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Abstract

We show that it is decidable whether two regular languages of infinite

trees are separable by a deterministic language, resp., a game language.

We consider two variants of separability, depending on whether the set

of priorities of the separator is fixed, or not. In each case, we show that

separability can be decided in EXPTIME, and that separating automata

of exponential size suffice. We obtain our results by reducing to infinite

duration games with ω-regular winning conditions and applying the fi-

nite-memory determinacy theorem of Büchi and Landweber.

1 Introduction

One of the most intriguing and motivating problems in the field of automata
theory is the membership problem. For two fixed classes of languages C (input
class) and D (output class), the pC,Dq-membership problem asks, given a rep-
resentation of a language in C, whether this language belongs to D. Among
the first results of this type is the famous theorem by Schutzenberger [44] and
McNaughton-Papert [32], characterising, among all regular languages of finite
words, the subclass of languages that can be defined in first-order logic.

In this paper we consider the class C of regular languages of infinite trees.
While there are many equivalent automata models for this class — e.g., Muller,
Rabin, and Street automata [27]— parity automata are without doubt the most
established such model [24]. The most important descriptional complexity mea-
sure of a parity automaton is the set of priorities C Ď N it is allowed to use, which
is called its index. Not only a larger index allows the automaton to recognise
more languages [34], but the computational complexity of known procedures for
the emptiness problem crucially depends on the index (the current best bound
is quasi-polynomial [8]). The most famous open problem in the area of regular
languages of infinite trees is the nondeterministic index membership problem,
which is the pC,Dq-membership problem for D the class of languages recognised
by some nondeterministic parity automaton of a fixed index C (c.f. [17]). In
many cases, the solution of the membership problem relies either on algebraic
representations or determinisation, however algebraic structures for regular lan-
guages of infinite trees are of limited availability (c.f. [2]) and deterministic
automata do not capture all regular languages. While on infinite words this
problem was essentially solved by Wagner already at the end of the ’70s [47], its
solution for infinite trees seems still far away.
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Known decidability results abound if we restrict either the input class C or
the output class D. Results of the first kind are known for C being the class
of deterministic [37] and, more generally, game automata [25, Theorem 1.2].
Results of the second kind (i.e., when the input class C is the full class of
regular languages) exist for the output class D being the lower levels of the
index hierarchy [31, 48] and of the Borel hierarchy [4], the class of deterministic
languages [35], and Boolean combinations of open sets [6]. Other variants of the
index membership problem are known to be decidable, including the early result
of Urbański showing that it is decidable whether a given deterministic parity
tree automaton is equivalent to some nondeterministic Büchi one [46], the weak
alternating index problems for the class of deterministic automata [33] and Büchi
automata [16, 45], and deciding whether a given parity automaton is equivalent
to some nondeterministic co-Büchi automaton [16].

Another problem closely related to membership is separability. The pC,Dq-sep-
arability problem asks, given a pair of languages L, M in C, whether there ex-
ists a language S in D (called a separator) s.t. L Ď S and1 S KM . Intuitively,
a separator S provides a certificate of disjointness, yielding information on the
structure of L, M up to some chosen granularity. The separability problem is
a generalisation of the membership problem if the class C is closed under comple-
ment, since we can always take M to be the complement of L, in which case the
only candidate for the separator is L itself. There are many elegant results in
computer science, formal logic, and mathematics showing that separators always
exist. Instances include Lusin’s separation theorem in topology (two disjoint an-
alytic sets are always separable by a Borel set; c.f. [28, Theorem 14.7]), a folklore
result in computability theory (two disjoint co-recursively enumerable sets are
separable by a recursive set), Craig’s theorems in logic (jointly contradictory
first-order formulas can be separated by a formula containing only symbols in
the shared vocabulary [18]) and model theory (two disjoint projective classes
are separable by an elementary class [18]); in formal language theory, a gener-
alisation of a theorem suggested by Tarski and proved by Rabin [41, Theorem
29] states that two disjoint Büchi languages of infinite trees are separable by a
weak language (c.f. [42]).

In this work we study the pC,Dq-separability problems where C is the full
class of regular languages of infinite trees, and D is one of four kinds of sub-
classes thereof, depending on whether the automaton is deterministic or game,
and depending on whether we fix a finite index C Ď N or we leave it unrestricted
C “ N. Our main result is that all four kinds of the separability problems above
are decidable and in EXPTIME. Moreover, we show that if a separator exists,
then there is one of exponential size.

Theorem 1.1. The deterministic and game separability problems can be solved
in EXPTIME, both for a fixed finite index C Ď N, and an unrestricted one
C “ N. Moreover, separators with exponentially many states and polynomially
many priorities suffice.

Our work is permeated by the observation that the separability problem for
two languages L, M can be phrased in terms of a game of infinite duration
with an ω-regular winning condition. In such a separability game there are two
players, Separator trying to prove that L,M are separable, and Input with the

1We write S KM for S X M “ H.
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opposite objective. In the simple case of pC,Dq-separability where C is the class
of regular languages of ω-words and D the subclass induced by deterministic
parity automata of finite index C, the i-th round of the game is as follows:

• Separator plays a priority ci P C.

• Input plays a letter ai from the finite alphabet Σ.

The resulting infinite play pc0, a0qpc1, a1q ¨ ¨ ¨ is won by Separator if 1) a0a1 ¨ ¨ ¨ P L

implies c0c1 ¨ ¨ ¨ is accepting and 2) a0a1 ¨ ¨ ¨ R L implies c0c1 ¨ ¨ ¨ is rejecting.
Since the winning condition is ω-regular, by the result of Büchi and Landwe-
ber [7] we can decide who wins the game and moreover finite-memory strategies
for Separator suffice. Thanks to a correspondence between such strategies and
deterministic separators, Separator wins such a game iff there exists a deter-
ministic automaton with priorities in C separating L, M . This provides both
decidability of the separability problem and an upper-bound on the size of sep-
arators. We design analogous games with ω-regular winning conditions for the
more involved case of infinite trees for the separability problems mentioned
above and apply [7].

The separability problems we consider have been open so far and generalise
the corresponding membership problems. A solution for deterministic separa-
bility can easily be derived from [36], however our techniques based on games
are novel and provide a unified view on all problems. When instantiated to the
specific case of membership, our decidability results generalise the deterministic
case (for both fixed and unconstrained index) [36, 35] and the game membership
case for unconstrained index [25, Theorem 7.12]. We believe the game approach
is much more direct than the combinatorial and pattern-based techniques used
in the previous solutions, c.f. [25, Section 7, pp. 29–37]. The game membership
problem for a fixed index C has been open so far.

We are not aware of computation complexity results for separability prob-
lems over regular languages of infinite trees, neither of an analysis of the size
of separators. Regarding deterministic membership, EXPTIME-completeness is
known [36, Corollary 11], as well as EXPTIME upper [35, end of page 12] and
lower bounds [48, Theorem 4.1] (c.f., also [31]) for computing the optimal deter-
ministic index. Devising non-trivial complexity lower bounds for the separability
problem is left for future work, as well as extending our approach to other classes
of separators.

Related works. Over finite words, variants of the pC,Dq-separability prob-
lem have been studied for classes C both more general than the regular languages,
such as the context free languages [22, 49] and higher-order languages [14] (later
extended to safe schemes over finite trees [1]), and for classes D more restrictive
than the regular languages, such as in [39, 40]. The separability and membership
problems have also been studied for several classes of infinite-state systems, such
as vector addition systems [11, 10, 23], well-structured transition systems [21],
one-counter automata [20], and timed automata [13, 12]. Recent developments
on efficient algorithms solving parity games are based on the ability to find a
simple separator, yielding both upper bounds on the problem, and lower bounds
for a wide family of algorithms [5, 19, Chapter 3]. Finally, it is worth mentioning
that games have already been successfully used to provide several characterisa-
tion results, such as in [17, 16, 15, 3, 45, 9].
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Outline. In Section 2 we introduce automata and other mathematical pre-
liminaries. In Sections 3 to 6 we present the game-theoretic characterisations of
the separability problems we consider. We believe this is the most interesting
aspect of this work. Section 7 is devoted to an analysis of the computational
complexity of our decision methods leading to the proof of the announced The-
orem 1.1.

2 Preliminaries

A nonempty finite set Σ of letters a P Σ is called an alphabet. A (Σ-labelled)
tree is a function t : tL,Ru˚ Ñ Σ assigning to each node u P tL,Ru˚ a label
tpaq P Σ. The root of a tree is denoted ǫ. The set of all Σ-labelled trees is
denoted TrΣ. The symbols L, R are called directions and a branch is an infinite
sequence thereof d0d1 ¨ ¨ ¨ P tL,Ruω. A tree t is uniquely defined by the set of its
paths Pathptq “ tpa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL,Ruqω | @i. ai “ tpd0d1 ¨ ¨ ¨ di´1qu,
which is extended to languages pointwise as PathpLq “ tPathptq | t P Lu.

2.1 Automata

Fix a nonempty finite set of priorities C Ď N. A (top-down, nondeterministic,
parity, tree) automaton is a tuple A “ pΣ, Q, q0,Ω,∆q, where Σ is a finite alpha-
bet, Q is a finite set of states, amongst which q0 P Q is the initial state, Ω: Q Ñ
C assigns a priority to every state, and ∆ Ď QˆΣˆQˆQ is a set of transitions.
The priority function Ω is extended to a transition δ “ pq, , , q as Ωpδq :“ Ωpqq,
pointwise to an infinite sequence of states Ωpq0q1 ¨ ¨ ¨ q :“ Ωpq0qΩpq1q ¨ ¨ ¨ P Cω

and transitions Ωpδ0δ1 ¨ ¨ ¨ q “ Ωpδ0qΩpδ1q ¨ ¨ ¨ P Cω . An infinite sequence of pri-
orities c0c1 ¨ ¨ ¨ P Cω is accepting if the maximal priority occurring infinitely
often is even. Similarly, an infinite sequence of states ρ “ q0q1 ¨ ¨ ¨ P Qω or of
transitions ρ “ δ0δ1 ¨ ¨ ¨ P ∆ω is accepting whenever Ωpρq is accepting. We write
∆pq, aq “ tpq, a, qL, qRq P ∆u for the set of transitions from a state q P Q over
a letter a P Σ, and ∆paq “

Ť

t∆pq, aq | q P Qu for all transitions over a. We ex-
tend the notation above to an infinite path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣˆtL,Ruqω

by writing ∆pbq for the set of infinite sequences of transitions ~δ “ δ0δ1 ¨ ¨ ¨ P ∆ω

of the form δi “ pqi, ai, qL,i, qR,iq for every i, which are conform to b in the sense
that q0 is the initial state of the automaton and qi`1 “ qdi,i.

A run of an automaton A as above over a tree t P TrΣ is a Q-labelled tree
ρ P TrQ s.t. ρpǫq “ q0 is the initial state and for every node in the tree u P tL,Ru˚

the quadruple
`

ρpuq, tpuq, ρpuLq, ρpuRq
˘

belongs to ∆. Such a run is accepting

if for every branch d0d1 ¨ ¨ ¨ P tL,Ruω the sequence of states
`

ρpd0 ¨ ¨ ¨ di´1q
˘

iPω
is accepting. The set of all trees t P TrΣ s.t. A has an accepting run over t is
denoted LpAq and is called the language recognised by A. The corresponding
path language is LpathpAq :“ PathpLpAqq Ď pΣ ˆ tL,Ruqω. If q P Q is a state of
an automaton A then by Aq we denote the same automaton as A but with the
initial state q0 changed to q. Thus, LpAqq is the set of trees over which A has
an accepting run ρ starting at ρpǫq “ q. In the rest of the paper we assume that
all states q in an automaton are productive in the sense that LpAqq ‰ H.
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2.2 Deterministic and game automata

We say that A is a game automaton if, for every q P Q and a P Σ, either we have
a conjunctive transition ∆pq, aq “ tpq, a, qL, qRqu or two disjunctive transitions
∆pq, aq “ tpq, a, qL,Jq, pq, a,J, qRqu (c.f. [25, Definition 3.2]), where J ‰ q0
represents a distinguished state in Q accepting every tree (i.e., LpAJq “ TrΣ)
and qL, qR ‰ J. An automaton A is deterministic if it is a game automaton with
only conjunctive transitions and in this case for every tree t P TrΣ there exists
a unique run ρ of A over t. A tree language L is deterministic, resp., game,
if it can be recognised by some deterministic, resp., game automaton. Game
automata can be complemented with very low complexity by just increasing
every priority by one and by swapping conjunctive and disjunctive transitions.

