Tutorials from 26.03.2020

In case of any questions, please contact me by e-mail!
Homework deadline: 24:00 on Wednesday 01.04

1 Solutions of the homework problems

Exercise 1. Prove that if I' is a boldface pointclass that has a universal set*
Uc X x X then ' #1°.
You can use the Cantor’s diagonal argument from page 13 of the lecture notes.

Take U € X x X universal. Then X x X — U € I'°. Let p(z) = (z,x)
and V = ¢ (X x X — U). We know that V € I'° because both T and T"
are boldface pointclasses. We will show that V' ¢ I'(X). Assume contrarily.
Then V' = U, for some y € X. But then:

(y,y)eUeelU,<yeV < (y,y) ¢ U,

where the first two equivalence comes from the definition of U,, the second
from the assumption that V = U,, and the third from the definition of V.
Contradiction

Exercise 2 (x). Prove that the following set is universal for 31:
{(T,a) € Trnun x NV | 38 e NV (o, B) € [T}

You may follow the idea (left as an exercise) from pages 11-12 of the lecture
notes.

It follows easily from the universality of

{(T,a) e Trxy x X¥ |VneN. al, € T}.

2 New material

2.1 Souslin’s separation theorem

Theorem 2.1. If A and B are two disjoint analytic sets 31 then there exists
a Borel set separating them.

For technical reasons we assume that X = Y here.



The proof given during the lecture is not constructive: in the middle of
page 2 it is said “suppose that A, B are not Borel separable”. One can
provide a bit more constructive proof, as follows.

Again take A = f(N¥) and B = ¢g(N“) for two continuous functions
f,9: N¥ - X and put A; = f(Ny) and Bs = g(Ns). Define

T = {se N=¥ | A, and B, cannot be separated by an open set}.

Clearly T is a tree (it is prefix closed).
Exercise 3. Show that [T = &.
(The idea is the same as in the lecture notes)

Exercise 4. If T € Try is a non-empty tree that is well founded (has no
infinite branch) then T has a leaf: an element s € T such that Vn € N. s'n ¢
T.

Now we can inductively “shrink” the tree: for each leaf s of T" one can
apply Lemma from page 1 of lecture notes to find a Borel separator of A, and
Bg and remove s from T'. Continue like that (transfinite induction) removing
consecutive leaves of T'. In the limit we must get T" = & what means that
we’'ve constructed a separator of A_. and B_... This shows how transfinite
levels of Borel hierarchy can be involved in a construction of the separator.

Exercise 5. Prove that there are two disjoint analytic sets A and B that
cannot be separated by any set from a finite level of Borel hierarchy (i.e. a
set from X0 for some n).

As a consequence of the separation result, we get the following important
fact that was shown during the lecture.

Exercise 6. If both A and X — A are analytic (in other words A is both X1
and I1}) then A is Borel.

2.2 Souslin schemes

A Souslin scheme is a family of sets (As)sen<e S X indexed by finite sequences
of naturals. You should think of A, as somehow definable (e.g. Borel). Then

A((Adsen=s) = | ) Aat, ={ze X |daeN* . ¥neN ze Ay, }.

aeNwY neN



This clearly implies that AB(X) < X}(X): if we apply the Souslin op-
eration to Borel sets we get only analytic sets. Lecture notes prove that
31(X) € AF(X) — every analytic set can be obtained via Souslin opera-
tion applied to closed sets.

Souslin operation A turns out to be very well behaved. Take any set X
and any family of sets I' € P(X). Assume that I' contains ¢J and X.

Exercise 7. Prove that ' < ATl

The following exercise is a bit easier for unions but the intersections should
also be fine (see a hint after the statement).

Exercise 8. Prove that Al' is closed under countable unions and intersec-
tions.

Try to “shuffle” the schemes (A¥) in such a way that each branch witnesses
all of them at once. You might use the fact that:

M U Ak, = U () Ao, (2.1)

keN aeNw neN fe(Nw) N keN neN
Exercise 9. Show that AAL = ATL.

Therefore, we know that
(X)) = AF(X) = AB(X) = AAB(X) = AX}(X)

We have seen that every analytic set B € 31(X) is a projection of a closed
set [
B={reX|JaeN (z,a)€ F}.

Therefore, x € B iff Ja € N¥. (z,a) € F iff
Ing e N. Iny eN. -+ (z,(ng,n1,...)) € F

(I'm aware that this infinite sequence of quantifiers does not make sense)
Now take B € AF(X) that is obtained as B = A(F;) for a Souslin scheme
(Fy) of closed sets. W.l.o.g assume that F.. = X. Then z € B iff

dng: x € Fpgy. ANtz € Flpgpyy. -+ T .
—~—
truth
This suggests that the Souslin operation is in general weaker than projection.
It is actually the case, and in particular AII} is strictly contained in 31, we
might come back to that later.



