
This file provides materials of the tutorial that was expected on 12th
March. Please study this file carefully before the next lecture (19th March).
In case of any questions, please contact me by e-mail. I’m willing to explain as
much as needed either by mail or some more online tool (shared whiteboard
etc).

The material is divided into four parts: first, solutions of the previous
homework problems are given. Then the core flow of the tutorial comes, with
all the problems posed and discussed. Then, the new homework problems
are given. The final part contains hints to some less clear exercises. The aim
of that division is to motivate you to work autonomously and not just read
the solutions straight ahead.

The deadline for the new homework is again this Friday 24:00.

1 Solutions of the homework problems
Definition 1.1. Take a polish topological space X. Let KpXq be the space
of all compact subsets of X, equipped with the Vietoris topology generated by

tK P KpXq | K Ď Uu

tK P KpXq | K X U ‰ Hu,

for U open in X.

Definition 1.2. Define the Hausdorff metric on KpXq by

dHpK,Lq “ 0 if K “ L “ H

“ 1 if exactly one of K, L is H
“ maxtδpK,Lq, δpL,Kqu if K,L ‰ H

where
δpK,Lq “ max

xPK
dpx, Lq,

and
dpx, Lq “ inf

yPL
dpx, yq.

Exercise 1. Show that Hausdorff metric is a metric and that it is compatible
with Vietoris topology (i.e. generates the same topology).
Moreover, show that if X is separable, so is KpXq.
Similarly, show that if X is compact then so is KpXq.
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The only problematic part was the last one: if X is compact then KpXq is
also compact. For that, it is enough to show the following two claims. These
proofs are based on a solution of the homework by Tomasz Jabłczyński.

Claim 1.3. If X is complete then KpXq is also complete.

Proof. Let pKnqnPN be a Cauchy sequence in KpXq. Let

L “
č

nPN
Cl
`

ď

kąn

Kk

˘

.

Clearly L is closed as an intersection of closed sets. Since X is compact,
L P KpXq. We claim that L is the limit of the sequence pKnqnPN. Take ε ą 0
and let N be such that for n,m ě N we have dHpKn, Kmq ă ε{2. We will
show that dHpL,KNq ă ε.

Take x P L. It means that x P Clp
Ť

kąN Kkq and therefore there exists
k ą N such that Bpx, ε{2q X Kk ‰ H. Thus, dpx,Kkq ă ε{2. Since also
dHpKk, KNq ă ε{2, we obtain that dpx,KqNq ă ε. Since x was chosen
arbitrarily in L, we know that δpL,KNq ă ε.

Now take y P KN and let xn P Bpy, ε{2q XKn for n ě N — these points
exists, because of the assumption that dHpKn, Kmq ă ε{2 for n,m ě N . As
X is compact, the sequence xn has a subsequence that converges to a point
x. It is easy to see that x P L and dpy, xq ď ε{2 ă ε. By the arbitrary choice
of y we know that δpKN , Lq ă ε. Notice that we additionally show here that
if infinitely many of pKnqnPN are non-empty then also L is non-empty.

Summing up, dHpL,KNq ă ε and therefore L is a limit of a subsequence of
the sequence pKnqnPN. But as this is a Cauchy sequence, limnÑ8Kn “ L. �

Claim 1.4. If X is compact then KpXq is totally bounded.

Proof. Take ε ą 0 and let A Ď X be a finite set such that
Ť

xPABpx, εq “ X.
Take K P KpXq. Let AK “ tx P A | K X Bpx, εq ‰ Hu. Clearly AK is
compact as a finite set. Moreover, δpK,AKq ă ε and δpAK , Kq ă ε. Thus,
K P BpAK , εq. �

Exercise 2 (‹). Consider X at most countable, with discrete topology.

(a) Show that the following conditions are equivalent for a set A Ď Xω

1. A is Gδ;
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2. there exists a subset R Ď Xăω such that

A “
 

α P Xω
| αæn P R for infinitely many n

(

;

3. there exists a continuous function f : Xω Ñ 2ω such that f´1pGq “
A, for G “ tα P 2ω | α has infinitely many 1su.

(b) Take a set A that is ∆0
2 in Xω. Show that for every s P Xăω there exists

r P Xăω such that s ĺ r and Nr is either contained or disjoint from A.

The following argument is based on a solution by Damian Gładkowski.

Implication p1q ñ p2q Consider A “
Ş

nPN Un with a sequence of open
sets Un. Without loss of generality we can assume that the sequence pUnqnPN
is descending (one can take U 1n “ U0 X . . .X Un). We can represent each Un
as a disjoint union of basic open sets Un “

Ť

sPRn
Ns for Rn defined by

Rn “

!

s P Xăω
| Ns Ď Un ^

`

s “ ε_Nsæ|s|´1 Ę Un
˘

)

.