Lemma 2.1. If A is a game parity tree automaton, then TrΣzLpAq can be
recognised by a game parity tree automaton with the same number of states and
priorities.

Proof. Let A “ pΣ, Q, q0,Ω,∆q be a game automaton. Its complement is the
game automaton Ac obtained by swapping conjunctive transitions with dis-
junctive ones, and vice versa, and by increasing priorities by one. Formally,
Ac “ pΣ, Q, q0,Ω

c,∆cq where Ωcpqq “ Ωpqq ` 1 and the set of transitions
∆c is obtained by dualising ∆ as follows: for every q P Q and a P Σ, if
∆pq, aq “ tpq, a, qL, qRqu is conjunctive then ∆cpq, aq “ tpq, a, qL,Jq, pq, a,J, qRqu
is disjunctive, and symmetrically in the other case. It is standard to check that
LpAcq “ TrΣzLpAq.

2.3 Determinisation over ω-words

A nondeterministic ω-word parity automaton is a tuple A “ pΣ, Q, q0,Ω,∆q
where Σ is a finite input alphabet, Q is a finite set of states, q0 P Q is an initial
state, Ω: Q Ñ C assigns to each state a priority in C, and ∆ Ď Q ˆ Σ ˆ Q is a
transition relation. The notions of runs and the accepted language LpAq Ď Σω

are standard [27]. We recall that nondeterministic ω-word parity automata can
be determinised with an exponential complexity in the number of states and
a polynomial complexity in the number of priorities. We will use this fact in
later proofs.

Lemma 2.2 (c.f. [43]). A nondeterministic ω-word parity automaton A with
n states and k priorities can be converted to an equivalent deterministic parity
automaton with n1 “ 2¨pn¨pk`1qqn¨pk`1q ¨pn¨pk`1qq! states and k1 “ 2¨n¨pk`1q
priorities.

In order to prove Lemma 2.2, we first prove the following result allowing us
to convert nondeterministic parity to nondeterministic Büchi automata.

Lemma 2.3. A nondeterministic ω-word parity automaton A with n states and
k priorities can be converted to an equivalent nondeterministic ω-word Büchi
automaton with n ¨ pk ` 1q states.

Proof. Let A have n “ |P | states and k “ |C| priorities. Automaton B has
states of the form Q “ P Y P ˆ C. In the first phase B just simulates A,
until it goes to a state of the form pp, cq by nondeterministically guessing an
even priority c P C and checking that c is visited infinitely often and no larger
priority is visited in the rest of the run.
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Lemma 2.2 follows from Lemma 2.3 and the following result allowing us to
convert from nondeterministic Büchi to deterministic parity automata.

Lemma 2.4 ([38, Theorem 3.10]). A nondeterministic ω-word Büchi automaton
A with n states can be converted to an equivalent deterministic ω-word parity
automaton B with 2 ¨ nn ¨ n! states and 2 ¨ n priorities.

2.4 Games

In this section we formalise the framework of games used throughout the paper.
These are variants of two-player zero-sum perfect information games on graphs
of infinite duration where some intermediate positions are hidden. The default
names of the two players are PI and PII, however in most games it will be
more convenient to work with some more meaningful names. If P P tPI,PIIu is
a player then the other player is called the opponent of P . To specify a game
we need to define an arena and a winning condition. An arena of a game
consists of: a nonempty set V of positions, an initial position v0 P V , a position
update function η, a finite sequence

`

pP p0q, Xp0qq, . . . , pP pnq, Xpnqq
˘

of possible
decisions that players can make during a round, and restrictions Ov, one for
each position v P V . Each decision pP pkq, Xpkqq is left in the hands of one
of the players P pkq P tPI,PIIu and is taken from some fixed nonempty finite
set Xpkq of possible choices. The product of all the sets of possible choices

O :“ X
p0q
v ˆ . . .ˆX

pnq
v is called the set of round outcomes. The position update

function is of the type η : V ˆ O Ñ V . An arena can additionally restrict some
decisions of some players depending on the current position v P V of the game
and some previous decisions in this round using the restrictions, i.e., nonempty
subsets Ov Ď O, indexed by the positions v P V .

At the i-th round starting in a position vi P V players declare their choices

x
pkq
i P Xpkq in the order specified by the arena and according to the imposed

restrictions. More formally, they inductively define a vector oi “ px
p0q
i , . . . , x

pnq
i q,

keeping the invariant that

px
p0q
i , . . . , x

pk´1q
i q P Proj0,...,k´1pOvq, (1)

i.e., the constructed vector belongs to the projection of Ov onto the coordinates
0, . . . , k´1. This guarantees that the successive player P pkq has always at least
one choice xpkq P Xpkq satisfying the invariant. Once the whole vector oi “

px
p0q
i , . . . , x

pnq
i q is constructed, the i-th round is finished. The next position of

the game is defined by vi`1 :“ ηpvi, oiq. A play of the game is the sequence of
round outcomes o0o1 ¨ ¨ ¨ P Oω (the visited positions are implicit, however can
easily be computed using η).

A winning condition of a game specifies which infinite plays o0o1 ¨ ¨ ¨ P Oω

are considered winning for one of the players P ; with the remaining plays losing
for P and winning for the opponent of P . Formally, a winning condition is just
a subset of Oω .

Some of the considered games are positionless, i.e., there is only a single
position V “ tv0u. An arena is called finite if V is finite.

A strategy of a player P for a game is a tuple M “ pM, ℓ0, v, τq where: M

is a set of memory states, ℓ0 P M is an initial memory state, o “ px, . . . , zq is
a vector of decision functions, one function for each decision of the player P ,
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and τ is a memory update function that maps a position of the game v P V ,
a memory state ℓ P M , and a vector of choices of the opponent px1, . . . , z1q into
the next memory value ℓ1 “ τpv, ℓ, x1, . . . , z1q P M . The domain of a decision
function y for a decision pP,Xpkqq allowing the player P to choose xpkq P Xpkq

is the product of V , M , and all the possible previous sets of possible options
of the opponent in a round. The range of y is Y , with the restriction that the
player P needs to preserve the invariant as in (1).

A strategy σ is of finite memory if M is a finite set. Notice that each finite
memory strategy for a finite game is a finite object that can be effectively repre-
sented. A strategy is positional if M “ tℓ0u. In the case of a positional strategy
there is a unique memory value, the function τ is trivial, and we ignore the M

argument of the decision functions. Similarly, if the given arena is positionless
then we ignore the V argument of the functions above.

Fix a strategy M of a player P . Such a strategy determines the way in
which the player P should make her choices. Consider the i-th round of the
game, starting in a position vi P V and with a memory state ℓi P M (for i “ 0
the memory state ℓ0 is the initial memory value). The consecutive choices of P
in this round are given by the decision functions in v applied to v, ℓi, and the
previous choices of the opponent. Once the round is finished with opponent’s
choices px1

i, . . . , z
1
iq, we take ℓi`1 :“ τpvi, ℓi, x

1
i, . . . , z

1
iq.

A play o0o1 ¨ ¨ ¨ P Oω that is obtained according to the policy above is said
to be conform to the strategy M. Notice that if M and M1 are two strategies
of the two players then there exists a unique play o0o1 ¨ ¨ ¨ P Oω that is conform
to both of them—this play can be defined inductively in the standard way.

A strategy M of a player P is said to be winning if all the plays conform
to M are winning for P . Because of the observation above, at most one of the
players has a winning strategy. We say that a position v P V is winning for P if
P has a winning strategy in the game with the initial position v0 set to v. We
say that a game is determined if exactly one player has a winning strategy.

Games on graphs. To formally prove the results of finite-memory determi-
nacy of the games involved in our work, we show how to reduce them to the
standard framework of games on graphs.

An arena of a game on graph is specified by a directed graph pV,Eq without
dead-ends (the elements of V are called positions), an initial position v0 P V ,
an ownership partition V “ VPI Y VPII into two disjoint sets, and a labelling
function ρ : E Ñ Σ. A play of such a game is constructed inductively by the
players, starting from the initial position v0. At the i-th round, with the current
position vi P VP , the player P chooses an edge pvi, vi`1q P E, defining the
consecutive position vi`1.

A winning condition of PI in such a game is a language W Ď Σω. A play as
above is winning for PI if the ω-word ρpv0, v1qρpv1, v2q ¨ ¨ ¨ belongs to L.

We will now show how to reduce a game defined according to our definition
into a game on graph. Consider a game with an arena consisting of a set of
positions V ; an initial position v0 P V ; a position update function η; decisions
`

pP p0q, Xp0qq, . . . , pP pn´1q, Xpn´1qq
˘

; and restrictions pOvqvPV . Let O be the set
of round outcomes. Consider a graph with the set of positions

V 1 :“
ď

vPV

˜

tvu ˆ
ď

k“0,...,n

Proj0,...,k´1pOvq

¸

,

7



where Proj0,...,´1pOvq is the singleton tpqu consisting of the empty tuple pq. The
initial position is v1

0 :“ pv0, pqq.
Let the set of edges E1 :“ E1

0 Y E1
1 consists of the following two types of

edges. The first is defined as

E1
0 :“

´

`

v, pxp0q, . . . , xpk´1qq
˘

,
`

v, pxp0q, . . . , xpk´1q, xpkqq
˘

¯

,

where c P V and pxp0q, . . . , xpk´1q, xpkqq P Proj0,...,kpOvq. The second is defined
as

E1
1 :“

``

v, o
˘

,
`

v1, pq
˘˘

,

where v P V , o P Ov, and ηpv, oq “ v1. Let Σ “ O Y tǫu and the labelling ρ be
defined as ρpeq :“ ǫ for e P E1

0; and ρ
``

v, o
˘

,
`

v1, pq
˘˘

:“ o for
``

v, o
˘

,
`

v1, pq
˘˘

P
E1

1.
Given a winning condition W Ď Oω, we define the new winning condition

W 1 Ď Σω by skipping the symbols ǫ (notice that the shape of the arena ensures
that every n-th edge is labelled by an element of O).

Claim 2.5. Each strategy (understood in the standard sense) of a player P in
the corresponding game on graph can be translated into a strategy of the shape
M “ pM, ℓ0, v, τq in the original game. Moreover, this translation preserves the
size of the memory and maps a winning strategy into a winning strategy.

Determinacy. We rely on two important known results of determinacy of
the considered games, obtained directly from the known results via Claim 2.5.

Theorem 2.6 ([7, Theorem 11]). Consider a game arena with the set of round
outcomes O. Assume that the set of winning plays of PI is an ω-regular language
over the alphabet O. Then one of the players has a finite memory winning
strategy in this game. Moreover, such a strategy can be effectively computed
based on a representation of a finite arena and the winning condition.

We say that a winning condition W Ď Oω is a Rabin condition over O if

W “
`

infpE0q X finpF0q
˘

Y ¨ ¨ ¨ Y
`

infpEnq X finpFnq
˘

s.t. for k “ 0, . . . , n we have Ek, Fk Ď O and

infpEkq :“
 

poiqiPω P Oω | oi P Ek for infinitely many i P ω
(

finpFkq :“
 

poiqiPω P Oω | oi P Fk for only finitely many i P ω
(

.

