
Tutorial from 16.04.2020

I’m really willing to answer your questions and comments.
I will grant additional points if someone indicates any “not-entirely-trivial”

mistake in the notes!
Homework deadline: 24:00 on Wednesday 22.04

1 Solutions of the homework problems
Exercise 1 (‹). Choose one of the two spaces r0, 1s or 2ω and construct
a dense Gδ set of µ-measure 0.

The first option is to enumerate QX r0, 1s “ tq0, q1, . . .u and put

Un “
ď

kPN
Bpqk, 1{n ¨ 2´kq.

By the fact that QXr0, 1s Ď Un we know that Un is dense (and clearly open).
Therefore, G def

“
Ş

nPN Un is a dense Gδ in r0, 1s. However, the measure of
Un can be bounded from above by 2{n and therefore (by continuity of the
measure) the measure of G is 0.

Another option is to go to 2ω and define G as

G “ tα P 2ω | αæn P R for infinitely many nu,

for properly defined R Ď 2ăω. Let R “
Ť

nPNRn and let Rn contain sequences
of the form ŝ 0n where |s| “ 2n (i.e. any sequence of length 2n and then n
consecutive zeros). Now estimate the probability that a random sequence
α P 2ω does not contain any prefix in R of length at least 2n:

µ
 

α P 2ω | @k ě 2n. αæk R R
(

ď 1´
ÿ

kěn

2´k “ 1´ 2´n`1,

where the inequality follows from the fact that µpRkq “ 2´k. Therefore,

µ
 

α P 2ω | αæn P R for only finitely many n
(

“ 1.

And thus µpGq “ 0.
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Exercise 2 (‹). Take X non-empty at most countable. Prove that a set
A Ď Xω is comeagre if and only if the following condition holds. There
exists a function f : Xăω Ñ Xăω ´ tăąu such that for every sequence of
sequences psiq P Xăω the following sequence belongs to A:

s0̂ fpr0q̂ s1̂ fpr1q̂ s2̂ fpr2q̂ ¨ ¨ ¨ ,

where ri is defined inductively as s0̂ fpr0q̂ s1̂ fpr1q̂ . . .ˆfpri´1q̂ si.

This argument is based on the solution by Damian Gładkowski.
First assume that such a function f exists. Consider R “ tŝ fpsq | s P

Xăωu and G “ tα P Xω | αæn P R for infinitely many nu. By some previous
homework exercise G is a Gδ. We will show that G is dense and G Ď A.

Let s P Xăω be any sequence and define inductively s0 “ ŝ fpsq and
sn`1 “ sn̂ fpsnq. Let α “ limnÑ8 sn “

Ť

nPN sn. Then clearly s ă α and
α P G, so GXNs ‰ H.

Now let α P G. Define inductively sequences psnq and prnq in such a way
as in the statement (using the fact that infinitely many prefixes of α belong
to R). Therefore, by the assumption α P A.

Now assume that A is a comeagre set and let G Ě A be a dense Gδ. Let
R be a set such that G “ tα P Xăω | αæn P R for infinitely many nu. Define
f in such a way that for s P Xăω the value fpsq is chosen in such a way that
ŝ fpsq P R (it can be done by density of G). The function f defined this way
satisfies the conditions because the constructed sequence must belong to G
(infinitely many of its prefixes belong to R).

2 New material
First, the notion of a minimal cover is introduced: Consider a σ-algebra C
and a σ-ideal I Ď C (i.e. the σ-algebra already contains all the sets “modulo
I”). Then pC, Iq has the minimal cover property if for every subset Y of
our space there is a set B P C such that:

• Y Ď B,

• if C P C and C Ď B ´ Y then C P I.

Notice that the set Y can be arbitrary and in particular we do not require
that B ´ Y P I because then Y would be forced to belong to C.
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Exercise 3. Prove that the second condition from the definition can be equiv-
alently restated as: if C P C and Y Ď C then B ´ C P I.

