume that X is meagre in some basic set Ns Ď 2ω. From that moment
on we restrict our attention to Ns and X XNs — in other words, we assume
that s “ xy.

Let n be any position and let f : 2ω Ñ 2ω be the function that swaps the
position number 0 of each sequence, i.e. fpαqp0q “ 1 ´ αp0q and for n ą 0
we have fpαqpnq “ αpnq. Notice that f is a homeomorphism of 2ω and
f ˝ f “ id2ω . Let X 1 “ fpXq. Since X is meagre and f is a homeomorphism,
X 1 is also meagre. Notice that 2ω “ X YX 1, because each sequence α P 2ω
either belongs to X or does not belong to X but then fpαq belongs to X.
Contradiction, because 2ω cannot be a union of two meagre sets.
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Exercise 2 (‹). Let σpΣ1
1q be the σ-algebra generated by analytic sets Σ1

1.
Let ApΠ1

1q be the family of sets obtained via the Souslin operation applied to
coanalytic sets. Prove that σpΣ1

1q Ĺ ApΠ1
1q (two tasks: prove the inclusion

and prove that it is strict).

First take S “ ApΠ1
1q X

“

ApΠ1
1q
‰c. Observe that both Σ1

1 and Π1
1 are

contained in S. Also, S is closed under countable unions and countable
intersections, because the operation A has these properties. Therefore, S is
a σ-algebra. Thus, σpΣ1

1q Ď S.
To prove that the inclusion is strict, we will show that σpΣ1

1pNωqq ‰

SpNωq. To achieve that, we use Exercise 7 from homework: we need to
construct a universal set for ApΠ1

1q and notice that ApΠ1
1q is a boldface

pointclass. Then ApΠ1
1q ‰ ApΠ1

1q
c while S “ Sc.

First, notice that if f : X Ñ Y is a continuous function and B P ApΠ1
1pY q

witnessed by B “ ApBsq then f´1pBq P ApΠ1
1pXq because one can take the

scheme
`

f´1pBsq
˘

sPNăω and use the fact that Π1
1 is itself a boldface pointclass.

We will construct a pNωqN
ăω -universal set for ApΠ1

1pNωqq and then use
the fact that pNωqN

ăω is homeomorphic with Nω. Fix a Nω-universal set UΠ
for Π1

1pNωq. Consider UAΠ defined as:

UAΠ “
 

pα, xq P pNω
q
Năω

ˆ Nω
| Dη P Nω.@n P N. pαpηænq, xq P UΠ

(

.

First notice that UAΠ P ApΠ1
1q because for each s P Năω the set

Us
def
“ tpα, xq P pNω

q
Năω

ˆ Nω
| pαpsq, xq P UΠu

is coanalytic and UAΠ “ ApUsq. Now, if A P ApΠ1
1q is obtained as A “ ApAsq

for some As P Π1
1 then there exist αs such that As “

`

UΠ
˘

αs
by universality

of UΠ. Let α “
`

αs
˘

sPNăω be a member of pNωqN
ăω . It is now easy to check

that A “
`

UAΠ
˘

α
.

2 Additional remark
I was asked to provide a proper argument for a previous exercise.

Exercise 3. Take any set X and any family of sets Γ Ď PpXq. Assume that
Γ contains H and X. Show that AAΓ “ AΓ.
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This proof is based on the argument in Kechris, Proposition 25.6.
Clearly it is enough to show that AAΓ Ď AΓ. Let A “ Aps ÞÑ Psq with

Ps P AΓ, i.e. Ps “ Apt ÞÑ Qs,tq (to avoid confusion, by Apr ÞÑ Arq I denote
the Souslin operation on the parameter r). It is easy to check that

x P Aðñ Dα P Nω. Dβ P pNω
q
ω. @m. @n. x P Qαæm,zpmqæn

.

