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—— Abstract

We study guidable parity automata over infinite trees introduced by Colcombet and Loéding, which
form an expressively complete subclass of all non-deterministic tree automata. We show that, for
any non-deterministic automaton, an equivalent guidable automaton with the smallest possible
index can be effectively found. Moreover, if an input automaton is of a special kind, i.e. it
is deterministic or game automaton then a guidable automaton with an optimal index can be
deterministic (respectively game) automaton as well. Recall that the problem whether an equivalent
non-deterministic automaton with the smallest possible index can be effectively found is open, and
a positive answer is known only in the case when an input automaton is a deterministic, or more
generally, a game automaton.
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1 Introduction

Rabin automata on infinite trees constitute one of the most expressive formalisms based
on finite-state recognisability. Introduced by Rabin in the proof of his seminal decidability
result [19] as an enhancement of the more basic concept of Biichi automata on w-words [2], tree
automata continue to attract attention of researchers, and make a crossing point of various
areas like logic, games, set-theoretic topology, fixed-point calculi, and theory of verification.
It is an intriguing fact that a number of questions, which are by now well understood for
automata on w-words, are still largely unsolved for automata on trees. This concerns in
particular decidability questions like effective measurability and effective classification within
various hierarchies based on topology, or on the structure of automata. While it is plausible
that we reach the frontiers of decidability here, there is neither any evidence that these
problems may not be decidable.

Among the hierarchies mentioned above, the Rabin-Mostowski index hierarchy has
attracted a special attention, owing to its close relation to an alternation hierarchy in the
p-calculus (cf. [1, 17]), and to the complexity of the non-emptiness problem. It refers to the
acceptance criterion, which for infinite computations is conveniently expressed in terms of
colours associated with the automaton states, that may or should repeat infinitely often.
In a general setting, the criterion specifies explicitly the requested combinations of colours
(Muller criterion), which refines the original Biichi criterion that has just requested some
“good” colour to repeat infinitely often. While the Biichi and Muller criteria are equivalent
for non-deterministic automata on w-words [2], they are not for automata on trees as noted
already by Rabin [20]. The parity criterion is derived from Biichi’s idea by distinguishing
between “good” and “bad” colours and requesting that the highest-ranked colour repeating
infinitely often is good. This is implemented by representing good and bad colours by
even and odd integers, respectively. An indez is a set of colours {3,i+1,...,5} used by
an automaton; its size corresponds to the number of alternations between good and bad
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colours. The parity criterion is expressively equivalent to the Muller criterion, but it is more
succinct and leads to the better complexity of the non-emptiness problem, up to our present
knowledge. (See [21] for an insightful discussion of other meaningful criteria.)

The complexity of the non-emptiness problem for automata on infinite trees is actually
a pertinent open question. While the problem is NP-complete for automata with the original
Rabin acceptance criterion [9], it is expectedly more feasible for automata with the parity
criterion, being in turn equivalent to the celebrated problem of solving parity games [10]. It
is well-known that the complexity of this last problem has been recently improved [4] roughly

Od) to n®Uogd) where n is the number of positions and d the number of priorities

from n
(colours). This yields a quasi-polynomial solution for the non-emptiness problem for parity
tree automata as well, with d corresponding to the size of automaton’s index. Whether this
improvement makes the quest for a small index more or less important may be the subject
of discussion. In prospective applications in the model checking, the index d is derived from
the formula whereas n corresponds to the size of the system, and is usually much bigger than
d, so that even a small improvement of the index may be advantageous. But in any case,
the recent development for parity games shows that the index is an essential parameter in

understanding the problem.

The relevance of this parameter has been noticed already by Mostowski [15]. While it is
known that in general an arbitrarily high index is needed for non-deterministic [16] as well
as for alternating [1] automata, it is generally open if an automaton with an optimal index
can be effectively found. Algorithms were given only in the special cases, where the input
automaton is deterministic [18], or more generally it is a so-called game automaton [11].

An interesting approach has been undertaken by Colcombet and Léding [7], who reduced
the non-deterministic index problem of parity tree automata to a problem of an apparently
different nature, concerning the asymptotic behaviour of counters in some automata related
to the (classical) star-height problem. In the course of their proof, these authors introduced
an auxiliary concept of a guidable tree automaton, which in our opinion has a compelling
potential and deserves to be better understood. Intuitively, a guidable automaton behaves
almost like a deterministic automaton if it is given (as a kind of oracle) the non-deterministic
choices of any other automaton running on the same tree. Colcombet and Loding [7] showed
in particular that any automaton can be transformed into an equivalent guidable automaton,
which essentially realises a strategy of Pathfinder in the celebrated game introduced by
Gurevich and Harrington [13]. Although a guidable automaton is unsurprisingly not unique,
it nevertheless constitutes a kind of a normal form of a non-deterministic automaton. It
should be stressed that canonical forms are generally missing in the theory of automata on
infinite objects, which is one of the sources of difficulties there. Therefore, we believe that
the idea of guidable automata is worth to pursue.

