
Tutorials from 26.03.2020

In case of any questions, please contact me by e-mail!
Homework deadline: 24:00 on Wednesday 01.04

1 Solutions of the homework problems
Exercise 1. Prove that if Γ is a boldface pointclass that has a universal set1
U Ď X ˆX then Γ ‰ Γc.
You can use the Cantor’s diagonal argument from page 13 of the lecture notes.

Take U Ď X ˆ X universal. Then X ˆ X ´ U P Γc. Let ϕpxq “ px, xq
and V “ ϕ´1pX ˆ X ´ Uq. We know that V P Γc because both Γ and Γc

are boldface pointclasses. We will show that V R ΓpXq. Assume contrarily.
Then V “ Uy for some y P X. But then:

py, yq P U ôP Uy ô y P V ô py, yq R U,

where the first two equivalence comes from the definition of Uy, the second
from the assumption that V “ Uy, and the third from the definition of V .
Contradiction.
Exercise 2 (‹). Prove that the following set is universal for Σ1

1:
 

pT, αq P TrNˆN ˆ NN
| Dβ P NN. pα, βq P rT s

(

.

You may follow the idea (left as an exercise) from pages 11–12 of the lecture
notes.

It follows easily from the universality of
 

pT, αq P TrX ˆXω
| @n P N. αæn P T

(

.

2 New material

2.1 Souslin’s separation theorem
Theorem 2.1. If A and B are two disjoint analytic sets Σ1

1 then there exists
a Borel set separating them.

1For technical reasons we assume that X “ Y here.
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The proof given during the lecture is not constructive: in the middle of
page 2 it is said “suppose that A, B are not Borel separable”. One can
provide a bit more constructive proof, as follows.

Again take A “ fpNωq and B “ gpNωq for two continuous functions
f, g : Nω Ñ X and put As “ fpNsq and Bs “ gpNsq. Define

T “ ts P Năω | As and Bs cannot be separated by an open setu.

Clearly T is a tree (it is prefix closed).

Exercise 3. Show that rT s “ H.

(The idea is the same as in the lecture notes)

Exercise 4. If T P TrN is a non-empty tree that is well founded (has no
infinite branch) then T has a leaf: an element s P T such that @n P N. ŝ n R
T .

Now we can inductively “shrink” the tree: for each leaf s of T one can
apply Lemma from page 1 of lecture notes to find a Borel separator of As and
Bs and remove s from T . Continue like that (transfinite induction) removing
consecutive leaves of T . In the limit we must get T “ H what means that
we’ve constructed a separator of Aăą and Băą. This shows how transfinite
levels of Borel hierarchy can be involved in a construction of the separator.

Exercise 5. Prove that there are two disjoint analytic sets A and B that
cannot be separated by any set from a finite level of Borel hierarchy (i.e. a
set from Σ0

n for some n).

As a consequence of the separation result, we get the following important
fact that was shown during the lecture.

Exercise 6. If both A and X ´A are analytic (in other words A is both Σ1
1

and Π1
1) then A is Borel.

2.2 Souslin schemes
A Souslin scheme is a family of sets pAsqsPNăω Ď X indexed by finite sequences
of naturals. You should think of As as somehow definable (e.g. Borel). Then

A
`

pAsqsPNăω

˘

“
ď

αPNω

č

nPN
Aαæn

“
 

x P X | Dα P Nω. @n P N. x P Aαæn

(

.
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This clearly implies that ABpXq Ď Σ1
1pXq: if we apply the Souslin op-

eration to Borel sets we get only analytic sets. Lecture notes prove that
Σ1

1pXq Ď AF pXq — every analytic set can be obtained via Souslin opera-
tion applied to closed sets.

Souslin operation A turns out to be very well behaved. Take any set X
and any family of sets Γ Ď PpXq. Assume that Γ contains H and X.

Exercise 7. Prove that Γ Ď AΓ.

The following exercise is a bit easier for unions but the intersections should
also be fine (see a hint after the statement).

Exercise 8. Prove that AΓ is closed under countable unions and intersec-
tions.

Try to “shuffle” the schemes pAksq in such a way that each branch witnesses
all of them at once. You might use the fact that:

č

kPN

ď

αPNω

č

nPN
Akαæn

“
ď

θPpNωqN

č

kPN

č

nPN
Akθpkqæn

. (2.1)

Exercise 9. Show that AAΓ “ AΓ.

Therefore, we know that

Σ1
1pXq “ AF pXq “ ABpXq “ AABpXq “ AΣ1

1pXq

We have seen that every analytic set B P Σ1
1pXq is a projection of a closed

set F :
B “ tx P X | Dα P Nω. px, αq P F u.

Therefore, x P B iff Dα P Nω. px, αq P F iff

Dn0 P N. Dn1 P N. ¨ ¨ ¨
`

x, pn0, n1, . . .q
˘

P F

(I’m aware that this infinite sequence of quantifiers does not make sense)
Now take B P AF pXq that is obtained as B “ ApFsq for a Souslin scheme
pFsq of closed sets. W.l.o.g assume that Făą “ X. Then x P B iff

Dn0 : x P Fpn0q. Dn1 : x P Fpn0,n1q. ¨ ¨ ¨ J
ljhn

truth

.