Notice that the family of Rabin conditions is closed under union.
If C Ď N is a finite set of priorities then the set of parity accepting sequences

pciqiPω Ď Cω can be written as a Rabin condition with Ek “ tn P C | n ě 2ku
and Fk “ tn P C | n ě 2n`1u for 0 ď k ď maxC

2
. Therefore, the parity

condition is a special case of Rabin condition. Similarly, the complement of
a parity condition is also a Rabin condition.

Theorem 2.7 ([29, Lemma 9]; c.f. also [26, Theorem 4] and [30, Theorem 7.12]).
Consider a game arena with the set of round outcomes O. Assume that the set of
winning plays of PI is a Rabin condition over O. Then PI has a uniform posi-
tional strategy M in that game, i.e., a positional strategy such that for every po-
sition v P V , if v is winning for PI then M is a winning strategy from v.
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Complexity. Finally, we recall that games on graphs with parity winning
conditions can be solved in quasi-polynomial time.

Lemma 2.8 ([8, Theorem 2.9]). A parity game with n positions and k “ |C|
priorities can be solved in deterministic time Opnlog k`6q.

This will be used in our complexity analysis in Section 7. In fact, already a
näıve parity game algorithm with complexity Opnkq (i.e., polynomial in n and
exponential in k) would suffice for our purposes since we will instantiate it on
game graphs of exponential size and polynomially many priorities.

2.5 Acceptance games

We present a game-theoretic view on accepting runs for automata based on the
framework from Section 2.4. This will serve both as an example of the kind of
games that we consider throughout paper, and as a technical tool in the proofs
from Sections 5 and 6.

Let t P TrΣ be a tree. The acceptance game GaccpA, tq is played in rounds
by two players, Automaton and Pathfinder. The goal of Automaton is to show
that t P LpAq; Pathfinder has the complementary objective t R LpAq.

Acceptance game GaccpA, tq

At the i-th round starting at a position vi “ pui, qiq P V :“ tL,Ru˚ ˆ Q:

[A : δ] Automaton plays a transition δi “ pqi, tpuiq, qL,i, qR,iq P ∆pqi, tpuiqq.

[P : d] Pathfinder plays a direction di P tL,Ru.

The next position is vi`1 :“ puidi, qdi,iq.

The initial position is v0 :“ pǫ, q0q. Automaton wins the resulting infinite
play π “ pδ0, d0qpδ1, d1q ¨ ¨ ¨ if the sequence of transitions δ0δ1 ¨ ¨ ¨ is accepting.

The following proposition is folklore.

Proposition 2.9. Let t P TrΣ and A be an automaton over the alphabet Σ.
Automaton wins the acceptance game GaccpA, tq if, and only if, t P LpAq.

2.6 Disjointness games

Let A and B be two nondeterministic automata. We recall a standard game
used to characterise whether LpAq K LpBq. This will be crucial in the correctness
proofs throughout Sections 3 to 6. The disjointness game GdispA,Bq is played
by two players, Automaton and Pathfinder. Automaton’s aim is to incrementally
build a tree accepted by both A and B, witnessing LpAq X LpBq ‰ H, while
Pathfinder has the opposite objective.2 The set of positions of the game is
QA ˆ QB, and the initial position is pqA0 , qB0 q.

2The disjointness game could equivalently be phrased as a nonemptiness game for the

product automaton A ˆ B recognising LpAq X LpBq. However, in our technical development

it will be more direct to use the disjointness game.
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Disjointness game GdispA,Bq

At the i-th round starting at a position pqAi , qBi q:

[A : a] Automaton plays a letter ai P Σ.

[A : δA] Automaton plays a transition δAi “ pqAi , ai, q
A
L,i, q

A
R,iq P ∆ApqAi , aiq.

[A : δB] Automaton plays a transition δBi “ pqBi , ai, q
B
L,i, q

B
R,iq P ∆BpqBi , aiq.

[P : d] Pathfinder plays a direction di P tL,Ru.

The next position is pqAdi,i
, qBdi,i

q.

Let the resulting infinite play be π “ pa0, δ
A
0 , δB0 , d0qpa1, δ

A
1 , δB1 , d1q ¨ ¨ ¨ . Such

a play induces an infinite path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ and two sequences of

transitions ~δA :“ δA0 δA1 ¨ ¨ ¨ and ~δB :“ δB0 δ
B
1 ¨ ¨ ¨ . The rules of the game guarantee

that ~δA P ∆Apbq and ~δB P ∆Bpbq. Automaton wins the play π if both sequences
~δA and ~δB are accepting.

In the rest of the paper it will be more useful to consider Pathfinder’s point
of view. Since her winning condition can be presented as Rabin condition (see
Section 2.4), whenever she wins, she has a memoryless (i.e., M “ tℓ0u) winning
strategy. Such a memoryless strategy for Pathfinder in the disjointness game
can be represented by a function P :

`
Ť

aPΣ ∆Apaq ˆ ∆Bpaq
˘

Ñ tL,Ru, which
we call a pathfinder.

Lemma 2.10. If LpAq K LpBq then there is a pathfinder P which is winning for
Pathfinder in the disjointness game GdispA,Bq.

Proof. The winning condition for Pathfinder is a disjunction of two properties:
Either ~δA or ~δB is rejecting. Both these properties are complements of parity
conditions. Therefore, the winning condition of Pathfinder is a Rabin condition.
Since memoryless winning strategies suffice for games with Rabin winning con-
ditions, it follows that if Pathfinder wins then she has a memoryless winning
strategy.

In general, such a positional strategy is of the form ptℓ0u, ℓ0, d, τq, with τ

constantly equal ℓ0 and d : pqA, qB, a, δA, δBq ÞÑ d, for qA P QA, qB P QB, a P Σ,
δA P ∆ApqA, aq, δB P ∆BpqB, aq, and d P tL,Ru. Due to the redundancy within
the arguments of the decision function d, we can represent such a strategy by
a function P :

`
Ť

aPΣ ∆Apaq ˆ ∆Bpaq
˘

Ñ tL,Ru, i.e., a pathfinder.

Corollary 2.11 below follows directly from the construction of P and the fact
that the strategy M used to obtain it is winning.

Corollary 2.11. Assume that LpAq K LpBq and let P be a pathfinder as above.

Let b “ pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL,Ruqω be a path and ~δA “ δA0 δA1 ¨ ¨ ¨ P ∆Apbq,
~δB “ δB0 δ

B
1 ¨ ¨ ¨ P ∆Bpbq be two sequences of transitions of these automata that

are conform to b. If for every i P ω we have PpδAi , δBi q “ di then at least one of

the sequences ~δA and ~δB is rejecting.

The construction from Lemma 2.10 above has a specific property when one
of the involved automata (e.g., A) is a game automaton. Since we assume that
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every state is productive, positions of the form pJ, qBq are losing for Pathfinder

in GdispA,Bq. Therefore, without loss of generality we can assume that the
pathfinder P satisfies the following observation.

Remark 2.12. Consider a transition δA “ pqA, a, qAL ,Jq (resp., δA “ pqA, a,J,

qAR q) in a game automaton A. Then, PpδA, q is constantly equal to L (resp.,
R).

2.7 Deterministic separability over ω-words

In this section, we provide full details for the separability problem for ω-words
sketched in the introduction. This will also serve as an introduction to the more
challenging separability problems over infinite trees considered in the rest of the
paper. Let A, B be two nondeterministic parity automata over ω-words and let
C Ď N be a set of priorities. Consider the following C-deterministic-separability
game Gsep

ω pA,B, Cq.

C-deterministic-separability game over ω-words Gsep
ω pA,B, Cq

At the i-th round:

[S : c] Separator plays a priority ci P C.

[I : a] Input plays a letter ai P Σ.

Separator wins an infinite play π “ pc0, a0qpc1, a1q ¨ ¨ ¨ P pC ˆ Σqω if the following
two conditions are both satisfied (i.e., if π P W :“ WA X WB Ď pC ˆ Σqω):

• π P WA: If a0a1 ¨ ¨ ¨ P LpAq, then c0c1 ¨ ¨ ¨ is accepting.

• π P WB: If a0a1 ¨ ¨ ¨ P LpBq, then c0c1 ¨ ¨ ¨ is rejecting.

Lemma 2.13. Separator wins Gsep
ω pA,B, Cq if, and only if, LpAq, LpBq can be

separated by a deterministic parity automaton with priorities in C.

A strategy for Separator in Gsep
ω pA,B, Cq is of the form M “ pM, ℓ0, c : M Ñ

C, τ : MˆΣ Ñ Mq. The rest of this section is devoted to the proof of this lemma.

Soundness. Assume that Separator wins Gsep
ω pA,B, Cq, let M be his finite-

memory winning strategy as above. Consider a candidate separating automaton
S :“ pΣ,M, ℓ0,Ω,∆q having the same set of states M as M’s memory states,
and the same initial state ℓ0, where state ℓ’s priority Ωpℓq :“ cpℓq is provided
directly by the decision function c, and the set of transitions is defined according
to the memory update function τ as

∆ “
 

pℓ, a, τpℓ, aqq | ℓ P M,a P Σ
(

.

Clearly S is a C-deterministic automaton over ω-words. Moreover, WA guar-
antees that LpAq Ď LpSq, while WB guarantees that LpBq K LpSq. Therefore, S
is the required separator.

Completeness. Let S “ pΣ, Q, q0,Ω,∆q be a separating automaton. We build a
finite-state winning strategy for Separator M “ pQ, q0, c, τq over the same set of
states Q s.t. cpqq “ Ωpqq is q’s priority in S, and τpq, aq “ q1 for the unique q1

s.t. pq, a, q1q P ∆. It is immediate to show that M is winning from the fact that
S is a separator.
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3 Separability by deterministic automata with

priorities in C

In this section we present a game-theoretic characterisation of separability over
infinite trees by deterministic automata with a fixed finite set of priorities C Ď N.
Let A, B be two nondeterministic automata over infinite trees. We extend the
game over ω-words from the introduction (and formally defined in Section 2.7)
with two additional actions: a selector for Separator and a direction for Input.

C-deterministic-separability game G
sep
detpA,B, Cq

At the i-th round:

[S : c] Separator plays a priority ci P C.

[I : a] Input plays a letter ai P Σ.

[S : f ] Separator plays a selector fi P tL,Ru∆
Bpaiq.

[I : d] Input plays a direction di P tL,Ru.

Intuitively, a selector encodes a direction for each (relevant) transition of B and
this is used for the correctness of the separator. (In Section 3.1 we consider a
simpler variant without selectors and we discuss which separability problem it
captures.) Let the resulting infinite play be π “ pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ ,
with the induced infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ . Separator wins the play
π if the following two conditions are satisfied:

• π P WA: If there exists an accepting sequence of transitions ~δA “
δA0 δA1 ¨ ¨ ¨ P ∆Apbq, then c0c1 ¨ ¨ ¨ is accepting.

• π P WB: If there exists an accepting sequence of transitions ~δB “ δB0 δ
B
1 ¨ ¨ ¨ P

∆Bpbq s.t. for every i P ω we have fipδ
B
i q “ di, then c0c1 ¨ ¨ ¨ is rejecting.

The following lemma states that the separability game correctly characterises
the deterministic separability problem.

Lemma 3.1. Separator wins G
sep
detpA,B, Cq if, and only if, LpAq, LpBq can be

separated by a deterministic parity tree automaton with priorities in C.

We present a full proof in order to show the rôle of Separator’s selectors.