In the present paper we show how to effectively compute an equivalent guidable automaton
with the smallest possible index — among all guidable automata — without any restriction on
the input automaton. We also revisit the concept of game automata mentioned above and
show, relying on the construction of a guidable automaton by Colcombet and Loding [7],
that any game automaton is itself guidable. Moreover, if an input automaton is a game or
deterministic automaton then a guidable automaton with an optimal index can be a game
(respectively, deterministic) automaton as well.

Unfortunately, the guidable index can be in general arbitrarily worse than the smallest
possible index of an equivalent non-deterministic automaton, we are primarily searching for.
We believe however, that the games used in our proofs may be of potential interest for the
main problem. Note that similar games have been used in a recent work [5] (see [6]) to decide
separability of regular tree languages by deterministic and game automata.
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2 Basic notions

The set of natural numbers {0,1,...} is denoted w. An alphabet is any finite non-empty
set X of letters. By 3* we denote the set of words (i.e. finite sequences) over an alphabet
3. By ul[,, we denote the finite sequence consisting of the first n symbols of u. The empty
sequence is denoted e. By |u| we denote the length of a finite sequence w.

A Y-labelled tree (shortly tree) is a function ¢: {L,r}* — X, where L # r are two special
symbols called directions. The set of all such trees is denoted Try. If ¥ and I' are two
alphabets then each pair of trees t; € Try;, and to € Trr induces their product t1 ®ts € Trexr,
with (¢ ® t2)(u) 2o (t1(u), t2(u)). Given a tree language L C Tryxr, its projection onto X is
the set of trees ¢t; € Try, such that there exists a tree to € Trr, for which t; ® to € L.

An infinite sequence of directions b € {r,r}* is called a branch. Similarly, a path in
a tree t € Try is a sequence (an,dp)new € (E x {r, R})w7 such that a, = t(dgy---d,—1) for
n=20,1,...

An index is a non-empty finite range of natural numbers C = {i,i+1,...,j} C w.

Elements ¢ € C are called priorities. We say that an infinite sequence of priorities (¢, )new
is parity accepting if limsup,,_,.. ¢» =0 mod 2. Otherwise, we say that such a sequence is
parity rejecting.

A non-deterministic C-parity tree automaton (shortly non-deterministic automaton) is
a tuple A = (X, Q4, ¢i*, A4, QA4), where ¥ is an alphabet, Q* a finite set of states, ¢i* € Q%4
an initial state, A* C Q4 x ¥ x QA x Q4 a transition relation; and Q4: Q4 — C a priority
mapping. An element (q,a,q.,qz) € A# is called a transition of the automaton A. We
say that such a transition is from the state ¢ and is over the letter a. We make a proviso
that, unless stated otherwise, all automata in consideration are trimmed, that is, for each
state ¢ € Q* and letter a € X, there is at least one transition from ¢ over @ in A4. When
an automaton A is known from the context then we skip the superscript and write just Q,
A, etc.

We extend the notions of parity accepting (resp. rejecting) sequences of priorities to
sequences of states by applying €, i.e. a sequence of states (¢n)new i parity accepting
(resp. parity rejecting) in A if the priorities (Q(gn))new are parity accepting (resp. parity
rejecting).

Given a tree t € Try, a run of an automaton A over ¢ is a tree p € Trg such that p(e) = gr
and, for each node u € {r,z}*, the tuple

(p(w), t(w), p(u), p(ur))

is a transition of A. Such a run is accepting if, for every branch b € {r,z}*, the sequence of

states g, = p(bl,) for n =0,1,...is parity accepting. The set of trees over which a given
automaton A has some accepting run is called the language of A and is denoted L(A). If
q € Q is a state of an automaton A then by L(A, ¢) we denote the language of the automaton
A with the initial state set to g. We say that q is productive if L(A, q) # 0. Thus L(A) # 0
iff the initial state qf“ is productive.

A set of trees is a regular tree language if it is of the form L(.A) for some non-deterministic
automaton A.

An automaton A is deterministic if for every state ¢ € @ and letter a € ¥ there exists
a unique transition in A% starting from ¢ over a. A deterministic automaton has exactly one
run over each tree t € Try, and this run can be constructed inductively in a top-down way.
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Guidable automata

The notion of a guiding function and one automaton guiding another was introduced in [7],
here we follow the exposition from [14].

