
This file provides materials of the tutorial that was expected on 19th
March. Please study this file carefully before the next lecture (26th March).

In case of any questions, please contact me by e-mail. I’m willing to
explain as much as needed either by mail or some more online tool (shared
whiteboard etc).

The deadline for the new homework is this Wednesday 24:00 (but the
homework should be easy) :)

1 Solutions of the homework problems
Exercise 1. Let Ord be the subset of 2NˆN that contains o P 2NˆN (treated
as a subset of N ˆ N if and only if o is a linear order. Show that Ord is a
closed subset of 2NˆN.

Consider IO Ď Ord that contains o if and only if o is not well-founded (it
contains a subset that has no minimal element). Show that IO is an analytic
set Σ1

1.

The fact that Ord is closed follows directly from the definition of a linear
order: this definition is of the form @x,y,z. ϕpx, y, zq, where ϕpx, y, zq is a
clopen property of o. More formally, let Fx,y,z contain o P 2NˆN if and only if
the following conditions hold (we write opx, yq to denote opx, yq “ 1):

• if opx, yq and opy, zq then opx, zq,

• opx, xq,

• if1 x ‰ y then either  opx, yq or  opy, xq.

Notice that for each x, y, z P N the set Fx,y,z is a clopen in 2NˆN, because
the fact whether o P Fx,y,z depends only on the five values (or coordinates)
opx, yq, opy, zq, opx, zq, opx, xq, and opy, xq.

Now we can observe that

Ord “
č

x,y,zPN
Fx,y,z

is a countable intersection of closed sets and it is itself closed.
1One might write here: if opx, yq and opy, xq then x “ y. In this notation the condition

x “ y does not depend on o, so in the case of each set Fx,y,z separately it is either
constantly true or constantly false.
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Now we need to show that IO is Σ1
1. Let Y “ NN and consider the

following set

F “
!

po, αq P Ordˆ Y | @i ă j. αpiq ‰ αpjq ^ o
`

αpjq, αpiq
˘

)

.

Again it can be written as
F “

č

iăjPN
Fi,j, (1.1)

where

Fi,j “
!

po, αq P Ordˆ Y | αpiq ‰ αpjq ^ o
`

αpjq, αpiq
˘

)

.

[[ The trick of changing logical quantifiers into set-theoretic operations is
frequent in Descriptive Set Theory. ]]

Claim 1.1. Each of the sets Fi,j is again a clopen.

Proof. Take any pair po, αq P Ord ˆ Y . Fix four coordinates: i, j, αpiq, and
αpjq. Consider any other pair po1, α1q P OrdˆY such that αpiq “ α1piq, αpjq “
α1pjq, and opαpjq, αpiqq “ o1pαpjq, αpiqq. Then po, αq P Fi,j ô po1, α1q P Fi,j.

This means that every member of Fi,j belongs to that set together with
some neighbourhood; and the same for the complement of Fi,j. Therefore,
Fi,j is clopen. �

This, together with the formula (1.1) implies that F is closed. Now
observe that po, αq P F if and only if the consecutive numbers in α form an
infinite strictly descending chain in o. Thus,

`

o P IO
˘

ðñ
`

Dα P NN. po, αq P F
˘

ðñ
`

o P πOrdpF q
˘

.

Exercise 2 (‹). Show that the set of trees over 2 with an infinite branch
(i.e. ill-founded binary trees in Tr2) is a Borel subset of Tr2.

This set is in fact closed, as the projection of the closed set

F “ tpT, αq P Tr2 ˆ 2ω | @n P N. αæn P T.u,

see Exercise 3 below.
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Another way of solving this problem is the following: by König’s Lemma2

we know that T P Tr2 has an infinite branch if and only if

@n P N. Ds P 2n. s P T.

Therefore, again we have

IF2 “
č

nPN

ď

sP2n

tT P Tr2 | s P T u,

which is a Borel representation of IF2 (the final set tT P Tr2 | s P T u,
parametrised by s P 2n, is clopen).

If you look carefully at that formula, the last union
Ť

sP2n is in fact finite!
Therefore, the set

Ť

sP2ntT P Tr2 | s P T u is also clopen and the whole set is
closed.

2 New material
We begin by an exercise related to the last-week problems.

Exercise 3. Show that if F Ď X ˆ Y is closed and Y is compact then the
projection πXpF q is closed in X. Notice that we do not assume X (and
thereafter X ˆ Y ) to be compact!

A typical example is the set

F “
 

px, yq P Rˆ r´π{2,`π{2s | x “ tanp|y|q
(

with πRpF q “ r0,8q that is closed but not compact.

2.1 Borel hierarchy
During the lecture the notion of Borel sets (the smallest σ-algebra containing
all open sets) was defined. We will now provide a more constructive way of
representing them.

First, let Σ0
1pXq be the family of open sets in a Polish space X. Now, we

put Π0
ηpXq as the family of complements of the sets in Σ0

ηpXq, and Σ0
η`1pXq

as the family of all sets that are countable unions of sets in Π0
ηpXq.