Soundness. Assume that Separator wins the separability game G :“ G
sep
detpA,B, Cq

by a finite-memory winning strategy M “ pM, ℓ0, pc, fq, τq. Strategy M has
two decision functions: c assigns to each ℓ P M a priority cpℓq P C, and f

assigns to each ℓ P M and a P Σ a selector fpℓ, aq P tL,Ru∆
Bpaq. Moreover,

the type of the memory update function is τ : M ˆ Σ ˆ tL,Ru Ñ M . Con-
sider a deterministic parity tree automaton S :“ pΣ,M, ℓ0,Ω

S ,∆Sq which has
the same set of states M and initial state ℓ0 as M, priorities are induced by
the decision function c of M as ΩSpℓq :“ cpℓq, and transitions are of the form
∆S “ tpℓ, a, τpℓ, a, Lq, τpℓ, a,Rqq | ℓ P M,a P Σu.

We show that S separates LpAq, LpBq. We first show LpAq Ď LpSq. Let
t P LpAq be a tree that is accepted by the automaton A, as witnessed by
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an accepting run ρA. Let ρS be the unique run of S over t. Consider any
branch d0d1 ¨ ¨ ¨ P tL,Ruω. We need to show that the sequence of priorities
`

ΩSpρSpd0 ¨ ¨ ¨ di´1qq
˘

iPω
is accepting. Consider a play π of G where at the i-th

round Separator plays according to the strategy M with current memory state
ℓi P M and Input plays according to the letters from t and directions d0d1 ¨ ¨ ¨
fixed above:

[S : c] Separator plays the priority ci :“ cpℓiq P C.

[I : a] Input plays the letter ai :“ tpuiq P Σ, where ui :“ d0 ¨ ¨ ¨ di´1.

[S : f ] Separator plays the selector fi :“ fpℓi, aiq P tL,Ru∆
Bpaiq (the selector is

irrelevant in this part of the proof).

[I : d] Input plays the direction di P tL,Ru as fixed above.

The next memory state is ℓi`1 :“ τpℓi, ai, diq. Let the resulting infinite play
be π “ pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ . By the construction of S we know that
ℓi “ ρSpuiq and therefore ci “ ΩSpρSpuiqq. Since t P LpAq, there exists an

accepting sequence of transitions ~δA “ δA0 δA1 ¨ ¨ ¨ P ∆Apbq along the path b “
pa0, d0qpa1, d1q ¨ ¨ ¨ . Since Separator is winning, π P WA and thus the sequence
c0c1 ¨ ¨ ¨ is accepting, as required.

We now argue that LpSq and LpBq are disjoint. Towards reaching a contra-
diction, assume that t P LpSq X LpBq belongs to their intersection. Let ρS be
the unique run of S over t, and let ρB be an accepting run of B over t. Consider
a play π “ pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ of G where the i-th round is played as
above except that Input plays the direction di :“ fipδ

B
i q, obtained by applying

the selector fi to the transition δBi :“
`

ρBpuiq, tpuiq, ρ
BpuiLq, ρBpuiRq

˘

deter-
mined according to the run ρB. By the choice of directions di’s, the sequence
of transitions ~δB “ δB0 δ

B
1 ¨ ¨ ¨ P p∆Bqω satisfies fipδ

B
i q “ di for every i P ω. Since

the run ρB is accepting, ~δB is accepting. Since Separator is winning, π P WB

and thus the sequence of priorities c0c1 ¨ ¨ ¨ is rejecting. However, this is a con-
tradiction, because for each i P ω we have ℓi “ ρSpuiq and ci “ ΩSpℓiq and we
assumed that the run ρS is accepting.

Completeness. Assume that S “ pΣ, QS , qS0 ,∆
S ,ΩSq is a deterministic automa-

ton with priorities in C separating LpAq, LpBq, and we show that Separator wins
the separability game G. Since S is a separator, we have that LpSqKLpBq, and
by Lemma 2.10 there exists a pathfinder P . Consider the following strategy of
Separator, with memory structure QS and initial memory state qS0 . At the i-th
round of G, starting with a memory state qSi ,

[S : c] Separator plays the priority ci :“ ΩSpqSi q P C.

[I : a] Input plays an arbitrary letter ai P Σ.

[S : f ] Separator plays the selector fi :“ PpδSi , q P tL,Ru∆
Bpaiq, where ∆SpqSi , aiq “

tδSi u.

[I : d] Input plays an arbitrary direction di P tL,Ru.

The next memory state is qSi`1 :“ qSdi,i
, where δSi “ pqSi , ai, q

S
L,i, q

S
R,iq. This

concludes the description of the i-th round of G. Let the resulting infinite

13



play be π “ pc0, a0, f0, d0qpc1, a1, f1, d1q ¨ ¨ ¨ , with induced infinite path b :“

pa0, d0qpa1, d1q ¨ ¨ ¨ . Let ~δS :“ δS0 δ
S
1 ¨ ¨ ¨ be the sequence of transitions used to

define the selectors fi. Clearly ~δS P ∆Spbq.

First, we argue that π P WA holds. Let ~δA “ δA0 δA1 ¨ ¨ ¨ P ∆Apbq be an ac-
cepting sequence of transitions of the automaton A. Since each state of A is
productive, one can construct a tree t P LpAq s.t. b P Pathptq. Since LpAq Ď LpSq
by the assumption, t P LpSq as well, and since S is deterministic, the unique run
of S over t is accepting. By the definition of Separator’s strategy, the sequence
of priorities along the branch d0d1 ¨ ¨ ¨ of this accepting run is precisely c0c1 ¨ ¨ ¨ ,
which thus must be accepting, as required.

Regarding WB, let ~δB :“ δB0 δ
B
1 ¨ ¨ ¨ P ∆Bpbq be an accepting sequence of

transitions over the path b conform to the selectors fi, i.e., for every i P ω we
have fipδ

B
i q “ di. By the definition of fi, for every i P ω we have di “ PpδSi , δ

B
i q.

Thus, the assumptions of Corollary 2.11 are satisfied and at least one of the
sequences ~δS , ~δB must be rejecting. Since we assumed that ~δB is accepting, it
means that ~δS is rejecting, and so is c0c1 ¨ ¨ ¨ since ci “ ΩSpδSi q.

3.1 A variant of the separability game for trees

A first attempt at generalising the case of ω-words to infinite trees is to let
Input play a direction di P tL,Ru after she plays a letter ai, and not considering
selectors for Separator. This yields the following simpler variant of the game
considered at the beginning of this section. At round i of the separability game,

[S : c] Separator plays a priority ci P C.

[I : a] Input plays a letter ai P Σ.

[I : d] Input plays a direction di P tL,Ru.

Separator wins the corresponding infinite play π “ pc0, a0, d0qpc1, a1, d1q ¨ ¨ ¨ P
pC ˆ Σ ˆ tL,Ruqω if the induced infinite path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ
tL,Ruqω satisfies the following two conditions:

• π P WA: If there exists an accepting sequence of transitions ~δA “
δA0 δA1 ¨ ¨ ¨ P ∆Apbq, then c0c1 ¨ ¨ ¨ is accepting.

• π P WB: If there exists an accepting sequence of transitions ~δB “ δB0 δ
B
1 ¨ ¨ ¨ P

∆Bpbq, then c0c1 ¨ ¨ ¨ is rejecting.

It turns out that the winning condition above is not strong enough in order to
characterise deterministic separability over languages of infinite trees. A deter-
ministic automaton S is universally rejecting on a set of trees L if, for every t P L,
all branches in the corresponding run in S are rejecting. The following lemma
states that the game in this section characterises separability by deterministic
automata S which are universally rejecting on LpBq.

Lemma 3.2. Separator wins the game above if, and only if, LpAq, LpBq can be
separated by a deterministic separator S with priorities from C which is univer-
sally rejecting on LpBq.

Proof sketch. The proof is analogous to that of Lemma 3.1.
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4 Separability by deterministic automata

In this section we present a game-theoretic characterisation of the deterministic
separability problem. Notice that here we do not fix in advance a finite set of
priorities C. The deterministic-separability game G

sep
detpA,Bq below is a variant

of the game with fixed priorities C from Section 3.

Deterministic-separability game G
sep
detpA,Bq

At the i-th round:

[I : a] Input plays a letter ai P Σ.

[S : f ] Separator plays a selector fi P tL,Ru∆
Bpaiq.

[I : d] Input plays a direction di P tL,Ru.

Separator wins the resulting infinite play π “ pa0, f0, d0qpa1, f1, d1q ¨ ¨ ¨ , with
induced infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ , if at least one of the two conditions
below fails:

• π P WA: There exists an accepting sequence of transitions ~δA “ δA0 δA1 ¨ ¨ ¨ P
∆Apbq.

• π P WB: There exists an accepting sequence of transitions ~δB “ δB0 δ
B
1 ¨ ¨ ¨ P

∆Bpbq s.t. for every i P ω we have fipδ
B
i q “ di.

Before we prove the equivalence between the game and the existence of a
separator, we define a separator candidate, namely the path-closure of LpAq.
This is important since it will turn out that if a separator exists, then the
path-closure is itself a separator. Given a language of trees L, its path-closure,
denoted @PathpLq, is the set of all trees t s.t. for every path b P Pathptq there
exists some tree t1 P L s.t. b P Pathpt1q as well.

The following lemma states formally some basic facts justifying that @Pathp q
is indeed a closure operator.

Lemma 4.1.

1. The path-closure operator is monotonic (w.r.t. set inclusion):
If L Ď M , then @PathpLq Ď @PathpMq.

2. The path-closure operator is non-decreasing (w.r.t. set inclusion):
For any language L, L Ď @PathpLq.

3. The path-closure @PathpLq of L is the smallest (w.r.t. set inclusion) lan-
guage of infinite trees M s.t. a) M contains L: L Ď M , and b) M is
path-closed: @PathpMq Ď M .

Proof. The first two properties are clear. For the third property, M :“ @PathpLq
itself satisfies a) since the path-closure operator is non-increasing, and b) since
the path-closure operator is idempotent @Pathp@PathpLqq “ @PathpLq. Now
let M be an arbitrary language s.t. a) L Ď M , and b) @PathpMq Ď M . We
immediately have

L
(1)

Ď @PathpLq
(2)

Ď @PathpMq
(3)

Ď M,
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where (1) follows from the fact that the path-closure operator is non-decreasing,
(2) from the fact that it is monotone, and (3) from the fact that M is path-closed.

Now consider any deterministic tree automaton B. Observe that since B is de-
terministic, we clearly get @PathpLpBqq “ LpBq. Now assume that LpAq Ď LpBq.
By monotonicity of @Pathp q we obtain that @PathpLpAqq Ď @PathpLpBqq “
LpBq.

The path-closure operator is directly connected with deterministic automata.

Lemma 4.2 (c.f. [36, Proposition 1]). Given a nondeterministic automaton A

one can construct a deterministic automaton Apath recognising the path closure
of LpAq, i.e., LpApathq “ @PathpLpAqq. Moreover, LpApathq is the smallest
deterministic language containing LpAq.

Proof. Fix a nondeterministic automaton A “ pΣ, Q, q0,Ω,∆q. Our aim is
to construct a deterministic automaton Apath recognising the path closure if
LpAq, i.e., LpApathq “ @PathpLpAqq. Let D “ pΣ ˆ tL,Ru, QD, qD0 ,∆D,ΩDq be
a deterministic parity automaton over ω-words over the alphabet Σ ˆ tL,Ru
that recognises the set of paths b s.t. there exists an accepting sequence of
transitions in ∆Apbq. It is easy to see how a nondeterministic such automaton
can be obtained, and it can be determinised thanks to Lemma 2.2. Consider
a deterministic parity tree automaton Apath :“ pΣ, QD, qD0 ,ΩD,∆1q which has
the same set of states, initial state, and priority mapping as D, and transitions
are of the form

∆1 “ tpq, a,∆Dpq, pa, Lqq,∆Dpq, pa,Rqqq | q P QD, a P Σu.

