Additional Homework

This homework is designed in such a way to recall certain notions that were previously discussed. Therefore, please solve the exercises in a standalone way: do not invoke facts known from the lecture or exercises but provide direct arguments based purely on the respective definitions. If you hesitate if something can be invoked and used as a black-box, please ask.

Recall that $\operatorname{Tr}_{\omega}$ is a subset of the Polish space $2^{\omega^{<\omega}}$ containing those subsets of $\omega^{<\omega}$ that are prefix-closed. Recall the notion of [t] for a tree t. Given $\alpha \in X^{\omega}$ and $\beta \in Y^{\omega}$ by $\langle \alpha, \beta \rangle \in (X \times Y)^{\omega}$ we denote the natural zip of the two sequences.

Recall the notion of Γ -universal sets. Recall and use certain Tr_X -universal set for $\Pi_1^0(X^{\omega})$ — you don't need to prove that it is universal if it was already done.

Exercise 1 (≥ 0.5 points). Check that the following set is $\operatorname{Tr}_{\omega \times \omega}$ -universal for analytic sets:

$$U \stackrel{\text{def}}{=} \{ (t, \alpha) \in \operatorname{Tr}_{\omega \times \omega} \times \mathbb{N}^{\omega} \mid \exists \beta \in \mathbb{N}^{\omega}. \langle \alpha, \beta \rangle \in [t] \}.$$

Exercise 2 (≥ 0.5 points). Take two Polish spaces X and Y and a boldface pointclass Γ . Assume that $f: Y \to X$ is continuous sujection of Y onto X. Show that if $U \subseteq X \times Y$ is an X-universal set for Γ , i.e. $\Gamma(Y) = \{U_x \mid x \in X\}$ then $\Gamma \neq \Gamma^c$.

Entail that the set U above is not coanalytic (in particular not Borel).

Exercise 3 (≥ 0.5 points). Provide a complete stand-alone argument that if f is continuous and $B \subseteq X$ is coanalytic then $f^{-1}(B)$ is also coanalytic.

Recall that IF \subseteq Tr_{ω} is the set of trees that have some infinite branch. We know that IF $\in \Sigma_1^1$.

Exercise 4. Show that IF is not coanalytic, because there exists a continuous function f such that $f^{-1}(IF) = U$ and by the above exercise U is not coanalytic.

Exercise 5 (*). Give an example of a coanalytic relation $B \subseteq \operatorname{Tr}_{\omega} \times Y$ for some Polish space Y such that $\pi_{\operatorname{Tr}_{\omega}}(B) = \operatorname{IF}$ and the sections of that relation are at most singletons: for every $t \in \operatorname{Tr}_{\omega}$ we have $|B_x| \leq 1$.

The above exercise shows that the first exercise from 7th May does not extend to coanalytic sets: they may have small sections and provide non-coanalytic projections. In fact every coanalytic relation R admits a coanalytic subset $F \subseteq R$ that has singleton sections and the same projection as R...