Fix two non-deterministic automata A and B over the same alphabet 3. A guiding function
from B to A is a function g: Q4 x AB — A such that g(p, (q,a,qL,qR)) = (p,a,pL, pr)
for some pr, pr € Q4 (i.e. the function g is compatible with the state p and the letter
a). If p € Trgs is a run of B over a tree t € Try then we define the tree g(p) € Trga,
inductively as follows. We let g(p)(e) 2o ¢t and, for each u € {1,r}*, if G(p)(u) = p € Q4,
t(u) = a, and v is a transition of B taken in u, i.e. v 2o (p(w),a, p(ur), p(ur)), and if finally
a(p,7) = (p,a,pL, pr) € A4, then we let,

3(p)(ur) = pu, o) (um) = pr.

Notice that directly by the definition, the tree g(p) is a run of A over t. We say that a guiding
function g: Q* x AB — A4 preserves acceptance if whenever p is an accepting run of B
then g(p) is an accepting run of 4. We say that an automaton B guides an automaton A
(denoted B — A), if there exists a guiding function g: Q4 x AB — A“ which preserves
acceptance. In particular, it implies that L(5) C L(A).

An automaton A is guidable if it can be guided by any automaton B such that L(B) = L(.A)
(in fact one can equivalently require that L(B) C L(A), see [14, Remark 4.5]).

The main result concerning guidable automata is the following theorem.

» Theorem 1 ([7, Theorem 1], see also [14, Theorem 4.7]). For every regular tree language L
there exists a guidable automaton recognising L. Moreover, such an automaton can be
effectively constructed from any non-deterministic automaton for L.

Since we will rely on the exact structure of such an automaton, we recall the crucial
steps in the construction. First, let A be a non-deterministic automaton recognising the
given language L. Assume that A = (X,Q’, ¢}, A’, Q') is any automaton recognising the
complement of L.

An important role in this construction is played by selectors, i.e. functions f: A’ — {r,r}
(in other words f € {L,a}2"). Consider a product tree t®7 € Try, (1 zyar and one of its paths
((an, fn)s dn)nEw' We say that this path is losing if there exists a sequence of transitions
(5; = (pn, an,pL,n,pRm))ner of A’ which is A’-accepting in the following sense:

po =ai*,

Vn € w. Pn+1=Pd,,,n A dn:fn((xz):

the sequence of states (py)new is parity accepting in A’.

Lemma 1.15 in [14] provides a deterministic automaton Winning(.A’) over the alphabet
¥ x {t, R}A/. The crucial properties of this automaton are stated in the following fact.

» Fact 2. The automaton Winning(A’) accepts a product tree t @ T € Trzx{L,R}A’ if and
only if none of its paths is losing. The projection ofL(Winning(A’)) onto X is the original
language L, i.e. the complement of L(A’).

By Complement(.A’) we denote the non-deterministic automaton obtained from the auto-
maton Winning(A’) by projecting the transitions of Winning(.A’) onto the coordinate X: each
transition of the form (q, (a, ), qu, qR) is replaced by (q7 a, qr, qR); yielding a non-deterministic
automaton recognising L. We say that a transition (g, a,qc, ) of Complement(A’) is arising
from f € {t,r}*" if (¢, (a, f), qu, qr) is a transition of Winning(A’).
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Notice that in fact the only non-determinism of the automaton Complement(.A’) comes
from the projection from the alphabet 3 x {t, R}A/ onto . Therefore, to define a guiding
function to guide the automaton Complement(A’), whenever specifying a transition of
Complement(A’), it is enough to provide a selector f € {L,z}2" and then take the unique
transition arising from f.

» Lemma 3 (See the proof of [14, Theorem 4.7]). The automaton Complement(A") is guidable.

3 Guidability relation

The guidability relation B < A can be seen as a reduction, showing that one automaton uses
less non-determinism than the other one. Thus, one would naturally expect this relation to
be transitive, which is indeed the case.

» Proposition 4. [fC — B and B — A then C — A.

A proof of this fact is implicit in [14, Proposition 4.11], where it is shown how to compose
two guiding functions ¢ and ¢* into a winning strategy in a game characterising guidability,
called weak inclusion game, see [14, page 78]. However, the transitivity of the relation <
has not been explicitly stated before. Therefore, for the sake of completeness, we provide
a proof of Proposition 4 here.

First, we recall the notion of the weak inclusion game Gguige(B, A) from [14, page 78]
which is used to characterise when an automaton B guides another automaton A, and
consequently to decide whether a non-deterministic automaton is guidable. We introduce
a small modification, justified below, using the following concept: a transition (g, a,qr, gr) is
productive if both states qi, gz are productive (cf. Section 2).

