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The above figure represents the Borel and projective hierarchies. At the
moment we know: Borel sets (39, A?, Hg)n<w1’ analytic sets 31, and coana-
lytic sets IT;. We additionally know that Aj = 31 N II] coincides with Borel
sets B.

Similarly as 3{ sets are projections of Borel sets, one can define X} as
projections of coanalytic sets, IT} as complements of 31, etc. .. Analogously,
one puts A} = X} nII}. The hierarchy of families (X}, A}, II},) _is called
the projective hierarchy.



Tutorial from 02.04.2020

I'm really willing to answer your questions and comments.

[ will grant additional points if someone indicates any “not-entirely-trivial”
mistake in the notes!

Homework deadline: 24:00 on Wednesday 08.04

1 Solutions of the homework problems

Exercise 1. Consider a “binary Souslin scheme” (Ay)sea<w. You can think
of it as a general Souslin scheme Ay such that Ay = (J whenever s ¢ 2<%,
Prove that if all the sets As are Borel then also Ay(As) (this subscript 2
indicates that the scheme is binary) is Borel.

W.lo.g. assume that the scheme (Ay)sea<w is regular, i.e. if s < r then
A; 2 A,. We claim that Ay (As) = [),cy Useon As- Then, Ay(Ay) is Borel
as a countable intersection of finite unions of Borel sets A;. The inclusion
A2(As) € Myew Ueon As is obvious. Take x € (), .y U eon 4s and let

T={se2™|xe Al

It is clear that T is prefix closed. Since z € [, .y U.con As, T is infinite.
Therefore, Konig’s Lemma implies that 7" has an infinite branch o € 2“.
Therefore, z € [,y Aar, S A2(A4s).

Exercise 2 (x). Consider another two variants of Souslin operation: given
a scheme (Ag)sen<e S X, put:

AP (A,) = U {ve X |xe Ay, forinfinitely many n},

aeNw

Agoo)(As) = U {ve X |xe Ay, forinfinitely many n}.

ae2w

W.l.o.g. the argument for the operation Agoo) is a binary scheme (As)sea<w.
Consider a family of sets I' € P(X) that is closed under finite unions and
finite intersections and contains & and X. Prove that

AT = AT = AT, (1.1)

i.e. exactly the same family of sets can be obtained via A, A, and Agoo)
applied to all the possible schemes from I.
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We will show three containments. They are a bit boring but the important
message is that the Souslin operation is about witnesses o and what we do
here is encode witnesses of one type as witnesses of other type.

Al € AT This is clear if we make our scheme regular: given (As)sen<w
define A = (,_, A: using finite intersections in I'. Then for each o € N
we have [,y Aoy, = {reX|ze Ay, for infinitely many n} and therefore

A(A) = A(A) = A(A)).

AT < .Agoo)l“ Consider a scheme (Aj)sen<. We will encode natural num-
bers n € N as binary sequences 0”1 € {0, 1}~ = 2=“ where 0" is the sequence
consisting of n zeros. Let

¢: NS 3 (ng,ny,...» — 0"010™M1... € 2%,

where by X< we mean X~* U X — in fact these are two functions, one
mapping finite sequences to finite sequences and the other mapping infinite
sequences to infinite sequences. Notice that ¢ is a bijection between N“ and
G = {a € 2¥ | « has infinitely many ones}. Also, ¢ is 1-1 on N<“. Now, for
each r € 2 nrg(¢) put B, = Ay-1(,) and for r € 2<% —rg(¢) put B, = &.

We claim that AS”(B,) = A®)(A,). For the (2) inclusion take z € X
and a € N* such that for infinitely many n € I we have z € A, . Let
B = ¢(c). Notice that for each n € N we have ¢(al,) < 8. In particular,
for each n € I we have x € By, ) and the sequences ¢(al,) are distinct
for distinct n. Therefore, there is infinitely many m such that x € Bg; —and
thus z € A (B,).

Now consider the (<€) inclusion: take £ € 2¢ such that for infinitely many
m € I we have x € Bg, . Notice that 3 € GG as otherwise 3 would have
only finitely many prefixes in rg(¢). In fact, for each m € I we must have
Bl € 18(0).

Let @ = ¢7'(8). We claim that z € A,; for infinitely many n. But
again, for each m € I we have z € Ay-1(5, ), again ¢~ '(3!,,) < «, and for
distinct m the sequences ¢~*(31,,) are distinct. So x € A,; for infinitely
many n.

