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The above figure represents the Borel and projective hierarchies. At the
moment we know: Borel sets

`

Σ0
η,∆0

η,Π0
η

˘

ηăω1
, analytic sets Σ1

1, and coana-
lytic sets Π1

1. We additionally know that ∆1
1 “ Σ1

1XΠ1
1 coincides with Borel

sets B.
Similarly as Σ1

1 sets are projections of Borel sets, one can define Σ1
2 as

projections of coanalytic sets, Π1
2 as complements of Σ1

2, etc. . . Analogously,
one puts ∆1

n “ Σ1
nXΠ1

n. The hierarchy of families
`

Σ1
n,∆1

n,Π1
n

˘

nPN is called
the projective hierarchy.
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Tutorial from 02.04.2020
I’m really willing to answer your questions and comments.
I will grant additional points if someone indicates any “not-entirely-trivial”

mistake in the notes!
Homework deadline: 24:00 on Wednesday 08.04

1 Solutions of the homework problems
Exercise 1. Consider a “binary Souslin scheme” pAsqsP2ăω . You can think
of it as a general Souslin scheme As such that As “ H whenever s R 2ăω.
Prove that if all the sets As are Borel then also A2pAsq (this subscript 2
indicates that the scheme is binary) is Borel.

W.l.o.g. assume that the scheme pAsqsP2ăω is regular, i.e. if s ĺ r then
As Ě Ar. We claim that A2pAsq “

Ş

nPN
Ť

sP2n As. Then, A2pAsq is Borel
as a countable intersection of finite unions of Borel sets As. The inclusion
A2pAsq Ď

Ş

nPN
Ť

sP2n As is obvious. Take x P
Ş

nPN
Ť

sP2n As and let

T “ ts P 2ăω | x P Asu.

It is clear that T is prefix closed. Since x P
Ş

nPN
Ť

sP2n As, T is infinite.
Therefore, König’s Lemma implies that T has an infinite branch α P 2ω.
Therefore, x P

Ş

nPNAαæn
Ď A2pAsq.

Exercise 2 (‹). Consider another two variants of Souslin operation: given
a scheme pAsqsPNăω Ď X, put:

Ap8q
pAsq “

ď

αPNω

tx P X | x P Aαæn
for infinitely many nu,

Ap8q

2 pAsq “
ď

αP2ω

tx P X | x P Aαæn
for infinitely many nu.

W.l.o.g. the argument for the operation Ap8q

2 is a binary scheme pAsqsP2ăω .
Consider a family of sets Γ Ď PpXq that is closed under finite unions and

finite intersections and contains H and X. Prove that

AΓ “ Ap8qΓ “ Ap8q

2 Γ, (1.1)

i.e. exactly the same family of sets can be obtained via A, Ap8q, and Ap8q

2
applied to all the possible schemes from Γ.
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We will show three containments. They are a bit boring but the important
message is that the Souslin operation is about witnesses α and what we do
here is encode witnesses of one type as witnesses of other type.

AΓ Ď Ap8qΓ This is clear if we make our scheme regular: given pAsqsPNăω

define A1s “
Ş

tĺsAt using finite intersections in Γ. Then for each α P Nω

we have
Ş

nPNA
1
αæn

“
 

x P X | x P A1αæn
for infinitely many n

(

and therefore
ApAsq “ ApA1sq “ Ap8qpA1sq.

Ap8qΓ Ď Ap8q

2 Γ Consider a scheme pAsqsPNăω . We will encode natural num-
bers n P N as binary sequences 0n1 P t0, 1uăω “ 2ăω, where 0n is the sequence
consisting of n zeros. Let

φ : Nďω Q xn0, n1, . . .y ÞÑ 0n010n11 . . . P 2ďω,

where by Xďω we mean Xăω Y Xω — in fact these are two functions, one
mapping finite sequences to finite sequences and the other mapping infinite
sequences to infinite sequences. Notice that φ is a bijection between Nω and
G “ tα P 2ω | α has infinitely many onesu. Also, φ is 1-1 on Năω. Now, for
each r P 2ăω X rgpφq put Br “ Aφ´1prq and for r P 2ăω ´ rgpφq put Br “ H.