This suggests that the Souslin operation is in general weaker than projection.
It is actually the case, and in particular AΠ1

1 is strictly contained in Σ1
2, we

might come back to that later.
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Exercise 10. Consider a scheme pBsq such that Bs X Bt “ H for each n
and s, t P Nn, s ‰ t and whenever t ĺ s then Bt Ě Bs. Prove that

ApBsq “
č

n

ď

sPNn

Bs.

Exercise 11. Prove that if a scheme pBsq is Borel and satisfies the above
conditions then ApBsq is also Borel.

The above observation is at the core of the proof of the following Lusin–
Souslin Theorem from page 10 of lecture notes (here stated in terms of pro-
jection).

Theorem 2.2. Let B Ď X ˆ Y be Borel and let A “ πXpBq. Assume that
for every x P X the section Bx has cardinality at most one (this property
says that B is uniformised or it is a graph of a partial function). Then A is
also Borel.

During the proof, one needs to make a given topology zero dimensional:
take X as a Polish space. Then, the topology τ on X can be extended into
another Polish topology τ 1 such that τ 1 is zero dimensional (has a basis of
clopens).

The idea of the proof is to take a countable basis tUn | n P Nu of τ and
put Fn “ X ´ Un — this set is closed, in particular Borel. By results of
previous lectures, one can extend τ into τn that is Polish and Fn is open in
τn. Then, the topology τ 1 generated by the union of all these topologies is
also Polish.

Exercise 12. Show that τ 1 is in fact zero dimensional.

3 New homework
Exercise 13. Consider a “binary Souslin scheme” pAsqsP2ăω . You can think
of it as a general Souslin scheme As such that As “ H whenever s R 2ăω.
Prove that if all the sets As are Borel then also A2pAsq (this subscript 2
indicates that the scheme is binary) is Borel.
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Exercise 14 (‹). Consider another two variants of Souslin operation: given
a scheme pAsqsPNăω Ď X, put:

Ap8q
pAsq “

ď

αPNω

tx P X | x P Aαæn
for infinitely many nu,

Ap8q

2 pAsq “
ď

αP2ω

tx P X | x P Aαæn
for infinitely many nu.

W.l.o.g. the argument for the operation Ap8q

2 is a binary scheme pAsqsP2ăω .
Consider a family of sets Γ Ď PpXq that is closed under finite unions and

finite intersections and contains H and X. Prove that

AΓ “ Ap8qΓ “ Ap8q

2 Γ, (3.1)

i.e. exactly the same family of sets can be obtained via A, Ap8q, and Ap8q

2
applied to all the possible schemes2 from Γ.

In the last exercise I will grant points also for partial solutions: non-trivial
inclusions in (3.1).

4 Hints
Hint to Exercise 3 Assume contrarily that α P rT s. Then (similarly as in
the lecture notes), fpαq ‰ gpαq. But then fpαq and gpαq can be separated
by open sets and by continuity of f and g it holds for some finite s ĺ α.
Thus, s R T .

Hint to Exercise 4 Go inductively down the tree. You either reach a leaf,
or construct an infinite branch.

Hint to Exercise 5 Take any set B that is in Σ0
ω`7 but not in Σ0

ω`6.
Consider A “ X ´B. Then the only separator of A and B is the set A itself
and it is not Σ0

n for any n P N.

Hint to Exercise 6 Apply the separation theorem to those sets. Again,
the only separator is A.

2Of course it may happen that Ap8qpAsq ‰ ApAsq for a fixed scheme pAsq.
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Hint to Exercise 7 It is enough to take A P Γ and put a scheme pAsq
constantly equal A.

Hint to Exercise 8 For the union, take a sequence of schemes pAksqsPNăω ,kPN.
Define a new scheme with Băą “ X and Bk̂ s “ Aks — the scheme pBsq seen
as a tree has root labelled X and each subtree of the root under k is a copy
of the scheme pAksqsPNăω. Then

ApBsq “
ď

αPNω

č

nPN
Bαæn

“
ď

kPN

ď

βPNω

X X
č

nPN
Bk̂ βæn

“
ď

kPN
ApAksq,

where α is split into the form n̂ β.
Now for the intersection, take again a sequence of schemes pAksqsPNăω ,kPN.
Enumerate N2 by natural numbers using ι : N2 Ñ N. Assume that this

enumeration is monotone on both coordinates (it goes in the zyg-zag fashion).
This means, that given sequence s P Ni with s “ xsp0q, . . . , spi´1qy we
can take pk, nq “ ι´1piq (we call k the last active column of s) and then
extract from s its coordinates numbered ιpk, 0q, ιpk, 1q, . . . , ιpk, n´1q. Let
ps “ spιpk, 0qq . . . spιpk, n´1qq P Nn be the sequence of values of s on those
coordinates.

