Tutorials from 26.03.2020

In case of any questions, please contact me by e-mail! Homework deadline: **24:00 on Wednesday 01.04**

1 Solutions of the homework problems

Exercise 1. Prove that if Γ is a boldface pointclass that has a universal set¹ $U \subseteq X \times X$ then $\Gamma \neq \Gamma^{c}$.

You can use the Cantor's diagonal argument from page 13 of the lecture notes.

Take $U \subseteq X \times X$ universal. Then $X \times X - U \in \Gamma^c$. Let $\varphi(x) = (x, x)$ and $V = \varphi^{-1}(X \times X - U)$. We know that $V \in \Gamma^c$ because both Γ and Γ^c are boldface pointclasses. We will show that $V \notin \Gamma(X)$. Assume contrarily. Then $V = U_y$ for some $y \in X$. But then:

$$(y,y) \in U \Leftrightarrow \in U_y \Leftrightarrow y \in V \Leftrightarrow (y,y) \notin U,$$

where the first two equivalence comes from the definition of U_y , the second from the assumption that $V = U_y$, and the third from the definition of V. Contradiction.

Exercise 2 (*). Prove that the following set is universal for Σ_1^1 :

 $\{(T,\alpha)\in \operatorname{Tr}_{\mathbb{N}\times\mathbb{N}}\times\mathbb{N}^{\mathbb{N}}\mid \exists\beta\in\mathbb{N}^{\mathbb{N}}.\ (\alpha,\beta)\in[T]\}.$

You may follow the idea (left as an exercise) from pages 11–12 of the lecture notes.

It follows easily from the universality of

$$\{(T,\alpha) \in \operatorname{Tr}_X \times X^{\omega} \mid \forall n \in \mathbb{N}. \ \alpha \upharpoonright_n \in T\}.$$

2 New material

2.1 Souslin's separation theorem

Theorem 2.1. If A and B are two disjoint analytic sets Σ_1^1 then there exists a Borel set separating them.

¹For technical reasons we assume that X = Y here.

The proof given during the lecture is not constructive: in the middle of page 2 it is said "suppose that A, B are **not** Borel separable". One can provide a bit more constructive proof, as follows.

Again take $A = f(\mathbb{N}^{\omega})$ and $B = g(\mathbb{N}^{\omega})$ for two continuous functions $f, g: \mathbb{N}^{\omega} \to X$ and put $A_s = f(N_s)$ and $B_s = g(N_s)$. Define

 $T = \{ s \in \mathbb{N}^{<\omega} \mid A_s \text{ and } B_s \text{ cannot be separated by an open set} \}.$

Clearly T is a tree (it is prefix closed).

Exercise 3. Show that $[T] = \emptyset$.

(The idea is the same as in the lecture notes)

Exercise 4. If $T \in \operatorname{Tr}_{\mathbb{N}}$ is a non-empty tree that is well founded (has no infinite branch) then T has a leaf: an element $s \in T$ such that $\forall n \in \mathbb{N}$. $\hat{sn} \notin T$.

Now we can inductively "shrink" the tree: for each leaf s of T one can apply Lemma from page 1 of lecture notes to find a Borel separator of A_s and B_s and remove s from T. Continue like that (transfinite induction) removing consecutive leaves of T. In the limit we must get $T = \emptyset$ what means that we've constructed a separator of $A_{<>}$ and $B_{<>}$. This shows how transfinite levels of Borel hierarchy can be involved in a construction of the separator.

Exercise 5. Prove that there are two disjoint analytic sets A and B that cannot be separated by any set from a finite level of Borel hierarchy (i.e. a set from Σ_n^0 for some n).

As a consequence of the separation result, we get the following important fact that was shown during the lecture.

Exercise 6. If both A and X - A are analytic (in other words A is both Σ_1^1 and Π_1^1) then A is Borel.