Entail that if B is a minimal cover of Y then for every F P I also BYF
is a minimal cover of Y .

Exercise 4. Show that if B, B1 are two minimal covers of Y then B4B1 P I.

This means that the minimal cover is defined (among sets containing Y )
up to I-equivalence.

From that moment on we will focus on the case of C being BrIs — com-
pletion of Borel sets by some σ-ideal I. The σ-ideal I will be either Iµ (for
some σ-finite measure µ) or IMGR.

The fact that pB, Iµq and pB, IMGRq have minimal cover property is de-
rived on page 2 of the notes from the fact that these σ-ideals are CCC.

It is later noted that when working with IMGR polishness of the topology
is not required (Theorem on page 4 of the notes).

Assume that I is generated by Borel sets in the sense that every set in I
is contained in a Borel set in I.

Exercise 5. Show that under the above assumptions, every set Y has a cover
that is Borel itself.

Exercise 6. Show that the σ-ideal Iµ of sets of measure 0 is generated by
Borel sets.

Exercise 7. Show that the σ-ideal IMGR of meagre sets is generated by Borel
sets.

This means that in the above two cases we can always ask our cover to
be Borel.

Our aim now is to prove the Marczewski theorem: if a pair pC, Iq has
minimal cover property then C is closed under the Souslin operation A.

For that, two lemmata (Lemma 1 and 2 from the notes) are needed.

Exercise 8. Let A “ ApBsq. Then

BH ´ A Ď
ď

sPNăω

`

Bs ´
ď

nPN
Bŝ n

˘

.

Exercise 9. Give an example of a regular (i.e. monotone) scheme where the
inclusion above is strict.

3



Exercise 10. If for every s P Năω we have Bs Ď
Ť

nPNBŝ n then BH “

ApBsq.

Exercise 11. For every Souslin scheme pAsq there exists the faithful scheme
pZtq defined as Zt “ A

`

At̂ s
˘

sPNăω . This scheme satisfies:

1. ZH “ ApAsq;

2. Zt “
Ť

nPN Zt̂ n;

3. Zt Ď At.

The only problem with the scheme pZtq is that we have no reason to
assume that Zt P C — this scheme is already obtained using the Souslin
operation A!

Having proved those lemmas, we can provide a proof of Marczewski’s
theorem using an interplay of three schemes:

1. pAsq is the initial scheme that we begin with;

2. pZsq is the faithful scheme as in Lemma 2 (see Exercise 11 above), with
Zt being the set of points that ApAsq produces for branches α ą t;

3. pBsq is a scheme of approximations: Bs is the intersection of some
minimal cover of Zs with As.

Comment about Bs: we know that the minimal cover is defined up-to
I and a priori might be bigger than As even though Zs Ď As. However,
intersecting with As doesn’t cost anything because As itself belongs to C.
Moreover, Bs defined that way is still a minimal cover of Zs because Zs Ď As.
In general, we can always intersect our minimal cover with any set from C
that we have at hand, as long as we still contain Zs — the smaller the cover
the better.

The construction ensures that we have Zs Ď Bs Ď As for each s P Năω.
This implies that ApZsq “ ApBsq “ ApAsq, where the external equality is
clear and implies the equality with ApBsq.

Now we invoke Exercise 8. If one knew that for each s P Năω we had
Bs ´

Ť

nPNBŝ n P I then BH ´ A P I and A is measurable itself.

Exercise 12. Take s P Năω and prove that Bs ´
Ť

nPNBŝ n P I.
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3 New homework
I strongly believe that the first exercise is easier than the second one. But
again, you are allowed to solve both, because both are entertaining :)

Exercise 13 (‹). Let X Ď 2ω be a set such that for every α P 2ω and every
n P N we have

α P X ô α1 R X,

where α1 is the same as α except that α1pnq “ 1 ´ αpnq. In other words,
for every two sequences α, α1 P 2ω that differ on exactly one position, X
contains exactly one of them. Prove that such a set exists using the axiom of
choice. Prove that every set X satisfying the above condition does not have
Baire Property.