Now, we claim that the following conditions are equivalent, for a tree t P TrΣ:

1. t P @PathpLpAqq,

2. for every path b P Pathptq there exists a tree t1 P LpAq s.t. b P Pathpt1q,

3. for every path b P Pathptq there exists an accepting sequence of transitions
in ∆Apbq,

4. for every path b P Pathptq the automaton D accepts b,

5. t P LpApathq.

Indeed, the only nontrivial implication is “3 ñ 2”, however, since every state of
A is productive, one can easily construct the tree t1 by extending the considered
sequence of transitions of A to the subtrees outside the path b. We can thus
conclude @PathpLpAqq “ LpApathq, as required.

The following lemma binds together the game G
sep
detpA,Bq, separability, and

path-closures.

Lemma 4.3. The following three conditions are equivalent:

1. Separator wins the deterministic-separability game G
sep
detpA,Bq.

2. The automaton Apath is a deterministic separator for LpAq, LpBq.

3. There exists a deterministic separator for LpAq, LpBq.
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Proof. We begin by proving “1 ñ 2”. Assume that Separator wins the separa-
bility game G

sep
detpA,Bq by a finite-memory winning strategy M “ pM, ℓ0, f , τq

which has one decision function f assigning to each ℓ P M and a P Σ a selector

fpℓ, aq P tL,Ru∆
Bpaq. Moreover, the type of the memory update function is

τ : M ˆ Σ ˆ tL,Ru Ñ M .
Let S :“ Apath be the deterministic automaton recognising the path closure

of LpAq. We show that S separates LpAq, LpBq.
The condition LpAq Ď LpSq follows immediately from the fact that LpSq “

@PathpLpAqq and by Item 1 of Lemma 4.1 we know that @PathpLpAqq Ě LpAq.
We now argue that LpSq and LpBq are disjoint. Towards reaching a contra-

diction, assume that t P LpSq X LpBq belongs to their intersection. Let ρS be
the unique run of S over t, and let ρB be an accepting run of B over t. Consider
a play π of G :“ G

sep
detpA,Bq where at the i-th round, Separator plays according

to the strategy M with current memory state ℓi P M and Input plays as follows:

[I : a] Input plays the letter ai :“ tpuiq P Σ, where ui :“ d0 ¨ ¨ ¨ di´1.

[S : f ] Separator plays the selector fi :“ fpℓi, aiq P tL,Ru∆
Bpaiq.

[I : d] Input plays the direction di :“ fipδ
B
i q P tL,Ru, where δBi is the respective

transition of ρB, i.e., δBi :“
`

ρBpuiq, tpuiq, ρ
BpuiLq, ρBpuiRq

˘

.

The next memory state is ℓi`1 :“ τpℓi, ai, diq. Let π be the obtained play. By the

choice of directions di we know that the sequence of transitions ~δB “ δB0 δ
B
1 ¨ ¨ ¨ P

p∆Bqω satisfies fipδ
B
i q “ di for every i P ω. Moreover, as the run ρB is accepting,

we know that ~δB is accepting. Therefore, WB holds for this play. It means that
WA must fail, meaning that the infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ does not
belong to PathpLpAqq. However, this is a contradiction with the assumption
that the run ρS of S over t is accepting.

The implication “2 ñ 3” is trivial.
Finally, we prove “3 ñ 1”. Assume that S “ pΣ, Q, q0,∆,Ωq is a determin-

istic automaton separating LpAq, LpBq, and we show that Separator wins the
separability game G

sep
detpA,Bq. Since S is a separator, we have that LpSqKLpBq,

and thus Pathfinder wins the disjointness game GdispS,Bq, see Lemma 2.10. Let
P be a pathfinder as in Section 2.6.

Consider the following strategy of Separator, with the memory structure QS

and the initial memory state qS0 . At the i-th round of G :“ G
sep
detpA,Bq, starting

with a memory state qSi , Separator plays as follows:

[I : a] Input plays an arbitrary letter ai P Σ.

[S : f ] Separator plays the selector fi :“ PpδSi , q P tL,Ru∆
Bpaiq, where ∆SpqSi , aiq “

tδSi u.

[I : d] Input plays an arbitrary direction di P tL,Ru.

The next memory state is qSi`1 :“ qSd,i, where δSi “ pqSi , ai, q
S
L,i, q

S
R,iq.

Let the resulting infinite play be π, with the induced infinite path b :“
pa0, d0qpa1, d1q ¨ ¨ ¨ . Let ~δS :“ δS0 δ

S
1 ¨ ¨ ¨ be the sequence of transitions used to

define the selectors fi.
Assume for the sake of contradiction that both WA and WB hold, as

witnessed by accepting sequences of transitions ~δA “ δA0 δA1 ¨ ¨ ¨ P ∆Apbq and
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~δB “ δB0 δ
B
1 ¨ ¨ ¨ P ∆Bpbq. The sequence ~δA implies that there exists a tree t P TrΣ

s.t. b is a path of t and t P LpAq. Since LpAq Ď LpSq, the run of the automaton

S must be accepting on t and therefore the sequence of transitions ~δS is accept-
ing. Moreover, the choice of the selectors fi means that for every i P ω we have
di “ PpδSi , δ

B
i q. Thus, the assumptions of Corollary 2.11 are satisfied and at

least one of the sequences ~δSi , ~δBi must be rejecting. A contradiction, because

we assumed that ~δB is accepting and we know that ~δS is also accepting.

5 Separability by game automata

In this section we provide a game-theoretic characterisation for the game au-
tomata separability problem. Fix two automata A and B and consider the
following separability game Gsep

gamepA,Bq. The new ingredient is that Separator

can choose a mode—a symbol from the set t_,^u. It has two uses. First, in
the construction of the separating game automaton, the mode dictates whether
there will be a conjunctive or a disjunctive transition. Second, depending on
the chosen mode, Separator will have to play a selector for the automaton A or
B, which will guarantee that the constructed automaton is a separator.

Game-separability game Gsep
gamepA,Bq

At the i-th round:

[I : a] Input plays a letter ai P Σ.

[S : m] Separator plays a mode mi P t_,^u.

[S : f ] Separator plays either

1. a selector fi P tL,Ru∆
Apaiq for A if mi “ _ or

2. a selector fi P tL,Ru∆
Bpaiq for B if mi “ ^.

[I : d] Input plays a direction di P tL,Ru.

Separator wins an infinite play π “ pa0,m0, f0, d0qpa1,m1, f1, d1q ¨ ¨ ¨ inducing
a path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ whenever at least one of the two conditions below
fail:

• π P WA: There exists an accepting sequence of transitions ~δA “ δA0 δA1 ¨ ¨ ¨ P
∆Apbq s.t. for all i P N we have pmi “ _q ñ fipδ

A
i q “ di.

• π P WB: There exists an accepting sequence of transitions ~δB “ δB0 δ
B
1 ¨ ¨ ¨ P

∆Bpbq s.t. for all i P N we have pmi “ ^q ñ fipδ
B
i q “ di.

Lemma 5.1. Separator wins the separability game Gsep
gamepA,Bq if, and only if,

there exists a game automaton S separating LpAq, LpBq.

In the proof of this lemma we will build separating automata with a more
general acceptance condition than the parity condition, which will simplify
the technical details. A generalised game automaton A “ pΣ, Q, q0,∆,Dq is
just like a game automaton except that the priority mapping Ω is replaced by
a deterministic ω-word parity automaton D over alphabet Σ ˆ tL,Ru. A run
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ρ P TrQ of such an automaton over a tree t P TrΣ is accepting if for every path
b “ pa0, d0qpa1, d1q ¨ ¨ ¨ P Pathptq either ρpd0 ¨ ¨ ¨ di´1q “ J for some i P ω, or
b P LpDq. The acceptance game GaccpA, tq can easily be adapted to the case of
a generalised game automaton A by only modifying the winning condition.

Lemma 5.2. A generalised game automaton A with a generalised acceptance
condition recognised by a deterministic parity automaton D can be transformed
into an equivalent (ordinary) game automaton B of size polynomial in A and
D.

Proof. Consider the game automaton B defined as the following product of A
and D:

B :“ pΣ, pQAztJuq ˆ QD Y tJu, pqA0 , qD0 q,∆B,ΩBq,

where ΩB is just inherited from D, i.e., ΩBpqA, qDq :“ ΩDpqDq. Moreover, for
each conjunctive A-transition pqA, a, qAL , qAR q P ∆A, ∆B contains the transition

`

pqA, qDq, a, pqAL , qDL q, pqAR , qDR q
˘

,

where for d P tL,Ru we have ∆D
`

qD, pa, dq
˘

“ qDd . Similarly, for each disjunctive
A-transition pqA, a, qAL ,Jq P ∆A (resp., pqA, a,J, qAR q P ∆A), ∆B contains the
transition

`

pqA, qDq, a, pqAL , qDL q,J
˘

(resp.,
`

pqA, qDq, a,J, pqAR , qDR q
˘

), where for

d P tL,Ru we have ∆D
`

qD, pa, dq
˘

“ qDd .
Notice that for every tree t P TrΣ there is a bijection between the runs ρA

of A over t and runs ρB of B over t: given a run ρB we can just project it onto
the first coordinate to obtain ρA, and the run ρB is obtained in a top-down
deterministic way from ρA by running the automaton D deterministically on all
the paths. Therefore, it is enough to argue that if ρA and ρB are two such runs
then ρA is accepting if and only if ρB is. Consider a branch d0d1 ¨ ¨ ¨ P tL,Ru and
let ui :“ d0 ¨ ¨ ¨di´1 for i P ω. Without loss of generality assume that ρApuiq ‰ J
for every i P ω (otherwise both runs are accepting on this branch). For each
i P ω let pqAi , qDi q :“ ρBpuiq and notice that by the choice of the runs ρA and
ρB we know that ρApuiq “ qAi . Now let b :“ ptpu0q, d0qptpu1q, d1q ¨ ¨ ¨ be the
path used to define the generalised acceptance condition of A on the considered
branch. By the construction of the automaton B, we know that the sequence
of states qD0 qD1 ¨ ¨ ¨ is the run of D on b. Therefore, ρA satisfies the generalised
acceptance condition on the path b if and only if ρB satisfies the parity condition
on the branch d0d1 ¨ ¨ ¨ .

We now prove Lemma 5.1.

Soundness. Assume that Separator wins the game-separability game above G :“
Gsep

gamepA,Bq and we show that there exists a game automaton S separating LpAq

from LpBq. Let M “ pM, ℓ0, pm, fq, τq be a finite-memory winning strategy of
Separator in G.

Before we move to the construction of the separating automaton, we first
define its generalised acceptance condition. Let LA (resp., LB) be the set of
those paths b “ pa0, d0qpa1, d1q ¨ ¨ ¨ P pΣ ˆ tL,Ruqω s.t. the unique play π of G in
which Input plays consecutive letters and directions from b and Separator uses her
winning strategy M, satisfies the condition WA (resp., WB). Since the strategy
M is winning for Separator, the languages LA and LB are disjoint. Moreover,
since the strategy M is finite memory and both WA, WB are ω-regular, so
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are the languages LA and LB. Let D be any deterministic automaton over ω-
words that separates LA from LB (the simplest case is to take D recognising
the language LA). We build a separating automaton as a generalised game
automaton

S :“ αpM,Dq :“ pΣ,M Y tJu, ℓ0,∆
S ,Dq, where

∆S
`

ℓ, a
˘

:“

#

tpℓ, a, ℓL,Jq, pℓ, a,J, ℓRqu if mpℓ, aq “ _,

tpℓ, a, ℓL, ℓRqu if mpℓ, aq “ ^,

for every ℓ P M and a P Σ, where for d P tL,Ru we have ℓd :“ τpℓ, a, dq. We
now show that S separates LpAq from LpBq. In order to show LpAq Ď LpSq,
let t P LpAq as witnessed by an accepting run ρA. We show that Automaton

wins the acceptance game GS :“ GaccpS, tq. To show this we play in parallel
the separability game G and the acceptance game GS , maintaining the follow-
ing invariant: At the i-th round, the current finite path of the input tree t is
pa0, d0q ¨ ¨ ¨ pai´1, di´1q, Separator’s winning strategy M in the separability game
G is in memory state ℓi, the current state of the separating automaton S in the
acceptance game GS is also ℓi, and ρApd0 ¨ ¨ ¨di´1q “ qAi . The i-th round is then
played as follows:

G.rI : as Input plays the letter ai :“ tpuiq for ui :“ d0 ¨ ¨ ¨ di´1.