,Agw)F c AI' We will again encode witnesses for A§°°) as witnesses for A.
Let (B, )e2<~ be a binary Souslin scheme. Fix a bijection ¢: N — 2<¢ —{<>}



that enumerates all non-empty finite binary sequences. Put
Acno,m> = Byno) ) . (i) -

We claim that AY?(B,) = A(A,). If 2 € AY”(B,) then there exists 3 =
S0 81" - -+ € 2¢ with all the sequences s, € 2<“ non-empty such that for each
k€ N we have & € By,~g,~. ~s,,- Let a =< ¥71(sg), 7 (s1),... > N, For
each k € N we have Ay, = Byy~s,~..°s,_,. Therefore, for each & we know that
r € Ay, and thus z € A(A,).

Now assume that z € A(A;), as witnessed by a =< ng,ng,... > N¥.
Let s = ¥(ng) for k= 0,... and put 8 = sp"s1" ... As all the sequences s
are non-empty, we know that g € 2¥. Notice that for each k € N we have
By sivsiy = Acng.omi_y, What means that © € By~ ~5,_,. Therefore,
the set {so"s1" ... sg—1 | k € N} is an infinite set of prefixes of 8 where z
belongs to the respective set B,. Therefore, x € Agoo)(BT).

2 New material

2.1 Abstract o-ideals

A o-ideal is a non-empty family Z < P(X) that is closed under subsets
(if A< A" € T then A € 7) and countable unions (if (A,)neny S Z then
U,en An € Z). In particular, we always have ¢J € Z and also Z is closed
under arbitrary intersections of non-empty families of sets.

A typical example is Zy, = {A < X | |A| < No} — the o-ideal of at most
countable sets. A typical non-example is the ideal of finite sets Zs, = {A <
X | |A| < o} — it is closed under finite unions but may not be closed under
countable unions.

Let A be a o-algebra (closed under countable operations and complement)
and Z be a o-ideal. Define the family

A[Z] = {AAN | Ae A N € T},
where BAC = (B—C)u (C — B).
Exercise 3. Let A € A[Z] and AAB € Z. Show that then B € A[Z]. In

other words, A|Z| contains whole equivalence classes of the relation
A~7 B« AABeT.

(make sure that ~7 is in fact an equivalence relation!)
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Exercise 4. Check that under the above assumptions, A[Z] is a o-algebra.

Exercise 5. Entail that A[Z] is the smallest o-algebra containing A U T.

2.2 Borel measures

A Borel measure p is a function from B(X) to [0, +o0]. Such a function
assigns a measure only to Borel sets (trivium). However, various interesting
sets (e.g. analytic) are not Borel. Also, it is often the case that B € B(X),
u(B) =0,and A € Bbut A ¢ B(X); so the value p(A) is undefined (although
we expect it to be 0)!

This leads to the idea: consider Z, = {A < X | 3B € B(X). A <
B A u(B) = 0} — the o-ideal of sets of y-measure zero.

Exercise 6. Check that 1, is a o-ideal.

We call a set A < X p-measurable if A = BAN for B € B(X) and
N € Z,. This means that the y-measurable sets is the o-algebra B[Z,]. One
can extend p into i1 on B[Z,] by putting

J(BAN) = u(B).

Exercise 7. Prove that the above formula does not depend on the represen-
tation of the argument.

Notice that while the family of Borel sets is fixed for a given space, the
family of u-measurable sets depends on the actual values of the measure: if
w1([7,9]) = 0 then every subset of the interval [7,9] is y-measurable. There
is a more robust notion of universally measurable set: it is y-measurable for
every Borel measure p. Thus, the aim of the lecture is to ultimately prove
that every analytic set is universally measurable.

Exercise 8. Check that i is also a o-additive measure:

1. (W)(@) =0,

2. f(Uneny An) = 2onen I(Ay) for each collection of pairwise disjoint p-mea-
surable sets A,,.

The lecture notes provide a notion of a ccc o-ideal in B[Z] that has no
uncountable family of pairwise disjoint sets in B[Z] — Z.
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Exercise 9. Prove that there is no uncountable family of pairwise disjoint
sets in B|Z| — Z if and only if there is no such family in B —Z.

Hint: you can enumerate your hypothetical uncountable family by the
first uncountable ordinal w;, which means that you work with a sequence of
sets (By)p<w, -

Exercise 10. Assume the conditions of Exercise 9. Prove that there is no
uncountable family of almost-pairwise disjoint sets in B[Z] —Z (two sets B
and B’ are almost disjoint if BN B' € T).

Then, the lecture notes provide a construction of compact sets that ap-
proximate a given measurable set from below up to € > 0. During this
constructlon one fixes for each n € N an at most countable family of closed
balls B ) that cover our space X and dlam(B( )) < 27". Then one can take
sufficiently large k,, such that

— U Bi(")) <g-2 L

1<kn

Then one puts K = (,oy Uics, B ) and observes that wX —K) <e It
remains to see that K is compact. It is clearly closed (as an intersection of
finite (!) unions of closed sets).