2König’s Lemma ” compactness; you may want to track down the counterpart of
König-like argument in a solution of Exercise 3.
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Now we go transfinite: for any η that is a countable limit ordinal, we put
Σ0
ηpXq to be the family of sets that can be obtained as N-indexed unions of

sets in
Ť

τăη Π0
τ pXq.

Another way of putting this definition is the following: Σ0
1pXq are open

sets; Π0
ηpXq are closed sets; and for any η ą 1 we have:

Σ0
ηpXq “

#

ď

nPN
An | @n P N. An P

ď

τăη

Π0
τ pXq

+

Π0
ηpXq “

#

č

nPN
An | @n P N. An P

ď

τăη

Σ0
τ pXq

+

Example 2.1. The class of Gδ sets in X coincides with Π0
2pXq. A countable

union of Gδ sets is always a member of Σ0
3pXq. If An P Σ0

2n`7pXq for
n “ 0, 1, . . . then

Ş

nPNAn P Π0
ωpXq.

Now we put ∆0
ηpXq “ Σ0

ηpXqXΠ0
ηpXq, for instance ∆0

1pXq is the family
of clopens in X.

Exercise 4. Prove that Σ0
ηpXq Ď Π0

η`1pXq and symmetrically Π0
ηpXq Ď

Σ0
η`1pXq.

The inclusions between the consecutive classes are depicted as follows:

Σ0
1

Π0
1

Σ0
2

Π0
2

Σ0
3

Π0
3

∆0
1 ∆0

2 ∆0
3 ¨ ¨ ¨

Exercise 5. Prove that each class Σ0
ηpXq is closed under countable unions.

Analogously, show that each class Π0
ηpXq is closed under countable intersec-

tions.

Recall that ω1 is the minimal ordinal number that is not countable (as
the set of all smaller ordinals).

Exercise 6. Prove that if 0 ď η0 ď η1 ď . . . ă ω1 then there exists a count-
able ordinal η ă ω1 such that @n P N. ηn ă η.
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Define

B∆pXq “
ď

ηăω1

∆0
ηpXq

BΣpXq “
ď

ηăω1

Σ0
ηpXq

BΠpXq “
ď

ηăω1

Π0
ηpXq

Exercise 7. Prove that B∆pXq “ BΣpXq “ BΠpXq “ BpXq.

Finally, we use the notions Σ0
η, Π0

η, etc without the parameter X as the
classes of sets from all the possible Polish topological spaces. More formally,
we assume that A P Σ0

7 implicitly means that a Polish topological space X
is known from the context, A Ď X, and A P Σ0

7pXq.

2.2 Boldface pointclasses
For the sake of these exercises, we will say that Γ (or ΓpXq for all Polish
spaces X, see the discussion above) is a boldface pointclass3 if whenever
f : X Ñ Y is a continuous function between two Polish spaces and A P ΓpY q
then f´1pAq P ΓpXq.

Exercise 8. Prove that all the classes Σ0
η, Π0

η, ∆0
η are boldface pointclasses.

Definition 2.2. By Π1
1 we denote the class of complements of analytic

(i.e. Σ1
1) sets. We call these sets coanalytic.

Exercise 9. Prove that additionally the classes of analytic sets Σ1
1 and co-

analytic sets Π1
1 are boldface pointclass.

By Γc we denote the pointclass of complements of sets in Γ.
By the definition of the Borel hierarchy, for every countable ordinal η ě 1

we have
`

Σ0
η

˘c
“ Π0

η and
`

Π0
η

˘c
“ Σ0

η.

Exercise 10. Prove that if Γ is a boldface pointclass then Γc is also a boldface
pointclass.

3Pointclass means that it is a collection of sets of points, where each point is a member
of a Polish topological space (known from the context).
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2.3 Universal sets
Let Γ be a boldface pointclass. We say that a set U Ď Y ˆ X is universal
for Γ if U P ΓpY ˆXq and

ΓpXq “ tUy | y P Y u,

where the sections Uy are defined as tx P X | py, xq P Uu.

Remark 2.3. A universal program is a computer program Upp, xq with two
parameters:

• p is a code of another computer program P pxq

• x is an argument (can be a natural number)

such that the execution of Upp, xq with arguments p, x returns as a result a
value y if and only if the execution of the program P pxq with the argument x
returns y.

In other words, Upp, .q behaves exactly like the program P whose code is p.

Exercise 11. Take any at most countable set Z. Show that the following set
is universal for Π0

1:

UF “
 

pT, αq P TrZ ˆ Zω
| @n P N. αæn P T

(

.

Exercise 12. Let U Ď Y ˆX be a universal set for a boldface pointclass Γ.
Construct a universal set for Γc.

Exercise 13. Prove that if Γ is a boldface pointclass that has a universal
set4 U Ď X ˆX then Γ ‰ Γc.