2.2 Souslin schemes

A Souslin scheme is a family of sets $(A_s)_{s \in \mathbb{N}^{<\omega}} \subseteq X$ indexed by finite sequences of naturals. You should think of A_s as somehow *definable* (e.g. Borel). Then

$$\mathcal{A}((A_s)_{s\in\mathbb{N}^{<\omega}}) = \bigcup_{\alpha\in\mathbb{N}^{\omega}} \bigcap_{n\in\mathbb{N}} A_{\alpha\uparrow_n} = \left\{ x\in X \mid \exists \alpha\in\mathbb{N}^{\omega}. \ \forall n\in\mathbb{N}. \ x\in A_{\alpha\uparrow_n} \right\}.$$

This clearly implies that $\mathcal{AB}(X) \subseteq \Sigma_1^1(X)$: if we apply the Souslin operation to Borel sets we get only analytic sets. Lecture notes prove that $\Sigma_1^1(X) \subseteq \mathcal{AF}(X)$ — every analytic set can be obtained via Souslin operation applied to closed sets.

Souslin operation \mathcal{A} turns out to be very well behaved. Take any set X and any family of sets $\Gamma \subseteq \mathsf{P}(X)$. Assume that Γ contains \emptyset and X.

Exercise 7. Prove that $\Gamma \subseteq \mathcal{A}\Gamma$.

The following exercise is a bit easier for unions but the intersections should also be fine (see a hint after the statement).

Exercise 8. Prove that $\mathcal{A}\Gamma$ is closed under countable unions and intersections.

Try to "shuffle" the schemes (A_s^k) in such a way that each branch witnesses all of them at once. You might use the fact that:

$$\bigcap_{k \in \mathbb{N}} \bigcup_{\alpha \in \mathbb{N}^{\omega}} \bigcap_{n \in \mathbb{N}} A_{\alpha \uparrow_{n}}^{k} = \bigcup_{\theta \in (\mathbb{N}^{\omega})^{\mathbb{N}}} \bigcap_{k \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} A_{\theta(k)\uparrow_{n}}^{k}.$$
(2.1)

Exercise 9. Show that $\mathcal{A}\mathcal{A}\Gamma = \mathcal{A}\Gamma$.

Therefore, we know that

$$\Sigma_1^1(X) = \mathcal{A}F(X) = \mathcal{A}\mathcal{B}(X) = \mathcal{A}\mathcal{A}\mathcal{B}(X) = \mathcal{A}\Sigma_1^1(X)$$

We have seen that every analytic set $B \in \Sigma_1^1(X)$ is a projection of a closed set F:

$$B = \{ x \in X \mid \exists \alpha \in \mathbb{N}^{\omega}. \ (x, \alpha) \in F \}.$$

Therefore, $x \in B$ iff $\exists \alpha \in \mathbb{N}^{\omega}$. $(x, \alpha) \in F$ iff

$$\exists n_0 \in \mathbb{N}. \ \exists n_1 \in \mathbb{N}. \ \cdots \ (x, (n_0, n_1, \ldots)) \in F$$

(I'm aware that this infinite sequence of quantifiers does not make sense) Now take $B \in \mathcal{A}F(X)$ that is obtained as $B = \mathcal{A}(F_s)$ for a Souslin scheme (F_s) of closed sets. W.l.o.g assume that $F_{<>} = X$. Then $x \in B$ iff

$$\exists n_0 \colon x \in F_{(n_0)}. \ \exists n_1 \colon x \in F_{(n_0,n_1)}. \ \cdots \ \underbrace{\top}_{truth}.$$

This suggests that the Souslin operation is in general weaker than projection. It is actually the case, and in particular $\mathcal{A}\Pi_1^1$ is strictly contained in Σ_2^1 , we might come back to that later.

Exercise 10. Consider a scheme (B_s) such that $B_s \cap B_t = \emptyset$ for each n and $s, t \in \mathbb{N}^n$, $s \neq t$ and whenever $t \leq s$ then $B_t \supseteq B_s$. Prove that

$$\mathcal{A}(B_s) = \bigcap_n \bigcup_{s \in \mathbb{N}^n} B_s.$$

Exercise 11. Prove that if a scheme (B_s) is Borel and satisfies the above conditions then $\mathcal{A}(B_s)$ is also Borel.

The above observation is at the core of the proof of the following Lusin– Souslin Theorem from page 10 of lecture notes (here stated in terms of projection).

Theorem 2.2. Let $B \subseteq X \times Y$ be Borel and let $A = \pi_X(B)$. Assume that for every $x \in X$ the section B_x has cardinality at most one (this property says that B is uniformised or it is a graph of a partial function). Then A is also Borel.