Exercise 11. Show that K is totally bounded, i.e. for every o > 0 there
exists a finite set F' < K such that K < |, B(z,9).

Now, by taking a union of K. for countably many ¢ — 0 (e.g. € = 1/n)
one obtains an F), that is contained in a given set and has the same measure
as it.

2.3 Meagre sets

Another important o-ideal is that of meagre (also written meager or first
category) sets. The lecture notes define a meagre set as a set that is a count-
able union of nowhere dense sets (A is nowhere dense if int(A) = &, i.e. its
closure does not contain any non-empty open set).

One can equivalently define a set A < X to be meagre if there ex-
ists a countable family of closed sets (F),)nen such that for every n we
have int(F,) = ¢ (i.e. no non-empty open set is contained in F,) and

Ac UneN Fn



Exercise 12. Prove that a set is meagre in the above meaning if and only if
it meagre in the sense of the lecture notes.

A set is comeagre if its complement is meagre. They are considered BIG.

Exercise 13. Let X be a topological space that might not be Polish. Prove
that the following three conditions are equivalent:

1. every non-empty open set is non-meagre;

2. every comeagre set is dense;

3. the intersection of a countable family of dense open sets is dense.
Recall the Baire category theorem in terms of Ggs for Polish spaces.

Theorem 2.1. If X is a Polish space and for each n € N a set G,, € X is
a dense G then ﬂneN G,, 1s also a dense Gy.

A space satisfying the conditions of Exercise 13 is called a Baire space.
Baire category theorem states that each Polish space is a special case of
a Baire space. We again assume all our spaces to be Polish, as generally
during this lecture.

Exercise 14. Prove that a set A is comeagre if and only if it contains some
dense Gs.

Exercise 15. Prove that meagre sets constitute a o-ideal, denoted here Iyigr -

Comeagre sets form a o-filter — a concept dual to o-ideal.

This leads to two definitions: first, we can apply the standard construction
of B[Zyigr] obtaining the smallest o-algebra that contains B(X) and Zygr.
Second, one can consider the family of sets BP(X) that have Baire property:

{UAN | U € £, N € Tycgr},

i.e. sets that are open modulo Zygr. Clearly, BP(X) < B[Zygr]. Proposi-
tion on pages 8/9 of lecture notes prove the opposite containment. In par-
ticular, given (U, AN, )nen with Uy,s open, one needs to be able to construct
an open set U such that

neN
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Then again a variant of approximation theorem for BP(X) comes, but
now the roles of Ggs and Fs are swapped comparing to the measure case.

The proposition at the end of page 10 is again a variant of Exercise 7,
saying that each set is either in Zyigr or of the form U AZygr for non-empty
open set U; but not both.

Finally, the lecture notes again show the lack of uncountable anti-chains
w.r.t. Zyar, as in Exercise 9.

2.4 Making measurable functions continuous

Please note that I'm not summarising all the contents of the lecture notes:
there was considerably more (i.e. making measurable functions continuous
on large sets).

The first variant of the result (by Souslin) works for a Borel measure p,
see page 6 of lecture notes.

Exercise 16. Check that g defined as in the proof is in fact continuous.

A very similar construction is given also at pages 12-13 for Baire-mea-
surable functions.

3 New homework

Probably the first exercise is a bit easier but I'm not sure.
If someone wants, you can solve both of them this week :)

Consider two measurable spaces. The first is {[0,1],A\) — the interval
[0,1] <€ R with the standard Lebesgue measure A. The second is (2¥, ),
where the probability Borel measure p corresponds to randomly and inde-
pendently choosing bits: u(N,) = 271! for each s € 2<«.

Exercise 17 (x). Choose one of the two spaces defined above and construct
a dense G set of p-measure 0.

The set constructed above is BIG w.rt. Zygr but swan wort. Z,. Its
complement has the opposite properties.



Exercise 18 (x). Take X non-empty at most countable. Prove that a set
A < X% is comeagre if and only if the following condition holds. There exists
a function f: X=¥ — X=¥ —{<>} such that for every sequence of sequences
(s;) € X=¥ the following sequence belongs to A:

so "f(ro) “s1 f(r1) "sa"f(r2) "o,
where r; is defined inductively as so " f(ro) “s1 "f(r1) ... “f(ri_1) "s;.

Anti-hint: the function f above is in fact a strategy. . .

4 Hints

Hint to Exercise 3 Simple calculation. In fact it works also for ideals
(that are closed only under finite unions).