G.rS : ms Separator plays the mode mi :“ mpℓi, aiq P t_,^u.

G.rS : f s Separator plays either

1. a selector fi :“ fpℓi, aiq P tL,Ru∆
Apaiq for A if mi “ _ or

2. a selector fi :“ fpℓi, aiq P tL,Ru∆
Bpaiq for B if mi “ ^.

GS .rA : δs Automaton plays the transition δSi P ∆Spℓi, aiq, defined as follows. Let
δAi :“

`

ρApuiq, tpuiq, ρ
ApuiLq, ρApuiRq

˘

be the A-transition used in ui by
the run ρA. We distinguish two cases.

1. In the first case, assume that Separator played mi “ _ and fi P

tL,Ru∆
Apaiq. It means that ∆S

`

pℓi, qiq, ai
˘

contains two disjunctive
transitions, δSL,i :“ pℓi, ai, ℓL,i,Jq and δSR,i :“ pℓi, ai,J, ℓR,iq. Let us

put δSi :“ δS
fipδA

i
q,i

, i.e., the transition that sends a non-J state in the

direction given by fipδ
A
i q.

2. In the second case, Separator played mi “ ^ and fi P tL,Ru∆
Bpaiq.

It means that ∆S
`

ℓi, ai
˘

contains one conjunctive transition δSi :“
pℓi, ai, ℓL,i, ℓR,iq.

GS .rI : ds Input plays an arbitrary direction di P tL,Ru.

G.rI : ds Input plays the direction di P tL,Ru.

If mi “ _ and di ‰ fipδ
A
i q then the next position of the acceptance game

GS is puidi,Jq, which is a winning position for Automaton. Therefore, w.l.o.g.
we assume that:

@i P ω. pmi “ _q ñ fipδ
A
i q “ di. (2)
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Moreover, the new state of S in GS is ℓi`1 :“ τpℓi, ai, diq. Similarly, the new
memory state of M in G is ℓi`1. This concludes the description of the i-th
round of both games. Clearly the invariant is preserved. We argue that Au-

tomaton wins the resulting infinite play pδS0 , d0qpδS1 , d1q ¨ ¨ ¨ of the acceptance
game GS . Consider the infinite play π “ pa0,m0, f0, d0qpa1,m1, f1, d1q ¨ ¨ ¨ of
the separability game G. Since the run ρA is accepting, the infinite sequence
of A-transitions δA0 δA1 ¨ ¨ ¨ is accepting. Thus, (2) implies that π P WA. There-
fore, the infinite path b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ belongs to LA Ď LpDq and thus
the corresponding infinite play pδS0 , d0qpδS1 , d1q ¨ ¨ ¨ of the acceptance game GS is
winning for Automaton, as required. This concludes the argument establishing
LpAq Ď LpSq.

It remains to show that LpSq K LpBq, which is the same as LpBq Ď LpScq for
the complement game automaton. This follows directly from the construction
above via the duality of the game G. Indeed, consider the generalised game
automaton S as defined in Section 5. Let Sc be the complementary game
automaton pΣ,MYtJu, ℓ0,∆

S
c

,Dcq, which recognises the complement language
of S. (Here, ∆S

c

is the dualisation of ∆S as in the proof of Lemma 2.1, and Dc is
the complementary automaton to D—its priorities are increased by 1.) We first
observe that if M “ pM, ℓ0, pm, fq, τq is a strategy of Separator in Gsep

gamepA,Bq,

then Mc :“ pM, ℓ0, pmc, fq, τq with mc returning the opposite mode than m

is a strategy of Separator in Gsep
gamepB,Aq. By the symmetry of the winning

condition, M is winning if and only if Mc is winning. The following claim
follows directly from the definition of α.

Claim 5.3. If M is a winning strategy of Separator in Gsep
gamepA,Bq then

S
c “ αpM,Dqc “ αpMc,Dcq.

Therefore, by applying the argument that LpAq Ď LpSq to Mc, Dc for the
game Gsep

gamepB,Aq, we obtain LpBq Ď LpScq, as required.

Completeness. Assume that there exists a game automaton S that separates
LpAq from LpBq. We need to show that Separator wins the separability game
G :“ Gsep

gamepA,Bq. Let R :“ Sc be the syntactic dual of the game automaton
S as in Lemma 2.1. Thus, the automata S and R share the same set of states.
Also, their transitions are related: the conjunctive transitions of S correspond to
disjunctive transitions of R and vice versa. By slightly rephrasing the separation
condition, we have LpAq K LpRq and LpBq K LpSq. This means that Pathfinder

wins both disjointness games GdispR,Aq and GdispS,Bq. Thus, we can apply
Lemma 2.10 to obtain pathfinders PA :

`
Ť

aPΣ ∆Rpaq ˆ ∆Apaq
˘

Ñ tL,Ru and

PB :
`
Ť

aPΣ ∆Spaq ˆ ∆Bpaq
˘

Ñ tL,Ru.
We will now provide a strategy of Separator in G. The constructed strategy

uses as its memory states the set of states of S that are distinct than J. Let
the initial memory state be q0. Assume that the current memory state is qi and
consider the i-th round of the game.

[I : a] Input plays an arbitrary letter ai P Σ.

[S : m] Separator plays the mode mi P t_,^u defined as follows. We consider the
following two cases for the mode of the transitions ∆Spqi, aiq.
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1. If ∆Spqi, aiq “ tδSi u is a single conjunctive transition δSi “ pqi, ai, qL,i,
qR,iq then we put mi :“ ^ and fi :“ PBpδSi , q is a selector for B.

2. Otherwise, ∆Spqi, aiq is a pair of disjunctive transitions which means
that ∆Rpqi, aiq is a single conjunctive transition δRi “ pqi, ai, qL,i, qR,iq.
In this case we put mi :“ _ and fi :“ PApδRi , q is a selector for A.

[S : f ] Separator plays the selector fi defined above (notice that fi is either a se-
lector for A or for B, according to mi).

[I : d] Input plays an arbitrary direction di P tL,Ru.

The next memory state of our strategy is the state qdi,i taken from one
of the transitions δSi or δRi , see above. We now argue that Separator wins
the corresponding infinite play π “ pa0,m0, f0, d0qpa1,m1, f1, d1q ¨ ¨ ¨ . Let b “
pa0, d0qpa1, d1q ¨ ¨ ¨ be the corresponding path. Consider a number i P ω. By the
construction of the strategy above, we have two cases:

1. If mi “ ^, then a conjunctive transition δSi “ pqi, ai, qL,i, qR,iq of S was
used to determine fi. In this case, define δRi as the following disjunctive
transition of R: if di “ L then δRi :“ pqi, ai, qL,i,Jq, otherwise di “ R and
δRi :“ pqi, ai,J, qR,iq.

2. If mi “ _, then a conjunctive transition δRi “ pqi, ai, qL,i, qR,iq of R was
used to determine fi. In this case, define δSi as the following disjunctive
transition of S: if di “ L then δSi :“ pqi, ai, qL,i,Jq, otherwise di “ R and
δSi :“ pqi, ai,J, qR,iq.

The definitions above provide two sequences of transitions ~δS :“ δS0 δ
S
1 ¨ ¨ ¨ P

∆Spbq, ~δR :“ δR0 δR1 ¨ ¨ ¨ P ∆Rpbq. Since for every i P ω the transitions δSi and δRi
are from the same state qi ‰ J, ~δS is accepting in S if, and only if, ~δR is rejecting
in R. Assume that ~δS is accepting (the other case is analogous). We will show

that WB is violated (if ~δR is accepting then WA is violated). Assume for the
sake of contradiction that WB holds, as witnessed by a sequence of B-transitions
~δB “ δB0 δ

B
1 ¨ ¨ ¨ P ∆Bpbq. By Remark 2.12 we obtain that whenever mi “ _ and

δSi is a disjunctive transition of S then PBpδSi , q is constantly equal to di. By the

assumption on ~δB from WB we know that whenever mi “ ^ then fipδ
B
i q “ di.

However, if mi “ ^ then fipδ
B
i q “ PBpδSi , δ

B
i q. Therefore, in both cases we know

that PBpδSi , δ
B
i q “ di. This means that the assumptions of Corollary 2.11 are

met and at least one of the sequences ~δS , ~δB is rejecting—a contradiction, since
we assumed both these sequences to be accepting.

6 Separability by game automata with priorities

in C

In this section we present our last game-theoretic characterisation, namely game
automata separability for a fixed finite set C Ď N of priorities. Fix two automata
A “ pΣ, QA, qA0 ,ΩA,∆Aq and B “ pΣ, QB, qB0 ,Ω

B,∆Bq over the same alphabet
Σ. The game is a variation of Gsep

gamepA,Bq from Section 5 where Separator

additionally plays priorities from C.
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C-game-automata separability game Gsep
gamepA,B, Cq

At the i-th round:

[S : c] Separator plays a priority ci P C.

[I : a] Input plays a letter ai P Σ.

[S : m] Separator plays a mode mi P t_,^u.

[S : f ] Separator plays either

1. a selector fi P tL,Ru∆
Apaiq for A if mi “ _, or

2. a selector fi P tL,Ru∆
Bpaiq for B if mi “ ^.

[I : d] Input plays a direction di P tL,Ru.

Separator wins an infinite play π “ pc0, a0,m0, f0, d0qpc1, a1,m1, f1, d1q ¨ ¨ ¨ in-
ducing a path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ whenever both conditions below hold:

• π P WA: If there exists an accepting sequence of transitions ~δA “
δA0 δA1 ¨ ¨ ¨ P ∆Apbq s.t. for all i P ω we have pmi “ _q ñ fipδ

A
i q “ di,

then c0c1 ¨ ¨ ¨ is accepting.

• π P WB: If there exists an accepting sequence of transitions ~δB “ δB0 δ
B
1 ¨ ¨ ¨ P

∆Bpbq s.t. for all i P ω we have pmi “ ^q ñ fipδ
B
i q “ di, then c0c1 ¨ ¨ ¨ is

rejecting.

Lemma 6.1. Separator wins Gsep
gamepA,B, Cq if, and only if, there exists a game

automaton S with priorities in C separating LpAq, LpBq.