Exercise 10. Consider a scheme (Bg) such that Bs n By = & for each n
and s,t € N", s # t and whenever t < s then B, 2 Bs. Prove that

A(B.) = B

n seNn

Exercise 11. Prove that if a scheme (Bs) is Borel and satisfies the above
conditions then A(DBy) is also Borel.

The above observation is at the core of the proof of the following Lusin—
Souslin Theorem from page 10 of lecture notes (here stated in terms of pro-
jection).

Theorem 2.2. Let B € X x Y be Borel and let A = wx(B). Assume that
for every x € X the section B, has cardinality at most one (this property
says that B is uniformised or it is a graph of a partial function). Then A is
also Borel.

During the proof, one needs to make a given topology zero dimensional:
take X as a Polish space. Then, the topology 7 on X can be extended into
another Polish topology 7' such that 7’ is zero dimensional (has a basis of
clopens).

The idea of the proof is to take a countable basis {U,, | n € N} of 7 and
put F, = X — U, — this set is closed, in particular Borel. By results of
previous lectures, one can extend 7 into 7, that is Polish and F;, is open in
Tn. Then, the topology 7’ generated by the union of all these topologies is
also Polish.

Exercise 12. Show that 7' is in fact zero dimensional.

3 New homework

Exercise 13. Consider a “binary Souslin scheme” (As)sea<w. You can think
of it as a general Souslin scheme Ay such that Ay = & whenever s ¢ 2<%,
Prove that if all the sets As are Borel then also Ay(Ag) (this subscript 2
indicates that the scheme is binary) is Borel.



Exercise 14 (x). Consider another two variants of Souslin operation: given
a scheme (Ag)sen<e S X, put:

AP)(A,) = U {ve X |xe Ay, for infinitely many n},
aeNw
Agoo)(As) = U {ve X |xe Ay, for infinitely many n}.

ae2w

W.l.o.g. the argument for the operation Ag’o) is a binary scheme (As)sea<w.
Consider a family of sets I' € P(X) that is closed under finite unions and
finite intersections and contains & and X. Prove that

AT = AT = AT, (3.1)

i.e. exactly the same family of sets can be obtained via A, A, and Aéoo)
applied to all the possible schemes® from T'.

In the last exercise I will grant points also for partial solutions: non-trivial
inclusions in (3.1).

4 Hints

Hint to Exercise 3 Assume contrarily that o € [T']. Then (similarly as in
the lecture notes), f(a) # g(«). But then f(a) and g(«) can be separated
by open sets and by continuity of f and g it holds for some finite s < a.
Thus, s ¢ T.

Hint to Exercise 4 Go inductively down the tree. You either reach a leaf,
or construct an infinite branch.

Hint to Exercise 5 Take any set B that is in XY, but not in XY .
Consider A = X — B. Then the only separator of A and B is the set A itself
and it is not 32 for any n € N.

Hint to Exercise 6 Apply the separation theorem to those sets. Again,
the only separator is A.

20f course it may happen that A®)(A,) # A(A,) for a fixed scheme (A,).



Hint to Exercise 7 It is enough to take A € I' and put a scheme (Aj)
constantly equal A.

Hint to Exercise 8 For the union, take a sequence of schemes (A%) sen<w gen-
Define a new scheme with B.. = X and By, = A¥ — the scheme (B,) seen
as a tree has root labelled X and each subtree of the root under k is a copy
of the scheme (A¥).cn<,. Then

AB) = | ) Bor, = U X () Bear, = | AAD),

aeNw neN keN peNw neN keN

where « is split into the form 7 5.

Now for the intersection, take again a sequence of schemes (A’;)Ser,keN.

Enumerate N? by natural numbers using ¢: N> — N. Assume that this
enumeration is monotone on both coordinates (it goes in the zyg-zag fashion).
This means, that given sequence s € N* with s = {s(0),...,s(i—1)) we
can take (k,n) = +71(i) (we call k the last active column of s) and then
extract from s its coordinates numbered ¢(k,0), ¢(k,1), ..., t(k,n—1). Let
5 = s(t(k,0))...8(e(k,n—1)) € N™ be the sequence of values of s on those
coordinates.