Hint to Exercise 4 First, A[Z] is closed under complement, because
(AAN)® = A°AN. Therefore, it is enough to show that A[Z] is closed
under countable unions. Take (A, AN, ),en. Then check that

(U(AnANn)> A (U An> c|JNuez (4.1)

Hint to Exercise 5 We have shown above that A[Z] is a o-algebra.
Clearly, each of its elements (AAN) must exist to any o-algebra that contains
A U Z. Therefore, its the smallest one.

Hint to Exercise 6 By o-additivity of measure, if A, € B,, and u(B,) =0
then B = | J, .y Bn is also Borel and pu(B) = 0 and | J, .y An € B.

neN neN

Hint to Exercise 7 If BAN = B’AN' then BAB' € T (write an actual
formula for this difference in terms of N and N'!). This implies that u(B) =

u(B') (why?).

Hint to Exercise 8 One only needs to check countable additivity. But it
is clear from (4.1) (is it?).



Hint to Exercise 9 First, one implication is clear. Using the hint after
the exercise, assume contrarily and take a family of pairwise disjoint sets
(ByANy)y<w, in B[Z] — T (i.e. each B, is Borel, each N, is in Z, and their
symmetric difference is not in Z). To reach a contradiction we need to con-
struct an analogous family (B;),<., of sets in B — 7.

Define inductively, B, = B, —J, ., B;. Since each 7 itself is a countable
ordinal, we know that all B, are Borel. They are clearly pairwise disjoint
by the definition. It remains to see that no B, € Z. Assume contrarily, that
B;7 € Z for some 1 < wy. Since each B. € B,, we have

IsB,2B,-|]B- (4.2)

T<nN

But as (B;AN,) are pairwise disjoin, B, n B, € Z for each < 7. Therefore,
B,—U,-, Br = B;— N for some N € Z. But then B, — N € T by (4.2). This
means that also B, € Z and therefore also B, AN, € Z. A contradiction.

Notice that the above construction depends heavily on the fact that each
7 is a countable ordinal, so at each stage of the construction we need to deal
with countably many “previous” sets. This comes from the fact that we have
chosen our family to be ordered by w; — the whole family is uncountable,
but each set has countably many predecessors. It is a frequent trick in set
theory.

Hint to Exercise 10 The argument is essentially the same as above: we
can inductively normalise the sets B, by removing from them [ J_ <y Bn 0 B-
— this is a member of Z, because 7 itself is a countable ordinal.

Hint to Exercise 11 Take 6 > 0 and n sufficientl 81 big so that 27"
6/2. Then K < (J;;, B™. For each of the balls B™ for i < ky, e1ther

Kn Bi(n) = ¢ and we can skip this ball, or it is non-empty and we can take
to [ any of its points. Then |F| < k

Hint to Exercise 12 If A < | J, . F» as in our definition, then each An F),
is nowhere dense itself, because A n F,, € F,, and int(F},) = .
Now, if A is a countable union of nowhere dense sets A,, then the closures

A,, have empty interiors and can be used as F,s.
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Hint to Exercise 13 Assume (1) and take A comeagre. Assume that A
is not dense: there exists open U such that AnU = . Then U <€ X — A
is meagre. Contradiction.

Assume (2) and take a countable family (U, ),en of dense open sets. Then
for each n the set X — U, is nowhere dense, because int(X — U,,) = int(X —
U,) =  (the last equality follows from the fact that U, is dense). This means
that |, (X — U,) is meagre and therefore () yUn = X — U, (X — Un)
is comeagre and therefore dense by (2).

Now assume (3) and for the sake of contradiction assume that U =
U,en An is a nono-empty open set, with each A, nowhere dense. Take
U, = X — A,. Since int(4,) = &, we know that U, is dense and open.
Therefore, (), .y Un is dense in X by (3). This means that it intersects U,
which is a contradiction (4, 2 4,).

Hint to Exercise 14 By dualising the definition with F,,s — the com-
plement of a closed set F, with empty interior is a dense open set. Their
intersection is a dense G due to Baire theorem.

Hint to Exercise 15 Take a countable family of meagre sets A,. The
complement of each of them contains a dense G§. The intersection of all
these Gss is again a dense Gs. Moreover, | J, Ay is disjoint from that
intersection.

Hint to Exercise 16 It is enough to check that ¢~'(V},) is open in B
for each basic open set V,. However, we know that f~1(V,,) < U, and
U, — f~%(V,) € B,. By the first inclusion we know that ¢~*(V;,) < U, n B
(as B is the domain of g). Take z € U, n B and observe that = ¢ B,, and
therefore f(x) € V,,, so z € g~*(V,,). This means that ¢g=*(V;,) = U, n B (as
in the lecture notes) which is an open set in the induced topology on B < X.
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