We claim that Ap8q

2 pBrq “ Ap8qpAsq. For the pĚq inclusion take x P X
and α P Nω such that for infinitely many n P I we have x P Aαæn

. Let
β “ φpαq. Notice that for each n P N we have φpαænq ă β. In particular,
for each n P I we have x P Bφpαænq

and the sequences φpαænq are distinct
for distinct n. Therefore, there is infinitely many m such that x P Bβæm

and
thus x P Ap8q

2 pBrq.
Now consider the pĎq inclusion: take β P 2ω such that for infinitely many

m P I we have x P Bβæm
. Notice that β P G as otherwise β would have

only finitely many prefixes in rgpφq. In fact, for each m P I we must have
βæm P rgpφq.

Let α “ φ´1pβq. We claim that x P Aαæn
for infinitely many n. But

again, for each m P I we have x P Aφ´1pβæmq
, again φ´1pβæmq ă α, and for

distinct m the sequences φ´1pβæmq are distinct. So x P Aαæn
for infinitely

many n.

Ap8q

2 Γ Ď AΓ We will again encode witnesses for Ap8q

2 as witnesses for A.
Let pBrqrP2ăω be a binary Souslin scheme. Fix a bijection ψ : NÑ 2ăω´tăąu
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that enumerates all non-empty finite binary sequences. Put

Aăn0,...,nką “ Bψpn0qˆψpn1qˆ...ˆψpnkq.

We claim that Ap8q

2 pBrq “ ApAsq. If x P Ap8q

2 pBrq then there exists β “
s0ˆs1ˆ ¨ ¨ ¨ P 2ω with all the sequences sk P 2ăω non-empty such that for each
k P N we have x P Bs0ˆs1ˆ...ˆsk´1 . Let α “ă ψ´1ps0q, ψ

´1ps1q, . . . ąP Nω. For
each k P N we have Aαæk

“ Bs0ˆs1ˆ...ˆsk´1 . Therefore, for each k we know that
x P Aαæk

and thus x P ApAsq.
Now assume that x P ApAsq, as witnessed by α “ă n0, n1, . . . ąP Nω.

Let sk “ ψpnkq for k “ 0, . . . and put β “ s0ˆs1ˆ . . . As all the sequences sk
are non-empty, we know that β P 2ω. Notice that for each k P N we have
Bs0ˆs1ˆ...ˆsk´1 “ Aăn0,...,nk´1 , what means that x P Bs0ˆs1ˆ...ˆsk´1 . Therefore,
the set ts0ˆs1ˆ . . . ˆsk´1 | k P Nu is an infinite set of prefixes of β where x
belongs to the respective set Br. Therefore, x P Ap8q

2 pBrq.

2 New material

2.1 Abstract σ-ideals
A σ-ideal is a non-empty family I Ď PpXq that is closed under subsets
(if A Ď A1 P I then A P I) and countable unions (if pAnqnPN Ď I then
Ť

nPNAn P I). In particular, we always have H P I and also I is closed
under arbitrary intersections of non-empty families of sets.

A typical example is Iℵ0 “ tA Ď X | |A| ď ℵ0u — the σ-ideal of at most
countable sets. A typical non-example is the ideal of finite sets Ifin “ tA Ď
X | |A| ă 8u — it is closed under finite unions but may not be closed under
countable unions.

Let A be a σ-algebra (closed under countable operations and complement)
and I be a σ-ideal. Define the family

ArIs “ tA4N | A P A, N P Iu,

where B4C “ pB ´ Cq Y pC ´Bq.
Exercise 3. Let A P ArIs and A4B P I. Show that then B P ArIs. In
other words, ArIs contains whole equivalence classes of the relation

A „I B ðñ A4B P I.

(make sure that „I is in fact an equivalence relation!)
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Exercise 4. Check that under the above assumptions, ArIs is a σ-algebra.

Exercise 5. Entail that ArIs is the smallest σ-algebra containing AY I.

2.2 Borel measures
A Borel measure µ is a function from BpXq to r0,`8s. Such a function
assigns a measure only to Borel sets (trivium). However, various interesting
sets (e.g. analytic) are not Borel. Also, it is often the case that B P BpXq,
µpBq “ 0, and A Ď B but A R BpXq; so the value µpAq is undefined (although
we expect it to be 0)!