The following picture depicts an example of this situation for s P N13 as
below.
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n; and the red boldface numbers inside the grid are ιpk, nq. Our i equals 13
because s P N13. Since ι´1p13q “ p1, 3q, we have k “ 1 and n “ 3. There-
fore, the last active column of s is k “ 1. The coordinates that we want
to extract from s are ιp1, 0q “ 1, ιp1, 1q “ 4, and ιp1, 2q “ 8. Therefore,
ps “ x4, 0, 5y P N3.

Consider a new scheme pBsq that is defined for s P Năω in the following
way. Let k be the last active column of s and let Bs “ Ak

ps .

Claim 4.1. We have
ApBsq “

č

kPN
ApAksq.

To prove that we will define a bijection between pNωqN and Nω. We
will denote it φ. Take pαkqkPN and for i P N with ι´1piq “ pki, niq define
φ
`

pαkqkPN
˘

piq “ αki
pniq. As ι is a bijection on the set of coordinates, φ is a

bijection on the level of sequences. Thus, it is enough to prove the following
claim for x P X, pαkqkPN, and β “ φ

`

pαkqkPN
˘

:

x P
č

iPN
Bβæi

ðñ @k P N. x P
č

nPN
Aαkæn

(4.1)

Take any k P N and n P N. Let i “ ιpk, nq and let s “ βæi. Then k is the
last active column of s and Bs “ Ak

ps . However, by the choice of φ, we know
that ps “ αkæn. Therefore, x P Aαkæn

ô x P Bs. [this paragraph can be read
twice, to get the two implications in (4.1)]

Hint to Exercise 9 Again, we can encode in α P Nω another sequence
β P Nω together with a sequence of witnesses αn P Nω for n P N.

This proof is based on the argument in Kechris, Proposition 25.6.
Clearly it is enough to show that AAΓ Ď AΓ. Let A “ Aps ÞÑ Psq with

Ps P AΓ, i.e. Ps “ Apt ÞÑ Qs,tq (to avoid confusion, by Apr ÞÑ Arq I denote
the Souslin operation on the parameter r). It is easy to check that

x P Aðñ Dα P Nω. Dβ P pNω
q
ω. @m. @n. x P Qαæm,zpmqæn

.

Fix a bijection ι : N2 Ñ N such that m ď ιpm,nq and p ă nñ ιpm, pq ă
ιpm,nq (the zig-zag function from page 6 of tutorial_3_26.pdf is good). Let
ι´1
0 and ι´1

1 be the respective coordinates of the reverse function, i.e. for every
k P N we have ι

`

ι´1
0 pkq, ι

´1
1 pkq

˘

“ k.
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Our aim is to encode witnesses pα, βq P Nω ˆ pNωqω as single sequences
in Nω using the above function shuffling the coordinates. We will encode
pα, βq P Nω ˆ pNωqω by w P Nω defined as

wpkq
def
“ ι

`

αpkq, βpι´1
0 pkqqpι

´1
1 pkqq

˘

.

Notice a tiny difference with the previous approach: we not only mix the
coordinates using ι but also mix the actual values: a single number (coordi-
nate) in w codes a coordinate of α together with a coordinate of one of the
sequences β. This gives the desired bijection.

Note that if we know wæιpm,nq then we can determine αæm (because each
coordinate of α goes into w via ι) and also βpmqæn (because the function ι
is sufficiently monotone). This gives rise to a pair of functions ϕ, ψ : Năω Ñ
Năω such that if w encodes pα, βq in the above sense and s “ wæιpm,nq then
ϕpsq “ αæm and ψpsq “ βpmqæn (notice that the length of s determines the
values of m and n).

Put Rs “ Qϕpsq,ψpsq and notice that
x P Aô x P Aps ÞÑ Rsq.

Hint to Exercise 10 The inclusion Ď is clear. Take x P
Ş

n

Ť

sPNn Bs. By
the assumption of disjointness, there is a unique s1 P N1 such that x P Bs1 .
Similarly, there is a unique s2 P N2 such that x P Bs2 , moreover s1 ă s2.
This allows us to inductively construct a branch α P Nω such that for every
n we have x P Bαæn

. Therefore, x P ApBsq.

Hint to Exercise 11 That is obvious, because the right-hand side of the
formula in Exercise 6 is obtained from the sets Bs via countable operations.

Hint to Exercise 12 First we need to consider finite intersections of sets
in the basis of τ Y tFnu. Those are either basic sets of τ , or of the form
Fn X U for some U basic in τ . Thus, this is a basis of the topology τn. Now
take finite intersections of those sets. They are either basic sets of τ , or of
the form:

Uk X Fi1 X . . .X Fin ,

for some k, n P N and i1, . . . , in P N. The complement of such a set equals
Fk Y Ui1 Y . . .Y Uin ,

which is an open set in τ 1. Therefore, the basis of τ 1 consists of clopens.
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