Define T “ ts P Xăω | s belongs to infinitely many sets Rnu. We claim that

R “
ď

nPN
Rn Y tr P X

ăω
| Ds P T. s ĺ ru

is the desired set from the statement.
Notice that since the family Un is descending, α P A “

Ş

nPN Un if and
only if α belongs to infinitely many Un.

First take α P Xω such that for infinitely many n we have αæn P R. The
first case is that some prefix s ĺ α belongs to T . In that case α belongs
to infinitely many Un and therefore α P A. Assume contrarily that no such
prefix exists. In that case infinitely many prefixes of α belong to the union
Ť

nPNRn. However, members of each set Rn separately are ĺ-incomparable.
Therefore, the prefixes of α belong to infinitely many sets Rn. Thus, α
belongs to infinitely many of the sets Un and α P A.

Now assume that α P A. It means that for each n there exists a prefix
sn ĺ α such that sn P Rn. (its length may not equal n). If the set tsn | n P Nu
is finite then it intersects T and therefore almost all prefixes of α belong to
R. Otherwise, tsn | n P Nu is infinite. But clearly tsn | n P Nu Ď R.
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Implication p2q ñ p3q Take R from the previous exercise and define
f : Xω Ñ 2ω by fpαqpnq “ 1Rpαænq, where 1R is the indicator of the set
R. The function f is continuous coordinate-wise so it is continuous. Clearly,
α P A if and only if fpαq P G.

Implication p3q ñ p1q Gδ sets are closed under continuous preimages
(because open sets are and countable Boolean operations are). Therefore,
it is enough to see that G is Gδ itself. However, the complement of G is
countable, because it is the set of sequences of the form s ¨ 0ω for s P 2ăω and
0ω the sequence of only-zeros. Therefore, the complement of G is a countable
union of closed sets and therefore G is a countable intersection of open sets.

Argument for (b) [ it can also be proved directly by Baire Category
Method ]

Take a set A that is ∆0
2 and let R and R1 be sets representing A and

Xω ´ A respectively as in p1q.
Assume contrarily and take r0 P X

ăω such that no r ľ r0 satisfies the
given property. It means that for every s P Xăω satisfying r0 ĺ s there exist
r, r1 ľ s such that r P R and r1 inR. This allows us to inductively define
r0 ă s0 ă s1 ă s2 ă . . . such that s2n P R and s2n`1 P R

1. Let α P Xω be the
unique point such that sn ă α for all n. Then α has infinitely many prefixes
both in R and R1 so α P AX pX ´ Aq. A contradiction.

2 New material

2.1 Borel sets and isomorphisms
During the lecture the notion of Borel sets (the smallest σ-algebra containing
all open sets) was defined.

Exercise 3. Let X be a Polish space and F Ď X closed. Prove that F is
Borel.

A function f : X Ñ Y is Borel if the preimages f´1pUq Ď X of open sets
U Ď Y are all Borel in X.

Exercise 4. Show that a function f : X Ñ Y is Borel if and only if the
preimages of all Borel sets in Y are Borel in X.
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A Borel isomorphism is a bijection that is both Borel and its inverse is
also Borel.

Exercise 5. Take two functions f : X Ñ Y and g : Y Ñ X. Assume that
the ranges fpXq and gpY q are Borel. Assume moreover that both functions
are Borel isomorphisms between their domains and ranges. Under these as-
sumptions show that there exists a Borel isomorphism between X and Y .

The above fact was used to show that every two uncountable Polish spaces
are Borel isomorphic.

Exercise 6. Fix a sequence of Polish topologies pτnqnPN on a Polish topo-
logical space pX, τq. Assume that τ Ď τn Ď BpX, τq, where the inclusion
is understood in terms of families of open sets and BpX, τq is the family of
Borel subsets of X w.r.t. τ .

Let τ8 be the topology on X generated by
Ť

nPN τn. Show that this topology
is Polish and BpX, τ8q “ BpX, τq.

The idea given in the lecture was to consider spaces Xn “ pX, τnq for
n P N and the diagonal map φ : X Ñ

ś

nPNXn given by

φpxq “ px, x, . . .q.

The claim of the theorem follows from the observation that φ is a home-
omorphism between X and the diagonal

φpXq “
 

px, x, . . .q | x P X
(

Ď
ź

nPN
Xn.

Based on this fact, the following important result was obtained:

Theorem 2.1. If pAnqnPN is a sequence of Borel subsets of a Polish topolog-
ical space pX, τq then there exists a Polish topology τ 1 Ě τ on X such that
all the sets An are clopen in τ 1.

2.2 Baire Category Method
Recall the following statement of Baire theorem.

Theorem 2.2. Let X be a (non-empty) Polish topological space and sets
pUnqnPN be open and dense in X. Then the intersection

Ş

nPN Un is also
dense in X (in particular non-empty).
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Exercise 7. Prove the above theorem.

Exercise 8. Show that if pGnqnPN is a sequence of dense Gδ sets (in a Polish
topological space X) then the intersection

Ş

nPNGn is a dense Gδ set.