The set constructed above can be seen as a variant of Vitali set known
from analysis.

Exercise 14 (‹). Let σpΣ1
1q be the σ-algebra generated by analytic sets Σ1

1.
Let ApΠ1

1q be the family of sets obtained via the Souslin operation applied to
coanalytic sets. Prove that σpΣ1

1q Ĺ ApΠ1
1q (two tasks: prove the inclusion

and prove that it is strict).

Going further, one can define a hierarchy of sets (called C-sets, possibly
because of Comprehension. . . ) with: C0 “ B (Borel sets), and Cn`1 “ A

`

Cc
n

˘

— the Souslin operation applied to complements of sets from Cn. This way
C1 “ Σ1

1, etc. The above exercise can be extended to show that the σ-algebras
σpCnq form a strictly increasing sequence of σ-algebras. Moreover, all the sets
in that hierarchy are measurable and have Baire Property!

One can relatively easily see that all the sets Cn defined above are con-
tained in ∆1

2 “ Σ1
2XΠ1

2 — they can be obtained as projections of coanalytic
sets and coprojections of analytic sets. From that perspective, Marczewski’s
theorem is (almost) at the frontier of our knowledge about measurability and
Baire Property because there are universes of set theory where certain ∆1

2
sets are not measurable and do not have Baire Property!

4 Hints
Hint to Exercise 3 Should be easy, because I is closed under finite unions.
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Hint to Exercise 4 Again finite unions.

Hint to Exercise 5 Take a minimal cover B of Y . Since B P BrIs, we
know that B “ A4F for A P B and F P I. Let F 1 P I X B be a Borel set
that contains F . Then AYF 1 P B and B Ď AYF 1. We claim that AYF 1 is
the required cover. Take H Ď pAY F 1q ´ Y and observe that H can be split
into a subset of F 1 (that belongs to I because F 1 does), a subset of A X F
(again the same), and a subset of B ´ Y that belongs to I because B was
a minimal cover.

Hint to Exercise 6 Clear, because we know that one can approximate
every set by a Gδ from above with the same measure. So every set of measure
0 is contained in a Gδ of measure 0.

Hint to Exercise 7 This time every meagre set is contained in a mea-
gre Fσ.

Hint to Exercise 8 Assume contrarily and take x P BH´A that does not
belong to any of the sets Bs´

Ť

nPNBŝ n. Construct inductively s0 ă s1 ă . . .
such that x P Bsi

. Begin with s0 “ H and continue using the fact that
x R Bsi

´
Ť

nPNBsî n. Thus, we can put α “ limiÑ8 si “
Ť

iPN si and observe
that x P

Ş

nPNBαæn
what means that x P A.

Hint to Exercise 9 Take for instance BH “ B0̂ s “ B1 “ X for each
s P Năω and Bt “ H for all the remaining t. Then ApBsq “ X “ A and
BH ´ A “ H. However, the considered union contains for instance

B1 ´
ď

nPN
B1̂ n “ X ´H “ X.

Hint to Exercise 10 Apply directly Exercise 8.

Hint to Exercise 11 Each of the statements is obvious from the choice
of Zt :)
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Hint to Exercise 12 We know that Bs is a minimal cover of Zs, the same
for Bŝ n and Zŝ n. Denote the difference D “ Bs ´

Ť

nPNBŝ n. We need to
show that D P I. For each n, since D X Bŝ n “ H for each n we know that
also DXZŝ n “ H (because Zt Ď Bt). But Zs “

Ť

nPN Zŝ n what means that
D X Zs “ H. Thus, D Ď Bs ´ Zs and D is C measurable. Thus, by the fact
that Bs is a minimal cover, we know that D P I.
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