Remark 2.4. One may see it as a Descriptive-Set-Theoretic variant of un-
decidability of the halting problem (see Remark 2.3). Btw. possibly (?) the
DST result was proven first.

Exercise 14. Given a universal set U Ď NNˆX for Σ0
η construct a universal

set U 1 Ď NN ˆX for Π0
η`1.

Exercise 15. Construct a universal set U Ď NN ˆX for Σ0
ω, assuming that

for every n P N there exists a universal set Un Ď NN ˆX for Π0
n.

4For technical reasons we assume that X “ Y here.
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The above construction works in the same way for other limit ordinal
numbers. Therefore, we obtain the following theorem.

Theorem 2.5. For every at most countable set Z and every countable ordinal
η ě 1 there exist sets UΣ Ď NN ˆ Zω and UΠ Ď NN ˆ Zω that are universal
for Σ0

η and Π0
η respectively.

Exercise 16. Borel hierarchy is strict, in the sense that for every countable
ordinal η ě 1 we have Σ0

η Ĺ Π0
η`1 and Π0

η Ĺ Σ0
η`1.

Exercise 17. Is there any universal set U Ď Nω ˆ Nω for ∆0
3?

3 New homework
Exercise 18. Solve Exercise 13 in a written form.
You can use the Cantor’s diagonal argument from page 13 of the lecture notes.

Exercise 19 (‹). Prove that the following set is universal for Σ1
1:

 

pT, αq P TrNˆN ˆ NN
| Dβ P NN. pα, βq P rT s

(

.

You may follow the idea (left as an exercise) from pages 11–12 of the lecture
notes.

[[ in the above formulation we silently use the homeomorphism between
Nω ˆ Nω and pNˆ Nqω ]]

4 Hints
Hint to Exercise 3 Take a sequence pxnqnPN Ď πXpF q that is convergent
to x P X. We need to show that x P πXpF q. Each of the elements xn comes
with a witness yn such that pxn, ynq P F . Consider a converging subsequence
of yn (w.l.o.g. we can assume that this is the whole sequence) whose limit is
y. Then, px, yq P F and therefore x P πXpF q.

Hint to Exercise 4 One can take a countable union or intersection of
infinitely many copies of the same set. . .
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Hint to Exercise 5 A countable union of countable unions is a countable
union.

Hint to Exercise 6 Each ordinal number is the set of all smaller ordinals.
Therefore, it makes sense to consider the union x “

Ť

nPN ηn. Clearly x is
at most countable as a set. Moreover, x is an ordinal number, because it
contains only ordinal numbers and if τ P x and τ 1 ă τ then also τ 1 P x.
Thus, x ă ω1 and taking η “ x` 1 (for safety) we have the thesis.

Hint to Exercise 7 The equalities B∆pXq “ BΣpXq “ BΠpXq follow from
the inclusions between the classes. Therefore, it is enough to show that, say
BΣpXq “ BpXq. The inclusion BΣpXq Ď BpXq is easily proven inductively.
For the opposite inclusion it is enough to show that BΣpXq is a σ-algebra.
Thus, one can show that BΣpXq is closed under countable unions and BΠpXq
is closed under countable intersections. Take any countable family of sets
pAnqnPN Ď BΣpXq. Observe, that for each n there exists ηn ă ω1 such that
An P Σ0

ηn
pXq. Apply Exercise 6 to observe that there exists η ă ω1 such that

@n P N. An P Σ0
η. Then

Ť

nPNAn P Σ0
ηpXq as well.

Hint to Exercise 8 One can prove it by induction: it holds for open and
closed sets. Moreover, preimages go well with countable Boolean operations.

Hint to Exercise 9 Take F Ď Y ˆ Z that is closed and A “ πY pF q is an
analytic set in Y . Let f : X Ñ Y be continuous. Let

F 1 “ tpx, zq P X ˆ Z | pfpxq, zq P F u.

Check that F 1 is closed and πXpF 1q “ f´1pAq.

Hint to Exercise 10 Note that f´1pAcq “
`

f´1pAq
˘c, where the comple-

ments p.qc are taken in the respective spaces.

Hint to Exercise 11 Recall that a set A Ď Zω is closed if and only if
A “ rT s for some tree T P TZ .

Hint to Exercise 12 Take U 1 “ U c.
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Hint to Exercise 14 Notice that
`

NN
˘N is homeomorphic with NN. Thus,

one can consider

U 1 “
 `

pα0, α1, . . .q, xq P pNN
q
N
ˆX | @n P N. pαn, xq P U

(

.

Hint to Exercise 15 Do essentially the same as above.

Hint to Exercise 16 If Σ0
η “ Π0

η`1 then Σ0
η`1 “ Π0

η`1, which is in con-
tradiction with Exercise 13 and Theorem 2.5.

Hint to Exercise 17 Directly from the definition we see that
`

∆0
η

˘c
“ ∆0

η.
Therefore, Exercise 13 implies that there is no such universal set.
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