During the proof, one needs to make a given topology zero dimensional: take X as a Polish space. Then, the topology τ on X can be extended into another Polish topology τ' such that τ' is zero dimensional (has a basis of clopens).

The idea of the proof is to take a countable basis $\{U_n \mid n \in \mathbb{N}\}$ of τ and put $F_n = X - U_n$ — this set is closed, in particular Borel. By results of previous lectures, one can extend τ into τ_n that is Polish and F_n is open in τ_n . Then, the topology τ' generated by the union of all these topologies is also Polish.

Exercise 12. Show that τ' is in fact zero dimensional.

3 New homework

Exercise 13. Consider a "binary Souslin scheme" $(A_s)_{s \in 2^{<\omega}}$. You can think of it as a general Souslin scheme A_s such that $A_s = \emptyset$ whenever $s \notin 2^{<\omega}$. Prove that if all the sets A_s are Borel then also $\mathcal{A}_2(A_s)$ (this subscript 2 indicates that the scheme is binary) is Borel.

Exercise 14 (*). Consider another two variants of Souslin operation: given a scheme $(A_s)_{s \in \mathbb{N}^{<\omega}} \subseteq X$, put:

$$\mathcal{A}^{(\infty)}(A_s) = \bigcup_{\alpha \in \mathbb{N}^{\omega}} \{ x \in X \mid x \in A_{\alpha \uparrow_n} \text{ for infinitely many } n \},$$
$$\mathcal{A}^{(\infty)}_2(A_s) = \bigcup_{\alpha \in 2^{\omega}} \{ x \in X \mid x \in A_{\alpha \uparrow_n} \text{ for infinitely many } n \}.$$

W.l.o.g. the argument for the operation $\mathcal{A}_2^{(\infty)}$ is a binary scheme $(A_s)_{s\in 2^{<\omega}}$.

Consider a family of sets $\Gamma \subseteq \mathsf{P}(X)$ that is closed under finite unions and finite intersections and contains \emptyset and X. Prove that

$$\mathcal{A}\Gamma = \mathcal{A}^{(\infty)}\Gamma = \mathcal{A}_2^{(\infty)}\Gamma, \qquad (3.1)$$

i.e. exactly the same family of sets can be obtained via \mathcal{A} , $\mathcal{A}^{(\infty)}$, and $\mathcal{A}_2^{(\infty)}$ applied to all the possible schemes² from Γ .

In the last exercise I will grant points also for partial solutions: non-trivial inclusions in (3.1).

4 Hints

Hint to Exercise 3 Assume contrarily that $\alpha \in [T]$. Then (similarly as in the lecture notes), $f(\alpha) \neq g(\alpha)$. But then $f(\alpha)$ and $g(\alpha)$ can be separated by open sets and by continuity of f and g it holds for some finite $s \leq \alpha$. Thus, $s \notin T$.

Hint to Exercise 4 Go inductively down the tree. You either reach a leaf, or construct an infinite branch.

Hint to Exercise 5 Take any set *B* that is in $\Sigma^0_{\omega+7}$ but not in $\Sigma^0_{\omega+6}$. Consider A = X - B. Then the only separator of *A* and *B* is the set *A* itself and it is not Σ^0_n for any $n \in \mathbb{N}$.

Hint to Exercise 6 Apply the separation theorem to those sets. Again, the only separator is A.

²Of course it may happen that $\mathcal{A}^{(\infty)}(A_s) \neq \mathcal{A}(A_s)$ for a fixed scheme (A_s) .

Hint to Exercise 7 It is enough to take $A \in \Gamma$ and put a scheme (A_s) constantly equal A.

Hint to Exercise 8 For the union, take a sequence of schemes $(A_s^k)_{s \in \mathbb{N}^{<\omega}, k \in \mathbb{N}}$. Define a new scheme with $B_{<>} = X$ and $B_{ks} = A_s^k$ — the scheme (B_s) seen as a tree has root labelled X and each subtree of the root under k is a copy of the scheme $(A_s^k)_{s \in \mathbb{N}^{<\omega}}$. Then

$$\mathcal{A}(B_s) = \bigcup_{\alpha \in \mathbb{N}^{\omega}} \bigcap_{n \in \mathbb{N}} B_{\alpha \uparrow_n} = \bigcup_{k \in \mathbb{N}} \bigcup_{\beta \in \mathbb{N}^{\omega}} X \cap \bigcap_{n \in \mathbb{N}} B_{\hat{k}\beta \uparrow_n} = \bigcup_{k \in \mathbb{N}} \mathcal{A}(A_s^k),$$

where α is split into the form $\hat{n}\beta$.