Fix a bijection ι : N2 Ñ N such that m ď ιpm,nq and p ă nñ ιpm, pq ă
ιpm,nq (the zig-zag function from page 6 of tutorial_3_26.pdf is good). Let
ι´1
0 and ι´1

1 be the respective coordinates of the reverse function, i.e. for every
k P N we have ι

`

ι´1
0 pkq, ι

´1
1 pkq

˘

“ k.
Our aim is to encode witnesses pα, βq P Nω ˆ pNωqω as single sequences

in Nω using the above function shuffling the coordinates. We will encode
pα, βq P Nω ˆ pNωqω by w P Nω defined as

wpkq
def
“ ι

`

αpkq, βpι´1
0 pkqqpι

´1
1 pkqq

˘

.

Notice a tiny difference with the previous approach: we not only mix the
coordinates using ι but also mix the actual values: a single number (coordi-
nate) in w codes a coordinate of α together with a coordinate of one of the
sequences β. This gives the desired bijection.

Note that if we know wæιpm,nq then we can determine αæm (because each
coordinate of α goes into w via ι) and also βpmqæn (because the function ι
is sufficiently monotone). This gives rise to a pair of functions ϕ, ψ : Năω Ñ
Năω such that if w encodes pα, βq in the above sense and s “ wæιpm,nq then
ϕpsq “ αæm and ψpsq “ βpmqæn (notice that the length of s determines the
values of m and n).

Put Rs “ Qϕpsq,ψpsq and notice that

x P Aô x P Aps ÞÑ Rsq.

3 New material
The new lecture provides tools for showing that sets with Baire Property
are well-behaved. The first main result, Kuratowski-Ulam theorem is a cate-
gory-based analogue of the Fubini theorem:

Theorem 3.1 (Fubini). If A Ď X ˆ Y is a measurable set then almost all
sections of A are measurable in X and Y respectively. Moreover, A has
measure 0 if and only if almost all its sections have measure 0.
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[[ there is also the part about commuting integrals but that piece is boring ]]

Exercise 4 (Corollary from page 7 of the lecture notes). Let X and Y be
Polish spaces, A Ď X and B Ď Y . Then:

• AˆB P MGRpX ˆ Y q
if and only if

(A P MGRpXq or B P MGRpY q).

• AˆB P BPpX ˆ Y q ´MGRpX ˆ Y q
if and only if

(A P BPpXq ´MGRpXq and B P BPpY q ´MGRpY q).

A subset A Ď
ś

nPNXn is called a tail set if for every α, β P
ś

nPNXn

that differ on only finitely many coordinates, we have α P Aô β P A.
Then an important result called a 0 ´ 1 law is proved: every set that is

a tail set and has Baire Property, must either be meagre (small) or comeagre
(big), see pages 7–8 of the lecture notes. This can be used to show that certain
sets do not have Baire Property, because of their combinatorial structure.

Recall that a set is called perfect if it is closed and has no isolated points.
In that case it must contain a copy of the Cantor set.

Exercise 5. Let X be a perfect (no isolated points) Polish space. Construct
a Bernstein set A in X such that neither A nor X´A contain any non-empty
perfect set.

Sub-hint: order all the perfect sets in a sequence and proceed by transfi-
nite induction.

Exercise 6. Prove that if A Ď X is a Bernstein set in a perfect Polish space
X then A does not have Baire Property.

An ideal on a set X is any non-empty family I of subsets of X that is
closed under taking subsets and unions (an ideal is like a σ-ideal but without
σ (countable unions)). We say that I is proper if X R I.

Notice that for each non-empty subset C P X the family tA Ď X |

C X A “ Hu is a maximal proper ideal. Such ideals are called principal.
However, there are other ideals as well.

Exercise 7. Show that there exists an ideal I on N that is maximal among
those proper ideals that contain tA Ď N | |A| ă 8u. We call such an ideal
MAX´ FIN.
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Notice that MAX´ FIN can be identified with the set of characteristic
functions of its elements — a subset of 2ω.
Exercise 8. Prove that MAX´ FIN does not have Baire Property in 2ω.

You may use the fact that every ideal, viewed as a subset of 2ω is a tail
set.