The proof of this lemma can be seen as a simplified variant of the proof of
Lemma 5.1, except for the acceptance condition of the separator which is given
by the priorities ci’s as in the proof of Lemma 3.1. A strategy for Separator in
Gsep

gamepA,B, Cq is a tuple

M “ pM, ℓ0, pc,m, fq, τq (3)

where M is a set of memory states, ℓ0 P M is the initial memory state, c,m, f

are decision functions, and τ : M ˆ Σ ˆ tL,Ru Ñ M is the memory update
function. More precisely, c : M Ñ C outputs a priority cpℓq in position ℓ,
m : M ˆ Σ Ñ t^,_u outputs a mode mpℓ, aq in position ℓ when Input plays

a P Σ, and f : M ˆ Σ Ñ
Ť

aPΣptL,Ru∆
Apaq Y tL,Ru∆

Bpaqq outputs a selector
fpℓ, aq in similar circumstances. With this notation we can define a correspon-
dence α from finite-memory winning strategies for Separator in Gsep

gamepA,B, Cq
to game automata separating A, B with priorities in C. More precisely, we map
an arbitrary finite-memory strategy M to a game automaton

S :“ αpMq :“ pΣ,M, ℓ0,∆
S ,ΩSq (4)

which has the same set of states M and initial state ℓ0 as M, priorities are
induced by the decision function c of M as

ΩSpℓq :“ cpℓq,
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and transitions are of the form

∆Spℓ, aq “

#

tpℓ, a, ℓL,Jq, pℓ, a,J, ℓRqu if mpℓ, aq “ _,

tpℓ, a, ℓL, ℓRqu if mpℓ, aq “ ^,

where ℓL :“ τpℓ, a, Lq and ℓR :“ τpℓ, a,Rq. Notice how the acceptance condition
of S is simply inherited from the winning strategy M. This should be contrasted
with Section 5 where the set of priorities C is not fixed beforehand, and thus
the acceptance condition of S is defined with the help of the winning condition
for Separator in the corresponding separability game. The decision function f

is not involved in the definition of αpMq, however it is used to show that if M
is winning, then αpMq is in fact a separator.

In the following, let G :“ Gsep
gamepA,B, Cq be the C-game-separability game.

The proof below is very similar to the one of Lemma 5.1, with some adaptations
to take care of the additional priorities ci’s selected by Separator.

Soundness. Assume that Separator wins the separability game G. By The-
orem 2.6, there exists a finite-memory winning strategy M as in (3). Let
S “ αpMq be the game automaton corresponding to M. We show that S

separates LpAq from LpBq, i.e., LpAq Ď LpSq and LpSq K LpBq. First, we show
that LpAq Ď LpSq. To this end, assume that t P LpAq and let ρA be an accepting
run of A over t witnessing this. We show that Automaton wins the acceptance
game GS :“ GaccpS, tq. To show this we play in parallel the separability game G

and the acceptance game GS . As we play both games in lock-steps, we maintain
the following invariant: At every round i, the current finite path of the input
tree t is pa0, d0q ¨ ¨ ¨ pai´1, di´1q, Separator’s winning strategy M in the separabil-
ity game G is in memory state ℓi, the current state of the separating automaton
S in the acceptance game GS is ℓi as well, and ρApd0 ¨ ¨ ¨di´1q “ qAi . Let now
be at round i and assume that the invariant holds. We play the separability
and acceptance games as follows.

G.rS : cs Separator plays the priority ci :“ cpℓiq P C.

G.rI : as Input plays the letter ai :“ tpuiq for ui :“ d0 ¨ ¨ ¨ di´1.

G.rS : ms Separator plays the mode mi :“ mpℓi, aiq P t_,^u.

G.rS : f s Separator plays either

1. the selector fi :“ fpℓi, aiq P tL,Ru∆
Apaiq for A if mi “ _ or

2. the selector fi :“ fpℓi, aiq P tL,Ru∆
Bpaiq for B if mi “ ^.

GS .rA : δs Automaton plays the transition δSi P ∆Spℓi, aiq, defined as follows. Let
δAi :“

`

ρApuiq, tpuiq, ρ
ApuiLq, ρApuiRq

˘

be the A-transition used in ui by
the run ρA. We distinguish two cases.

1. In the first case, assume that Separator played mi “ _ and fi P

tL,Ru∆
Apaiq. It means that ∆S

`

pℓi, qiq, ai
˘

contains two disjunctive
transitions, δSL,i :“ pℓi, ai, ℓL,i,Jq and δSR,i :“ pℓi, ai,J, ℓR,iq. Let us

put δSi :“ δS
fipδA

i
q,i

, i.e., the transition that sends a non-J state in the

direction given by fipδ
A
i q.
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2. In the second case, Separator played mi “ ^ and fi P tL,Ru∆
Bpaiq.

It means that ∆S
`

ℓi, ai
˘

contains one conjunctive transition δSi :“
pℓi, ai, ℓL,i, ℓR,iq.

GS .rI : ds Input plays an arbitrary direction di P tL,Ru.

G.rI : ds Input plays the direction di P tL,Ru.

Notice that if mi “ _ and di ‰ f_pδAi q then the next position of the
acceptance game GS is puidi,Jq, which is a winning position for Automaton.
Therefore, without loss of generality we can assume that

@i P ω. pmi “ _q ñ f_pδAi q “ di. (5)

Moreover, the new state of S in GS is ℓi`1 for ℓi`1 :“ τpℓi, ai, diq. Similarly,
the new memory state of M in G is ℓi`1. This concludes the description of
round i of both games. We argue that Automaton wins the resulting infinite
play pδS0 , d0qpδS1 , d1q ¨ ¨ ¨ of the acceptance game GS . Consider the infinite play
π “ pc0, a0,m0, f0, d0qpc1, a1,m1, f1, d1q ¨ ¨ ¨ of the separability game G. Let
b :“ pa0, d0qpa1, d1q ¨ ¨ ¨ be the induced path. Since we used the winning strat-
egy of Separator, this play satisfies WA. Since the run ρA is accepting, the in-
finite sequence of A’s transitions δA0 δA1 ¨ ¨ ¨ is accepting. Additionally, (5) holds.
Therefore, the sequence of priorities c0c1 ¨ ¨ ¨ must be accepting by WA. How-
ever, by the definition of the automaton S, we know that ΩSpℓiq “ ci, which
means that Automaton wins the considered play of the acceptance game GS .

It remains to prove that LpSq K LpBq. The latter is equivalent to LpBq Ď
LpScq, where the dual game automaton Sc recognises the complement language
of S. By the construction, Sc has the same states as S, and transitions are
defined by exchanging the conjunctive and disjunctive ones. Moreover, the
priorities in Sc can be chosen as ΩS

c

pℓq “ ΩSpℓq ` 1, and thus a sequence of
priorities ΩSpℓ0qΩSpℓ1q ¨ ¨ ¨ in S is rejecting if, and only if, the corresponding
sequence ΩS

c

pℓ0qΩS
c

pℓ1q ¨ ¨ ¨ in Sc is accepting. With these observations in hand,
we can conclude by repeating the argument in the first part of the proof above
with A replaced by B, S replaced by Sc, and condition WA replaced by WB.

Completeness. Assume that S is a game automaton with priorities in C sepa-
rating LpAq from LpBq, and we show that Separator wins the separability game
G :“ Gsep

gamepA,B, Cq. Let R :“ Sc be the dual game automaton recognising
the complement language LpRq “ TrΣzLpSq.

Since S is a separator, we have that LpSq K LpBq and LpRq K LpAq, which
means that Pathfinder wins both disjointness games GdispS,Bq and GdispR,Aq.
Let

PB :

˜

ď

aPΣ

∆Spaq ˆ ∆Bpaq

¸

Ñ tL,Ru,

PA :

˜

ď

aPΣ

∆Rpaq ˆ ∆Apaq

¸

Ñ tL,Ru,

be two pathfinders witnessing this.
We will now provide a strategy of Separator in G. The constructed strategy

uses as its memory states the set of states of S that are distinct than J. Let
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the initial memory state be q0. Assume that the current memory state is qi and
consider the i-th round of the game.

[S : m] Separator plays the priority ci :“ ΩSpℓiq P t_,^u.

[I : a] Input plays an arbitrary letter ai P Σ.

[S : m] Separator plays the mode mi P t_,^u defined as follows. We consider the
following two cases for the mode of the transitions ∆Spqi, aiq.

1. If ∆Spqi, aiq “ tδSi u is a single conjunctive transition δSi “ pqi, ai, qL,i,
qR,iq then we put mi :“ ^ and fi :“ PBpδSi , q is a selector for B.

2. Otherwise, ∆Spqi, aiq is a pair of disjunctive transitions which means
that ∆Rpqi, aiq is a single conjunctive transition δRi “ pqi, ai, qL,i, qR,iq.
In this case we put mi :“ _ and fi :“ PApδRi , q is a selector for A.

[S : f ] Separator plays the selector fi defined above (notice that fi is either a se-
lector for A or for B, according to mi).

[I : d] Input plays an arbitrary direction di P tL,Ru.

The next memory state of our strategy is the state qdi,i taken from one of
the transitions δSi or δRi , see above.

We now argue that Separator wins the corresponding infinite play π “
pa0,m0, f0, d0qpa1,m1, f1, d1q ¨ ¨ ¨ . Let b “ pa0, d0qpa1, d1q ¨ ¨ ¨ be the correspond-
ing path.

We begin by showing that π P WB. Let

~δB “ δB0 δ
B
1 ¨ ¨ ¨ P ∆Bpbq (6)

be an infinite accepting sequence of transitions over the branch b conform to π0,
where δBi has the form δBi “ pqBi , ai, q

B
L,i, q

B
R,iq. We need to show that c0c1 ¨ ¨ ¨ is

rejecting.
Consider a number i P ω. By the construction of the strategy of Separator

above, we know that there are two cases:

1. If mi “ ^, then a conjunctive transition δSi “ pqi, ai, qL,i, qR,iq of S was
used to determine fi. In this case, define δRi as the following disjunctive
transition of R: If di “ L, then δRi :“ pqi, ai, qL,i,Jq, otherwise di “ R

and δRi :“ pqi, ai,J, qR,iq.

2. If mi “ _, then a conjunctive transition δRi “ pqi, ai, qL,i, qR,iq of R was
used to determine fi. In this case, define δSi as the following disjunctive
transition of S: If di “ L, then δSi :“ pqi, ai, qL,i,Jq, otherwise di “ R and
δSi :“ pqi, ai,J, qR,iq.

The definitions above provide two sequences of transitions: ~δS :“ δS0 δ
S
1 ¨ ¨ ¨ P

p∆Sqω and ~δR :“ δR0 δR1 ¨ ¨ ¨ P p∆Rqω. Notice that the construction guarantees

that ~δS P ∆Spbq and ~δR P ∆Rpbq.
By Remark 2.12 we obtain that if mi “ _ and δSi is a disjunctive transition

of S, then PBpδSi , q is constantly equal di (the direction in which δSi sends the

state different than J). By the assumption on ~δB from WB we know that if
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mi “ ^, then fipδ
B
i q “ di. However, if mi “ ^, then fipδ

B
i q “ PBpδSi , δ

B
i q.

Therefore, in both cases we know that PBpδSi , δ
B
i q “ di.

This means that the assumptions of Corollary 2.11 are met and at least one
of the sequences ~δS , ~δB is rejecting. Since we assumed that ~δB is accepting,
~δS must be rejecting. But the priorities c0c1 ¨ ¨ ¨ are just the priorities of the
transitions δSi , so c0c1 ¨ ¨ ¨ is rejecting.

The case of WA is entirely dual: we consider a sequence of transitions
~δA “ δA0 δA1 ¨ ¨ ¨ P ∆Apbq that is accepting and use Corollary 2.11 for PA to show

that ~δR must be rejecting, which implies that c0c1 ¨ ¨ ¨ is accepting.

7 Complexity

In this section we perform a detailed analysis of the complexity of solving the
separability problems from Sections 3 to 6 and the complexity of separators,
thus proving Theorem 1.1 announced in the introduction:

Theorem 1.1. The deterministic and game separability problems can be solved
in EXPTIME, both for a fixed finite index C Ď N, and an unrestricted one
C “ N. Moreover, separators with exponentially many states and polynomially
many priorities suffice.

In each case it will be a matter of constructing a deterministic parity au-
tomaton W over ω-words recognising the set of winning plays and then solving
a suitable parity game. In the following, let M “ t_,^u be the set of alternation
modes, and let D “ tL,Ru be the set of directions.