This leads to the idea: consider Iµ “ tA Ď X | DB P BpXq. A Ď

B ^ µpBq “ 0u — the σ-ideal of sets of µ-measure zero.

Exercise 6. Check that Iµ is a σ-ideal.

We call a set A Ď X µ-measurable if A “ B4N for B P BpXq and
N P Iµ. This means that the µ-measurable sets is the σ-algebra BrIµs. One
can extend µ into µ̄ on BrIµs by putting

µ̄pB4Nq “ µpBq.

Exercise 7. Prove that the above formula does not depend on the represen-
tation of the argument.

Notice that while the family of Borel sets is fixed for a given space, the
family of µ-measurable sets depends on the actual values of the measure: if
µpr7, 9sq “ 0 then every subset of the interval r7, 9s is µ-measurable. There
is a more robust notion of universally measurable set: it is µ-measurable for
every Borel measure µ. Thus, the aim of the lecture is to ultimately prove
that every analytic set is universally measurable.

Exercise 8. Check that µ̄ is also a σ-additive measure:

1. p̄µqpHq “ 0,

2. µ̄p
Ť

nPNAnq “
ř

nPN µ̄pAnq for each collection of pairwise disjoint µ-mea-
surable sets An.

The lecture notes provide a notion of a ccc σ-ideal in BrIs that has no
uncountable family of pairwise disjoint sets in BrIs ´ I.
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Exercise 9. Prove that there is no uncountable family of pairwise disjoint
sets in BrIs ´ I if and only if there is no such family in B ´ I.

Hint: you can enumerate your hypothetical uncountable family by the
first uncountable ordinal ω1, which means that you work with a sequence of
sets pBηqηăω1 .

Exercise 10. Assume the conditions of Exercise 9. Prove that there is no
uncountable family of almost-pairwise disjoint sets in BrIs ´ I (two sets B
and B1 are almost disjoint if B XB1 P I).

Then, the lecture notes provide a construction of compact sets that ap-
proximate a given measurable set from below up to ε ą 0. During this
construction, one fixes for each n P N an at most countable family of closed
balls Bpnqi that cover our space X and diampBpnqi q ď 2´n. Then one can take
sufficiently large kn such that

µ
`

X ´
ď

iďkn

B
pnq
i

˘

ă ε ¨ 2´n´1.

Then one puts K “
Ş

nPN
Ť

iďkn
B
pnq
i and observes that µpX ´ Kq ď ε. It

remains to see that K is compact. It is clearly closed (as an intersection of
finite (!) unions of closed sets).

Exercise 11. Show that K is totally bounded, i.e. for every δ ą 0 there
exists a finite set F Ď K such that K Ď

Ť

xPF Bpx, δq.

Now, by taking a union of Kε for countably many ε Ñ 0 (e.g. ε “ 1{n)
one obtains an Fσ that is contained in a given set and has the same measure
as it.

2.3 Meagre sets
Another important σ-ideal is that of meagre (also written meager or first
category) sets. The lecture notes define a meagre set as a set that is a count-
able union of nowhere dense sets (A is nowhere dense if intpAq “ H, i.e. its
closure does not contain any non-empty open set).

One can equivalently define a set A Ď X to be meagre if there ex-
ists a countable family of closed sets pFnqnPN such that for every n we
have intpFnq “ H (i.e. no non-empty open set is contained in Fn) and
A Ď

Ť

nPN Fn.
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Exercise 12. Prove that a set is meagre in the above meaning if and only if
it meagre in the sense of the lecture notes.

A set is comeagre if its complement is meagre. They are considered BIG.

Exercise 13. Let X be a topological space that might not be Polish. Prove
that the following three conditions are equivalent:

1. every non-empty open set is non-meagre;

2. every comeagre set is dense;

3. the intersection of a countable family of dense open sets is dense.

Recall the Baire category theorem in terms of Gδs for Polish spaces.

Theorem 2.1. If X is a Polish space and for each n P N a set Gn Ď X is
a dense Gδ then

Ş

nPNGn is also a dense Gδ.

A space satisfying the conditions of Exercise 13 is called a Baire space.
Baire category theorem states that each Polish space is a special case of
a Baire space. We again assume all our spaces to be Polish, as generally
during this lecture.