The next part of the material is devoted to Mycielski–Kuratowski theorem
and its variants:
Theorem 3.2. If X is a non-empty perfect Polish spaces and A is comeagre
in X2 then there exists a copy of the Cantor set C Ď X such that

 

px, yq P C2
| x ‰ y

(

Ď A.

As discussed in the lecture notes, the diagonal tpx, xq | x P Xu is meagre
in X2 and therefore we need to exclude it from the left-hand side of the above
formula.

Notice that if X is uncountable then X contains a perfect Polish space
X 1 Ď X as a subset. However, a comeagre subset of X might no longer be
comeagre in X 1. Thus, the assumption that X is perfect plays an important
role here, as illustrated by the following exercise.
Exercise 9. Give an example of a countable comeagre G subset of some
(non-perfect) Polish space X.

In such a case there cannot be any copy of the Cantor set inside G.
The proof of the Mycielski–Kuratowski theorem is based on an inductive

construction of a Cantor scheme pVsqsP2ăω , whose limit set
Ť

αP2ω

Ş

nPN Vαæn
is

C. During the construction, the following lemma is used that allows to adjust
the sets appropriately: having fixed pVsqsP2n construct the sets pVsqsP2n`1 .
Exercise 10. Assume that U is an open dense set in X2 and let tG1i | i ď mu
be a finite collection of open non-empty sets in X. Then there exist open
non-empty sets Gi Ď G1i for i ď m such that if i ‰ j then Gi ˆGj Ď U .
Exercise 11. Let pďq Ď r0, 1s ˆ r0, 1s be a well-order of type ω1 (it implies
Continuum Hypothesis). Show that ď is not measurable w.r.t. the standard
Lebesgue measure λ on r0, 1s.

Show also that ď does not have Baire Property, because it contradicts
Mycielski–Kuratowski theorem.

In fact the assumption on the shape of ď (ω1) can be skipped and the
set is still not measurable / does not have Baire property. However, it makes
the arguments a bit simpler.
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4 New homework
The above theorems, as stated, require our set to be comeagre in the product
space Xn. We can weaken that by either allowing different spaces on different
coordinates (i.e.

ś

iďnXi) or considering A that is moderately big in the sense
that A P BPpXnq ´MGRpXnq — A needs to have Baire Property and not
be small. These two variants are called Galvin theorems.

Exercise 12 (Galvin). Let X1, . . . , Xn be non-empty perfect Polish spaces.
If A is comeagre in

ś

iďnXi then there exist copies of the Cantor set C1, . . . , Cn
in X1, . . . , Xn respectively such that

ś

iďnCi Ď A.
Let X be a non-empty perfect Polish space and n ě 1. If A P BPpXnq ´

MGRpXnq (i.e. A has Baire Property but is not meagre) then there exist
copies of the Cantor set C1, . . . , Cn in X such that

ś

iďnCi Ď A.

In the case of the above exercise, please be very careful and explicit in
the argumentation — I will treat as a mistake statements like „analogously
as in the lecture”, „it is easy to check”, etc. . . In other words, I’d like your
solutions to be fully stand-alone and complete.

Please choose one exercise or another this time!

Exercise 13 (‹). Show that there exists a copy of the Cantor set C Ď R
whose members are linearly independent over Q: if x1, . . . , xn P C are pair-
wise distinct and

ř

iďn qi ¨ xi “ 0 for some rational numbers q1, . . . , qn P Q
then all the numbers qi equal 0.

5 Hints
Hint to Exercise 4 Consider the first item. The right-to-left impli-
cation is obvious. Consider the left-to-right implication and assume that
A R MGRpXq. Then by Kuratowski–Ulam we know that

MGRpY q Q ty P Y | pAˆBqy R MGRpXqu “
“ ty P Y | y P B ^ A R MGRpXqu “ B.

For the second item, the right-to-left implication is obvious (please make
sure that you know why AˆB has Baire Property!). Assume that AˆB P
BPpX ˆ Y q ´ MGRpX ˆ Y q. Apply Kuratowski–Ulam to notice that if A
does not have Baire property then B is meagre, in which case the first item
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implies that A ˆ B is meagre — contradiction. Analogously, B must have
Baire Property. Now, if any of them were meagre, again the first item would
imply that AˆB is meagre.