Now for the intersection, take again a sequence of schemes $(A_s^k)_{s \in \mathbb{N}^{<\omega}, k \in \mathbb{N}}$.

Enumerate \mathbb{N}^2 by natural numbers using $\iota: \mathbb{N}^2 \to \mathbb{N}$. Assume that this enumeration is monotone on both coordinates (it goes in the zyg-zag fashion). This means, that given sequence $s \in \mathbb{N}^i$ with $s = \langle s(0), \ldots, s(i-1) \rangle$ we can take $(k, n) = \iota^{-1}(i)$ (we call k the last active column of s) and then extract from s its coordinates numbered $\iota(k, 0), \iota(k, 1), \ldots, \iota(k, n-1)$. Let $\hat{s} = s(\iota(k, 0)) \ldots s(\iota(k, n-1)) \in \mathbb{N}^n$ be the sequence of values of s on those coordinates.

The following picture depicts an example of this situation for $s \in \mathbb{N}^{13}$ as below.

The small numbers in upper-left corner of each cell indicate the coordinates of that cell: the left-right axis indicates k; the top-down axis indicates

n; and the red boldface numbers inside the grid are $\iota(k, n)$. Our *i* equals 13 because $s \in \mathbb{N}^{13}$. Since $\iota^{-1}(13) = (1,3)$, we have k = 1 and n = 3. Therefore, the last active column of s is k = 1. The coordinates that we want to extract from s are $\iota(1,0) = 1$, $\iota(1,1) = 4$, and $\iota(1,2) = 8$. Therefore, $\hat{s} = \langle 4, 0, 5 \rangle \in \mathbb{N}^3$.

Consider a new scheme (B_s) that is defined for $s \in \mathbb{N}^{<\omega}$ in the following way. Let k be the last active column of s and let $B_s = A_s^k$.

Claim 4.1. We have

$$\mathcal{A}(B_s) = \bigcap_{k \in \mathbb{N}} \mathcal{A}(A_s^k).$$

To prove that we will define a bijection between $(\mathbb{N}^{\omega})^{\mathbb{N}}$ and \mathbb{N}^{ω} . We will denote it ϕ . Take $(\alpha_k)_{k\in\mathbb{N}}$ and for $i \in \mathbb{N}$ with $\iota^{-1}(i) = (k_i, n_i)$ define $\phi((\alpha_k)_{k\in\mathbb{N}})(i) = \alpha_{k_i}(n_i)$. As ι is a bijection on the set of coordinates, ϕ is a bijection on the level of sequences. Thus, it is enough to prove the following claim for $x \in X$, $(\alpha_k)_{k\in\mathbb{N}}$, and $\beta = \phi((\alpha_k)_{k\in\mathbb{N}})$:

$$x \in \bigcap_{i \in \mathbb{N}} B_{\beta \uparrow_i} \iff \forall k \in \mathbb{N}. \ x \in \bigcap_{n \in \mathbb{N}} A_{\alpha_k \uparrow_n}$$
(4.1)

Take any $k \in \mathbb{N}$ and $n \in \mathbb{N}$. Let $i = \iota(k, n)$ and let $s = \beta \upharpoonright_i$. Then k is the last active column of s and $B_s = A_{\hat{s}}^k$. However, by the choice of ϕ , we know that $\hat{s} = \alpha_k \upharpoonright_n$. Therefore, $x \in A_{\alpha_k \upharpoonright_n} \Leftrightarrow x \in B_s$. [this paragraph can be read twice, to get the two implications in (4.1)]

Hint to Exercise 9 Again, we can encode in $\alpha \in \mathbb{N}^{\omega}$ another sequence $\beta \in \mathbb{N}^{\omega}$ together with a sequence of witnesses $\alpha_n \in \mathbb{N}^{\omega}$ for $n \in \mathbb{N}$.

This proof is based on the argument in Kechris, Proposition 25.6.