Exercise 14. Prove that a set A is comeagre if and only if it contains some
dense Gδ.

Exercise 15. Prove that meagre sets constitute a σ-ideal, denoted here IMGR.

Comeagre sets form a σ-filter — a concept dual to σ-ideal.
This leads to two definitions: first, we can apply the standard construction

of BrIMGRs obtaining the smallest σ-algebra that contains BpXq and IMGR.
Second, one can consider the family of sets BPpXq that have Baire property:

tU4N | U P Σ0
1, N P IMGRu,

i.e. sets that are open modulo IMGR. Clearly, BPpXq Ď BrIMGRs. Proposi-
tion on pages 8/9 of lecture notes prove the opposite containment. In par-
ticular, given pUn4NnqnPN with Uns open, one needs to be able to construct
an open set U such that

˜

č

nPN
pUn4Nnq

¸

4U P IMGR.
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Then again a variant of approximation theorem for BPpXq comes, but
now the roles of Gδs and Fσs are swapped comparing to the measure case.

The proposition at the end of page 10 is again a variant of Exercise 7,
saying that each set is either in IMGR or of the form U4IMGR for non-empty
open set U ; but not both.

Finally, the lecture notes again show the lack of uncountable anti-chains
w.r.t. IMGR, as in Exercise 9.

2.4 Making measurable functions continuous
Please note that I’m not summarising all the contents of the lecture notes:
there was considerably more (i.e. making measurable functions continuous
on large sets).

The first variant of the result (by Souslin) works for a Borel measure µ,
see page 6 of lecture notes.

Exercise 16. Check that g defined as in the proof is in fact continuous.

A very similar construction is given also at pages 12–13 for Baire-mea-
surable functions.

3 New homework
Probably the first exercise is a bit easier but I’m not sure.

If someone wants, you can solve both of them this week :)

Consider two measurable spaces. The first is xr0, 1s, λy — the interval
r0, 1s Ď R with the standard Lebesgue measure λ. The second is x2ω, µy,
where the probability Borel measure µ corresponds to randomly and inde-
pendently choosing bits: µpNsq “ 2´|s| for each s P 2ăω.

Exercise 17 (‹). Choose one of the two spaces defined above and construct
a dense Gδ set of µ-measure 0.

The set constructed above is BIG w.r.t. IMGR but small w.r.t. Iµ. Its
complement has the opposite properties.
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Exercise 18 (‹). Take X non-empty at most countable. Prove that a set
A Ď Xω is comeagre if and only if the following condition holds. There exists
a function f : Xăω Ñ Xăω´tăąu such that for every sequence of sequences
psiq P X

ăω the following sequence belongs to A:

s0ˆfpr0qˆs1ˆfpr1qˆs2ˆfpr2qˆ ¨ ¨ ¨ ,

where ri is defined inductively as s0ˆfpr0qˆs1ˆfpr1qˆ . . . ˆfpri´1qˆsi.

Anti-hint: the function f above is in fact a strategy. . .

4 Hints
Hint to Exercise 3 Simple calculation. In fact it works also for ideals
(that are closed only under finite unions).

Hint to Exercise 4 First, ArIs is closed under complement, because
pA4Nqc “ Ac4N . Therefore, it is enough to show that ArIs is closed
under countable unions. Take pAn4NnqnPN. Then check that

˜

ď

nPN
pAn4Nnq

¸

4

˜

ď

nPN
An

¸

Ď
ď

nPN
Nn P I (4.1)

Hint to Exercise 5 We have shown above that ArIs is a σ-algebra.
Clearly, each of its elements pA4Nqmust exist to any σ-algebra that contains
AY I. Therefore, its the smallest one.

Hint to Exercise 6 By σ-additivity of measure, if An Ď Bn and µpBnq “ 0
then B “

Ť

nPNBn is also Borel and µpBq “ 0 and
Ť

nPNAn Ď B.

Hint to Exercise 7 If B4N “ B14N 1 then B4B1 P I (write an actual
formula for this difference in terms of N and N 1!). This implies that µpBq “
µpB1q (why?).