Hint to Exercise 5 AsX has a countable basis, there is at most continuum
many closed subsets of X. Consider an enumeration of all perfect subsets of
X in a sequence pFαqαăc. Notice that each perfect subset of X has cardinality
continuum itself. Proceed inductively for α ă c, constructing two sequences
of points xα, yα P X, such that xα, yα P Fα, and all the points txα, yα | α ă cu
are pairwise distinct. At each stage, the cardinality of the set of points defined
so far is α ă c and the cardinality of Fα is c so another two points xα, yα P Fα
exist. At the end of the construction, A “ txα | α ă cu intersects each perfect
set and the same holds for its complement (because of the points yα R A).

Hint to Exercise 6 Assume contrarily and by the symmetry assume that
A is not meagre (otherwise take the complement of A). Then A “ U4M for
non-empty open U and meagre M contained in a meagre Fσ set F . Consider
U ´ F in the Polish space U . It is a Gδ set that is dense in U . If U ´ F
was countable then one could obtain U as a meagre Fσ: union of F with
the singletons of members of U ´ F (we use the fact that U is perfect here).
Therefore, U ´ F is an uncountable Gδ.

By the perfect set property for Polish spaces, it means that U´F contains
a perfect subset — this subset is contained in A, a contradiction.

Hint to Exercise 7 The union of a chain of ideals not containing N is
an ideal not containing N, so one can obtain a maximal ideal by Kuratowski–
Zorn lemma.

Hint to Exercise 8 We first argue that MAX´ FIN is a tail set. Take two
sequences (or sets) α, β P 2ω that differ on finitely many positions. Assume by
the symmetry that α P MAX´ FIN. We need to show that β P MAX´ FIN
as well. However, there exists a finite set A0 such that α Y A0 Ě β (treated
as sets). As A0 P MAX´ FIN, also α Y A0 P MAX´ FIN and therefore
β P MAX´ FIN as well.

Thus, if MAX´ FIN had Baire Property then it would either be meagre
or comeagre. Observe that if α P 2ω is any set and αc P 2ω is the comple-
ment of α then (by maximality) MAX´ FIN contains exactly one of α, αc.
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Moreover, the function α ÞÑ αc is a homeomorphism of 2ω. Thus, either both
MAX´ FIN and its complement are meagre or both are comeagre. In both
cases we have a contradiction.

Hint to Exercise 11 Notice that for each y P r0, 1s the section ďy is at
most countable (because the order type of ď is ω1). On the other hand, each
section ďx is co-countable. Therefore, all the sections ďy have measure 0,
while all the sections ďx have measure 1. Contradiction to Fubini’s theorem.

Hint to Exercise 9 Consider the space 2ďω of finite or infinite sequences.
Let the topology be the one taken from the space 3ω via the injection that
maps α P 2ω into itself, and s P 2ăω into ŝ 2̂ 2̂ 2 ¨ ¨ ¨ P 3ω. In this space,
each finite sequence is an isolated point. Moreover, if s0 ă s1 ă . . . then
this sequence is convergent to the limit

Ť

nPN sn P 2ω. Since each s P 2ăω is
an isolated point, the family 2ăω is an open subset of our space. Moreover,
this set is dense, because of the above observation.

Hint to Exercise 10 This is an easy inductive argument: we can begin
with Gi “ G1i and then inductively make the sets smaller. For j “ 1, . . .
consider the current value of the set Gj and consider each of the previous
sets Gi for i ă j. Apply the following operation shrink to Gj and Gi:

given two non-empty open sets H and K in X and a dense open subset
of X2, there exists non-empty open subsets Ĥ Ď H and K̂ Ď K such that
Ĥ ˆ K̂ Ď U , because U is dense so intersects H ˆK and in this intersection
has some basic open set, which is of the form V1 ˆ V2 for some basic open
sets V1, V2 of X. Take them as Ĥ and K̂.
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