The following picture depicts an example of this situation for s € N'3 as
below.

s=(7,4,6,12 0,3, 7,2 5,3, 0,4, 7)

Y ? Y ? Y Y Y

0 1 2 3 4 5 6

The small numbers in upper-left corner of each cell indicate the coordi-
nates of that cell: the left-right axis indicates k; the top-down axis indicates

6



n; and the red boldface numbers inside the grid are ¢(k,n). Our i equals 13
because s € N'3. Since +71(13) = (1,3), we have k = 1 and n = 3. There-
fore, the last active column of s is & = 1. The coordinates that we want
to extract from s are ¢(1,0) = 1, ¢(1,1) = 4, and ¢(1,2) = 8. Therefore,
§=14,0,5)€e N

Consider a new scheme (Bj) that is defined for s € N<“ in the following
way. Let k be the last active column of s and let B, = A%,

Claim 4.1. We have
A(By) = ) A(AD).

keN

To prove that we will define a bijection between (N*)N and Nv. We
will denote it ¢. Take (ap)reny and for i € N with ¢71(i) = (k;,n;) define
¢((ar)ren) (i) = o, (n;). As ¢ is a bijection on the set of coordinates, ¢ is a
bijection on the level of sequences. Thus, it is enough to prove the following
claim for x € X, (v )gen, and = gb((ak)keN):

ve()Bsy, = VheN e[ Aa,, (4.1)

€N neN

Take any k € N and n € N. Let ¢ = «(k,n) and let s = 31,. Then k is the
last active column of s and B, = A% However, by the choice of ¢, we know
that 5 = ay[,,. Therefore, x € A,,) < x € B,. [this paragraph can be read
twice, to get the two implications in (4.1)]

Hint to Exercise 9 Again, we can encode in @ € N¥ another sequence
[ € N¥ together with a sequence of witnesses a,, € N* for n € N.
This proof is based on the argument in Kechris, Proposition 25.6.
Clearly it is enough to show that AAI' € AI'. Let A = A(s — P;) with
P, e AT, ie. Py = A(t — Q) (to avoid confusion, by A(r — A,) I denote
the Souslin operation on the parameter 7). It is easy to check that

reA<=JaeN’ 3fe (N)“. Vm. Vn. v € Qay, -(m)1,, -

Fix a bijection ¢: N*> — N such that m < «(m,n) and p < n = «(m,p) <
t(m,n) (the zig-zag function from page 6 of tutorial 3 26.pdf is good). Let
1o " and 7! be the respective coordinates of the reverse function, i.e. for every
k € N we have ¢(c5 " (k), (7' (k)) = k.



Our aim is to encode witnesses (a, f) € N¥ x (N¥)¥ as single sequences
in N* using the above function shuffling the coordinates. We will encode
(e, B) € N¥ x (N¥)“ by w € N¥ defined as

w(k) = (alk), By (k) (17 (K)))-
Notice a tiny difference with the previous approach: we not only mix the
coordinates using ¢ but also mix the actual values: a single number (coordi-
nate) in w codes a coordinate of a together with a coordinate of one of the
sequences (3. This gives the desired bijection.

Note that if we know w!,,, ) then we can determine af,, (because each
coordinate of o goes into w via ¢) and also #(m)|,, (because the function ¢
is sufficiently monotone). This gives rise to a pair of functions ¢, 9 : N<¢ —
N=“ such that if w encodes («, ) in the above sense and s = w/,,, ,) then
o(s) = al,, and ¥(s) = S(m)!], (notice that the length of s determines the
values of m and n).

Put R, = Qy(s),4(s) and notice that

reAs xe Als— Ry).

Hint to Exercise 10 The inclusion < is clear. Take z € (), | x» Bs- By
the assumption of disjointness, there is a unique s; € N' such that z € B,,.
Similarly, there is a unique s, € N? such that x € B,,, moreover s; < ss.
This allows us to inductively construct a branch a € N¥ such that for every
n we have x € B, . Therefore, z € A(Bj).

Hint to Exercise 11 That is obvious, because the right-hand side of the
formula in Exercise 6 is obtained from the sets B, via countable operations.

Hint to Exercise 12 First we need to consider finite intersections of sets
in the basis of 7 U {F,}. Those are either basic sets of 7, or of the form
F,, n U for some U basic in 7. Thus, this is a basis of the topology 7,,. Now
take finite intersections of those sets. They are either basic sets of 7, or of
the form:

UinFyyn...n F;,

for some k,n € N and 41, ...,%, € N. The complement of such a set equals
FkUUil U...UUin,

which is an open set in 7/. Therefore, the basis of 7/ consists of clopens.



	Solutions of the homework problems
	New material
	Souslin's separation theorem
	Souslin schemes

	New homework
	Hints