Hint to Exercise 8 One only needs to check countable additivity. But it
is clear from (4.1) (is it?).
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Hint to Exercise 9 First, one implication is clear. Using the hint after
the exercise, assume contrarily and take a family of pairwise disjoint sets
pBη4Nηqηăω1 in BrIs ´ I (i.e. each Bη is Borel, each Nη is in I, and their
symmetric difference is not in I). To reach a contradiction we need to con-
struct an analogous family pB1ηqηăω1 of sets in B ´ I.

Define inductively, B1η “ Bη ´
Ť

τăη B
1
τ . Since each η itself is a countable

ordinal, we know that all B1η are Borel. They are clearly pairwise disjoint
by the definition. It remains to see that no B1η P I. Assume contrarily, that
B1η P I for some η ă ω1. Since each B1τ Ď Bτ , we have

I Q B1η Ě Bη ´
ď

τăη

Bτ . (4.2)

But as pBτ4Nτ q are pairwise disjoin, BηXBτ P I for each η ă τ . Therefore,
Bη´

Ť

τăη Bτ “ Bη´N for some N P I. But then Bη´N P I by (4.2). This
means that also Bη P I and therefore also Bη4Nη P I. A contradiction.

Notice that the above construction depends heavily on the fact that each
η is a countable ordinal, so at each stage of the construction we need to deal
with countably many “previous” sets. This comes from the fact that we have
chosen our family to be ordered by ω1 — the whole family is uncountable,
but each set has countably many predecessors. It is a frequent trick in set
theory.

Hint to Exercise 10 The argument is essentially the same as above: we
can inductively normalise the sets Bη by removing from them

Ť

τăη Bη XBτ

— this is a member of I, because η itself is a countable ordinal.

Hint to Exercise 11 Take δ ą 0 and n sufficiently big so that 2´n ă
δ{2. Then K Ď

Ť

iďkn
B
pnq
i . For each of the balls Bpnqi for i ď kn, either

K XB
pnq
i “ H and we can skip this ball, or it is non-empty and we can take

to F any of its points. Then |F | ď kn.

Hint to Exercise 12 If A Ď
Ť

nPN Fn as in our definition, then each AXFn
is nowhere dense itself, because AX Fn Ď Fn and intpFnq “ H.

Now, if A is a countable union of nowhere dense sets An then the closures
An have empty interiors and can be used as Fns.
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Hint to Exercise 13 Assume (1) and take A comeagre. Assume that A
is not dense: there exists open U such that A X U “ H. Then U Ď X ´ A
is meagre. Contradiction.

Assume (2) and take a countable family pUnqnPN of dense open sets. Then
for each n the set X ´ Un is nowhere dense, because intpX ´ Unq “ intpX ´
Unq “ H (the last equality follows from the fact that Un is dense). This means
that

Ť

nPNpX ´ Unq is meagre and therefore
Ş

nPN Un “ X ´
Ť

nPNpX ´ Unq
is comeagre and therefore dense by (2).

Now assume (3) and for the sake of contradiction assume that U “
Ť

nPNAn is a nono-empty open set, with each An nowhere dense. Take
Un “ X ´ An. Since intpAnq “ H, we know that Un is dense and open.
Therefore,

Ş

nPN Un is dense in X by (3). This means that it intersects U ,
which is a contradiction (An Ě An).

Hint to Exercise 14 By dualising the definition with Fns — the com-
plement of a closed set Fn with empty interior is a dense open set. Their
intersection is a dense Gδ due to Baire theorem.

Hint to Exercise 15 Take a countable family of meagre sets An. The
complement of each of them contains a dense Gδ. The intersection of all
these Gδs is again a dense Gδ. Moreover,

Ť

nPNAn is disjoint from that
intersection.

Hint to Exercise 16 It is enough to check that g´1pVnq is open in B
for each basic open set Vn. However, we know that f´1pVnq Ď Un and
Un ´ f´1pVnq Ď Bn. By the first inclusion we know that g´1pVnq Ď Un X B
(as B is the domain of g). Take x P Un X B and observe that x R Bn and
therefore fpxq P Vn, so x P g´1pVnq. This means that g´1pVnq “ Un X B (as
in the lecture notes) which is an open set in the induced topology on B Ď X.
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