Clearly it is enough to show that $\mathcal{AA\Gamma} \subseteq \mathcal{A\Gamma}$. Let $A = \mathcal{A}(s \mapsto P_s)$ with $P_s \in \mathcal{A\Gamma}$, i.e. $P_s = \mathcal{A}(t \mapsto Q_{s,t})$ (to avoid confusion, by $\mathcal{A}(r \mapsto A_r)$ I denote the Souslin operation on the parameter r). It is easy to check that

$$x \in A \iff \exists \alpha \in \mathbb{N}^{\omega}. \ \exists \beta \in (\mathbb{N}^{\omega})^{\omega}. \ \forall m. \ \forall n. \ x \in Q_{\alpha \upharpoonright_m, z(m) \upharpoonright_n}.$$

Fix a bijection $\iota: \mathbb{N}^2 \to \mathbb{N}$ such that $m \leq \iota(m, n)$ and $p < n \Rightarrow \iota(m, p) < \iota(m, n)$ (the zig-zag function from page 6 of tutorial_3_26.pdf is good). Let ι_0^{-1} and ι_1^{-1} be the respective coordinates of the reverse function, i.e. for every $k \in \mathbb{N}$ we have $\iota(\iota_0^{-1}(k), \iota_1^{-1}(k)) = k$.

Our aim is to encode witnesses $(\alpha, \beta) \in \mathbb{N}^{\omega} \times (\mathbb{N}^{\omega})^{\omega}$ as single sequences in \mathbb{N}^{ω} using the above function shuffling the coordinates. We will encode $(\alpha, \beta) \in \mathbb{N}^{\omega} \times (\mathbb{N}^{\omega})^{\omega}$ by $w \in \mathbb{N}^{\omega}$ defined as

$$w(k) \stackrel{\text{def}}{=} \iota(\alpha(k), \beta(\iota_0^{-1}(k))(\iota_1^{-1}(k))).$$

Notice a tiny difference with the previous approach: we not only mix the coordinates using ι but also mix the actual values: a single number (coordinate) in w codes a coordinate of α together with a coordinate of one of the sequences β . This gives the desired bijection.

Note that if we know $w \upharpoonright_{\iota(m,n)}$ then we can determine $\alpha \upharpoonright_m$ (because each coordinate of α goes into w via ι) and also $\beta(m) \upharpoonright_n$ (because the function ι is sufficiently monotone). This gives rise to a pair of functions $\varphi, \psi \colon \mathbb{N}^{<\omega} \to \mathbb{N}^{<\omega}$ such that if w encodes (α, β) in the above sense and $s = w \upharpoonright_{\iota(m,n)}$ then $\varphi(s) = \alpha \upharpoonright_m$ and $\psi(s) = \beta(m) \upharpoonright_n$ (notice that the length of s determines the values of m and n).

Put $R_s = Q_{\varphi(s),\psi(s)}$ and notice that

$$x \in A \Leftrightarrow x \in \mathcal{A}(s \mapsto R_s).$$

Hint to Exercise 10 The inclusion \subseteq is clear. Take $x \in \bigcap_n \bigcup_{s \in \mathbb{N}^n} B_s$. By the assumption of disjointness, there is a unique $s_1 \in \mathbb{N}^1$ such that $x \in B_{s_1}$. Similarly, there is a unique $s_2 \in \mathbb{N}^2$ such that $x \in B_{s_2}$, moreover $s_1 < s_2$. This allows us to inductively construct a branch $\alpha \in \mathbb{N}^{\omega}$ such that for every n we have $x \in B_{\alpha \upharpoonright_n}$. Therefore, $x \in \mathcal{A}(B_s)$.

Hint to Exercise 11 That is obvious, because the right-hand side of the formula in Exercise 6 is obtained from the sets B_s via countable operations.

Hint to Exercise 12 First we need to consider finite intersections of sets in the basis of $\tau \cup \{F_n\}$. Those are either basic sets of τ , or of the form $F_n \cap U$ for some U basic in τ . Thus, this is a basis of the topology τ_n . Now take finite intersections of those sets. They are either basic sets of τ , or of the form:

 $U_k \cap F_{i_1} \cap \ldots \cap F_{i_n},$

for some $k, n \in \mathbb{N}$ and $i_1, \ldots, i_n \in \mathbb{N}$. The complement of such a set equals

$$F_k \cup U_{i_1} \cup \ldots \cup U_{i_n},$$

which is an open set in τ' . Therefore, the basis of τ' consists of clopens.