Exercise 9. Prove that the set of rational numbers Q with the topology in-
herited from R is not a Polish topological space.

Exercise from the previous lecture:
Let X be an uncountable perfect Polish topological space. Let pBnqnPN

be a fixed countable basis of X. For n P N define Fn as ClpBnq ´ Bn, where
ClpAq is the intersection of all closed sets containing A and IntpAq is the
union of all open sets contained in A.

Exercise 10. Prove that X´
Ť

nPN Fn is a dense Gδ subset of X. Moreover,
show that this space (with the topology inherited from X) is zero-dimensional.

Based on that, it was shown that every uncountable Polish topological
space contains a dense Gδ that is isomorphic with Nω.

Another important thing that you should remember is:

Theorem 2.3. If X is a Polish topological space and A Ď X then A (with
the induced topology) is a Polish space if and only if A is a Gδ subset of X.

2.3 Analytic sets
A set A Ď X of a Polish space X is analytic if it is a continuous image
of a Polish topological space. The family of all analytic subsets of X is
denoted Σ1

1pXq.

Exercise 11. Show that if X, Y are Polish and A Ď X ˆ Y is Borel then
the projection πXpAq is analytic in X.

Exercise 12. Show the reverse, that if A Ď Y is analytic (with f : X Ñ Y
witnessing that by fpXq “ A) then A is a projection of a closed subset of
some product space Y ˆ Z with Z Polish.

Exercise 13. Take X at most countable. Consider the space of trees over
X trees TrX as a subset of 2Xăω . Clearly 2Xăω with the product topology is a
Polish space. Show that TrX is a closed subset of this space. Therefore, it’s
also a Polish space.
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Prove that the set of ill-founded trees over ω

IF “ tT P Trω | rT s ‰ Hu

i.e. trees with at least one infinite branch is an analytic subset of Tr.

3 New homework
Exercise 14. Let Ord be the subset of 2NˆN that contains o P 2NˆN (treated
as a subset of N ˆ N) if and only if o is a linear order. Show that Ord is a
closed subset of 2NˆN.

Consider IO Ď Ord that contains o if and only if o is not well-founded (it
contains a subset that has no minimal element). Show that IO is an analytic
set Σ1

1.

Exercise 15 (‹). Show that the set of trees over 2 with an infinite branch
(i.e. ill-founded binary trees in Tr2) is a Borel subset of Tr2.

4 Hints
Hint to Exercise 3 Try to represent F as a countable intersection of open
sets.

Hint to Exercise 4 One implication is obvious. For the other, take
f : X Ñ Y such that preimages of open sets are Borel. Consider the family C
of subsets of Y defined by: C P C if f´1pCq is Borel in X. Clearly the family
C contains all the open sets of Y . Check that is is closed under countable
Boolean operations. Thus, by the definition BpY q is contained in C.

Hint to Exercise 5 As suggested in the lecture, retry the standard (con-
structive) proof of Cantor–Bernstein theorem, see e.g. proof 1 in https://
pl.wikipedia.org/wiki/Twierdzenie_Cantora-Bernsteina-Schr%C3%B6dera

Notice that all the involved sets are Borel and the respective functions
on them are also Borel. Argue that you can glue a countable family of Borel
function into one Borel function.

Hint to Exercise 6 Seems to be just a simple check.
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Hint to Exercise 7 Take a ball B in X. We need to show that the inter-
section

Ş

nPN Un intersects that ball. We will define a descending sequence of
balls Bn such that ClpBn`1q Ď Bn Ď B. We begin with a ball B0 of radius
half of B. Now for n “ 0, . . . the set Un is dense and open, so it intersects
Bn, so there exists a ball Bn`1 that (with its closure) is contained in UnXBn.

This way (by using completeness of the space) we get a point x P
Ş

nPNBn

that belongs to both
Ş

nPN Un and B.

Hint to Exercise 8 Write each of Gn as an intersection of Un,k for k P N
and consider the doubly-indexed family pUn,kqn,kPN.

Hint to Exercise 9 Assume contrarily and observe that for each rational
number q the set Uq “ Q´ tqu is open and dense in Q. Their intersection is
however empty. . . :(

Hint to Exercise 10 For the first claim it is enough to observe that each
Fn is closed and its complement is dense (easy to check). Therefore, the
complements Un of Fn are open and dense and therefore their intersection is
a dense Gδ.

For zero-dimensionality, one observes that Bn ´ Fn is a basis of the new
space that consists of clopens only.

Hint to Exercise 11 We already know that every Borel set is a continuous
image of a Polish space (is proved in the last lecture, page 9 item (iii)).
Projections are always continuous and a composition of continuous functions
is continuous.

Hint to Exercise 12 Take a continuous function f : X Ñ Y with fpXq “
A. Let Z “ X and let F Ď Y ˆX be the set of pairs tpfpxq, xq | x P Xu. As
f is continuous, F is closed.

Hint to Exercise 13 Consider the space Trω ˆ Nω and the set tpT, αq |
α P rT su.
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