7.1 Separability by deterministic automata

In this section we perform a complexity analysis for Section 4. Let A “
pΣ, QA, qA0 ,ΩA,∆Aq and recall that WA is the set of plays π “ pa0, f0, d0q
pa1, f1, d1q ¨ ¨ ¨ with branch b “ pa0, d0qpa1, d1q ¨ ¨ ¨ s.t. there is an accepting se-

quence of transitions ~δA P ∆Apbq. The language WA can be recognised by a
nondeterministic ω-word parity automaton WA over the alphabet

Σ1 “ Σ ˆ p
ď

aPΣ

D∆Bpaqq ˆ D. (7)

which reads π, nondeterministically guesses the sequence of transitions ~δA, and
verifies that it is accepting. (Notice that Σ1 has size exponential in the size of
A.) More precisely, we can take WA “ pΣ1, QA, qA0 ,ΩA,∆WAq to have the same
states QA, initial state qA0 , and priority function ΩA as A, and set of transitions

∆WA “ tpq, a1, qdq | for some a1 “ pa, f, dq P Σ1 and δA “ pq, a, qL, qRq P ∆Au.

It is immediate to verify that WA “ LpWAq. Let B “ pΣ, QB, qB0 ,Ω
B,∆Bq

and recall that WB is the set of plays π with branch b as above s.t. there is
an accepting sequence of transitions ~δB “ δB0 δ

B
1 ¨ ¨ ¨ P ∆Apbq s.t., for all i P N,

fipδ
A
i q “ di. As above, the language WB “ LpWBq can be recognised by a

nondeterministic ω-word parity automaton WB “ pΣ1, QB, qB0 ,Ω
B,∆WBq where

∆WB “

"

pq, a1, qdq |
for some a1 “ pa, f, dq P Σ1 and δB “ pq, a, qL, qRq P ∆B

s.t. fpδBq “ d.

*
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Putting the two constructions above together, Input’s winning condition WInput “
WA XWB can be recognised by a nondeterministic ω-word parity automaton of
size polynomial in A,B, and thus by Lemma 2.2 by a deterministic ω-word par-
ity automaton WInput of exponential size and polynomially many priorities. By
applying Lemma 2.8 and the characterisation of Lemma 4.3 we can thus solve
the deterministic separability problem in EXPTIME. Thanks to the implication
“3 ñ 2” of Lemma 4.3, if a deterministic separator exists, then the path closure
automaton Apath is a deterministic separator. By inspecting the construction
of Apath, one can see that it has number of states exponential in that of A, and
the same set of priorities as A. This discussion is summarised in the following
result.

Theorem 7.1. The deterministic separability problem can be solved in EXP-

TIME. Moreover, when a deterministic separator exists, there is one with expo-
nentially many states and polynomially many priorities.

7.2 Separability by deterministic automata with priorities

in C

In this section we perform a complexity analysis for Section 3. We build a
nondeterministic automaton WA “ pΣ2, Q, q0,Ω,∆q recognising the set of plays
LpWAq not satisfying WA. Automaton WA is over the alphabet

Σ2 “ C ˆ Σ1, (8)

with Σ1 from (7). Intuitively, WA accepts an infinite play π “ pc0, a0, f0, d0q
pc1, a1, f1, d1q ¨ ¨ ¨ with path b “ pa0, d0qpa1, d1q ¨ ¨ ¨ whenever there exists an ac-

cepting sequence of transitions ~δA “ δA0 δA1 ¨ ¨ ¨ P ∆Apbq and c0c1 ¨ ¨ ¨ is rejecting.
In order to achieve this, WA guesses an accepting sequence of transitions from
A (as in Section 7.1) and also guesses an odd priority c P C and verifies that it
occurs infinitely often, and that no larger priority occurs infinitely often. This
can be achieved by a set of states Q of size polynomial in A. Note that the
input alphabet Σ2 has exponential size in A,B (due to the selectors fi’s), and
thus WA will have exponentially many transitions. A very similar construction
yields a nondeterministic parity ω-word automaton WB over the same action
alphabet Σ2 from (8) recognising the set of plays LpWBq not in WB with poly-
nomially many states and exponentially many transitions. It follows that the
complement of WA X WB can be recognised by a nondeterministic parity ω-
word automaton W of the same complexity. By Lemma 2.2 we can further
convert W to an equivalent deterministic parity automaton W 1 with exponen-
tially many states and polynomially many priorities (w.r.t. the number of states
of A,B). By Lemma 2.8 we can thus solve G

sep
detpA,B, Cq in EXPTIME, and by

the characterisation in Lemma 3.1 we can solve the C-deterministic separability
problem within the same complexity.

Based on the size of the winning condition W 1 and the strong connection
between winning strategies for Separator and deterministic separators in the
“soundness” direction of the proof of Lemma 3.1, we can also provide an upper
bound on the size of a separating deterministic automaton, when it exists. More
precisely, if Separator wins the C-deterministic-separability game G

sep
detpA,B, Cq,

then she has a positional winning strategy in the corresponding graph game
of exponential size from Lemma 2.8. This means that Separator has a winning
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strategy M of exponential memory in G
sep
detpA,B, Cq. This strategy is then trans-

lated to a separating deterministic automaton S with exponentially many states
and priorities in C. Putting these considerations together gives the following
complexity result.

Theorem 7.2. The C-deterministic separability problem is in EXPTIME. More-
over, deterministic separators of exponential size suffice.

7.3 Separability by game automata

In this section we perform a complexity analysis for Section 5. Let A “
pΣ, P, p0,Ω,∆Aq and recall that WA is the set of plays of the form π “ pa0,m0, f0, d0q
pa1,m0, f1, d1q ¨ ¨ ¨ with branch b “ pa0, d0qpa1, d1q ¨ ¨ ¨ s.t. there is an accepting

sequence of transitions ~δA “ δA0 δA1 ¨ ¨ ¨ P ∆Apbq s.t., for all i P N, (†) if mi “ _
then fipδ

A
i q “ di. The language WA can be recognised by a nondeterministic

ω-word parity automaton WA over the alphabet

Σ1 “ Σ ˆ M ˆ p
ď

aPΣ

D∆Apaq Y D∆Bpaqq ˆ D (9)

which reads π, nondeterministically guesses the sequence of transitions ~δA, and
verifies that it is accepting and that (†) defined above holds. (Notice that Σ1

has size exponential in the size of A.) More precisely, we can take WA “
pΣ1, P, p0,Ω,∆q to have the same states P , initial state p0, and priority function
Ω as A, and set of transitions

∆ “ tpq, a1, pdq | for some a1 “ pa,m, f, dq P Σ1 and δA “ pq, a, pL, pRq P ∆A

s.t. pm “ _q ñ fpδAq “ du.

It is immediate to verify that WA “ LpWAq. With an analogous construction
starting from B we can build a nondeterministic ω-word parity automaton WB

recognising the set of plays in WB “ LpWBq. Putting the two together, Input’s
winning condition WInput “ WA X WB can be recognised by a nondetermin-
istic ω-word parity automaton of polynomially many states and exponentially
many transitions w.r.t. A,B, and thus by Lemma 2.2 by a deterministic ω-word
parity automaton WInput of exponential size and polynomially many priorities.
By Lemma 2.8 we can solve such a game in EXPTIME, and thanks to the char-
acterisation from Lemma 5.1, we can solve the game separability problem in
EXPTIME.

In fact, we can also provide an upper bound on the number of states and
priorities of a separating game automaton (when it exists). Since parity games
are memoryless determined and the graph game has exponential size, if Separator
wins Gsep

gamepA,Bq then she has a winning strategy M of exponential memory.
This means that the separating automaton αpM,Dq with generalised acceptance
condition D has exponential size (ignoring the size of D for a moment).

We now argue about the size of a suitable deterministic automaton D for
the generalised acceptance condition. First of all, the winning condition WA Ď
pΣ1qω is recognised by the nondeterministic parity automaton WA above with
the same number of states as A and exponentially many transitions (since Σ1

has exponential size). As suggested in the “soundness” direction of the proof of
Lemma 5.1, we take D to be a deterministic automaton recognising the language
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LA Ď pΣˆDqω containing all paths b “ pa0, d0qpa1, d1q ¨ ¨ ¨ s.t. there exists a play
π P WA conform to b and Separator’s strategy M. The automaton D can be
obtained as a product construction of WA (polynomial) above and Separator’s
strategy M “ pL, ℓ0, pc,m, fq, τq (exponential), a projection operation from
alphabet Σ1 to alphabet Σ ˆ D, and then a determinisation operation. More
precisely, let

D0 “ pΣ ˆ D,P ˆ L, pp0, ℓ0q,Ω0,∆0q

be a nondeterministic parity automaton over alphabet Σ ˆD where ∆0 and Ω0

are defined as follows: ppp, ℓq, pa, dq, pp1, ℓ1qq P ∆0 iff pp, pa,mpℓ, aq, fpℓ, aq, dq, p1q P
∆ and τpℓ, a, dq “ ℓ1; Ω0pp, q “ Ωppq. Since M is winning and by the definition
of WA we have LpDq0 “ LA. However D0 is nondeterministic and a direct
determinisation seems to produce a doubly exponential blow-up (since L has ex-
ponential size). However, the L-component of the state is in fact a deterministic
finite automaton (with no acceptance condition), and since the determinisation
operation commutes with products with deterministic finite automata, D0 can
be determinised into an equivalent deterministic parity automaton D of exponen-
tial size and polynomially many priorities, as required. By Lemma 5.2 applied
to the generalised automaton αpM,Dq we can build a game parity automaton S

equivalent to αpM,Dq (and thus separating LpAq,LpBq) of exponential size and
polynomially many priorities. This discussion is summarised in the following
result.

Theorem 7.3. The game separability problem for can be solved in EXPTIME.
Moreover, if a separating game automaton exists, then there is one with expo-
nentially many states and polynomially many priorities.

7.4 Separability by game automata with priorities in C

In this section we perform a complexity analysis for Section 6. As in Sec-
tion 7.2 one can build a nondeterministic parity automaton automaton WA “
pΣ2, Q, q0,Ω,∆q over alphabet Σ2 “ C ˆ Σ1 (where Σ1 has been defined in (9))
recognising the set of plays LpWAq not satisfying WA with polynomially many
states Q and priorities and exponentially many transitions ∆ (due to the expo-
nential alphabet Σ2). In the same way, we can build a nondeterministic parity
ω-word automaton WB recognising the complement of the winning condition
WB, and thus the complement of WA X WB can be recognised by a nonde-
terministic parity ω-word automaton W with polynomially many states and
priorities and exponentially many transitions. By Lemma 2.2 we can further
convert W to an equivalent deterministic parity automaton W 1 with exponen-
tially many states and polynomially many priorities (w.r.t. the number of states
of A,B). By Lemma 2.8 we can thus solve Gsep

gamepA,B, Cq in EXPTIME, and by
the characterisation in Lemma 6.1 we can solve the C-game separability problem
within the same complexity.

Based on the size of the winning condition W 1 and the strong connection
between winning strategies for Separator and separating automata in the “sound-
ness” direction of the proof of Lemma 6.1, we can also provide an upper bound
on the size of a separating game automaton, when it exists. More precisely,
if Separator wins the C-game-separability game Gsep

gamepA,B, Cq, then she has
a positional winning strategy in the corresponding graph game of exponential
size from Lemma 2.8. This means that Separator has a winning strategy M

30



of exponential memory in Gsep
gamepA,B, Cq. This strategy is then translated to

a separating game automaton αpMq with exponentially many states and prior-
ities in C. Putting these considerations together gives the following complexity
result.

Theorem 7.4. The C-game separability problem can be solved in EXPTIME.
Moreover, if a separating game automaton exists, then there exists one of expo-
nential size.

Altogether, Theorems 7.1 to 7.4 prove Theorem 1.1 announced in the intro-
duction.
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[5] Miko laj Bojańczyk and Wojciech Czerwiński.
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