The positions of the game Gguige(B,.A) are of the form (p,q) € Q4 x QB. The initial
position (po,qo) is (¢i*,¢°). At an nth round for n = 0,1, ... which starts in a position
(Pn, qn):

1. V chooses a letter a,, € X,

2. V chooses a productive transition vy, = (gn, @n, GLn, Grn) € AB: if there is no productive
transition from ¢, over a, then V loses immediately,

3. 3 chooses a transition d,, = (P, Gn, P, Pan) € A4,

4. V chooses a direction d,, € {r,r}.

The next position (py1, gn+1) of the game is (pa,, n,9d, n)-

The winning condition for 3 expresses, that if the sequence of states (¢, )new is parity
accepting in B then the sequence of states (pn)new is parity accepting in A.

» Lemma 5 ([14, Proposition 4.9]). The player 3 wins the above game Gguige(B, A) if and
only if B — A. Moreover, the player 3 has a positional winning strategy.

The requirement that the transitions chosen by V in step 2 are productive is added
because of the case when L(B) = (). In this corner case the relation B < A holds trivially
whereas the characterisation as stated in [14, Proposition 4.9] seems to fail. For the sake
of completeness we recall the proof of Proposition 4.9 from [14], taking into account our
modification.

Proof. The fact that the game is determined and the player 3 has a positional winning
strategy follows from the general theory of infinite games (see, e.g. [21, 12]); indeed the
winning criterion of Gguide(B,.A) can be easily presented as a union of parity criteria and
hence it is a so-called Rabin criterion. Clearly, the fact that 3 can also win in finite time
does not affect the positional determinacy for this player.
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Now if B guides A then an acceptance-preserving guiding function g: Q4 x AB — A4
yields a positional strategy for 3: in a position (pn, ¢»), given the choice by V of a transition
Yo = (Gns Oy L, Gan) € AB, 3 chooses §,, = g(pn,yn). Conversely, a positional winning
strategy of 3 induces a partial function §: @ x AB — A“ that is defined for p € Q* and
v =(q,a,q,qs) € AB whenever the position (p,q) is winning for 3 and the transition 7 is
productive. We extend § to a total guiding function g: Q* x AB — A4 that for all other
arguments is defined in any way; note that it is always possible since, by our proviso, the
automaton A is trimmed. By the assumption, the initial position (¢i*,¢?) is winning. Then
the fact that g has been derived from a winning strategy implies that the function g preserves
acceptance. |

» Remark 6. Based on the above lemma, the notion that a guiding function preserves
acceptance can be equivalently rephrased as follows. Consider any sequence of productive
transitions (vn = (Gn, On;, QL ns qun))n’EW of B and a sequence of directions (dy,)necw. Assume

that g9 = qu and ¢n+1 = qa,n for n = 0,1,... Let 6, = (Pn, tn,PLn,Prn) be defined

inductively for n = 0,1,... by pg def @', 8, = g(Pn,Yn), and ppi1 = pa, n. Then the

condition that g preserves acceptance boils down to saying that if (¢, )new is parity accepting
in B then (p,)new is parity accepting in A.

We can now move to a proof of Proposition 4. Assume that ¢ and ¢# are two guiding
functions which preserve acceptance, witnessing that C — B and B — A.

We will show that 3 has a winning strategy in Gguide(C, A), using the set of states of B
as a memory structure. More precisely, 3 keeps track of an additional state 7, € Q% with

f . . . .
o e qu . Consider an nth round starting in a position (p,, ¢,) with a memory state r,, of

3. Assume that V has played a,, € ¥ and v, € AC as above. Let v, = (7, @n, TLns TRn) def

dB(rn,vn) € AB be the transition of B given by ¢B. Note that if the transition v, was
productive then v/, must be productive as well. Similarly, let 4, def g (pn,7.,) be the
transition of A given by g*. Let 3 play §,, as her choice in that round. Once the round is

finished, let the new memory state of 3 be 7,41 def Td, -
> Claim 7. The strategy defined above is in fact winning for 3.

Proof. Consider a play of Gguide(C, A) that was played according to the above strategy. Let
(rn)new be the sequence of memory states of 3 used during that play. Assume that (g, )new
is parity accepting in C. Since g® represents a winning strategy of 3 in Gguidae(C, B), we know
that (r,)ne. is parity accepting in B. Therefore, we can use the fact that g represents
a winning strategy of 3 in Gguide (B, .A) and entail that (py,)ne. is parity accepting in A. <

This concludes the proof of Proposition 4.

» Corollary 8 (See [14, Proposition 4.11]). Consider an automaton A and a guidable automaton
B, both recognising the same language L. Then the automaton A is guidable if and only if
B— A.

Note that the above corollary combined with Lemma 5 and Theorem 1 yield a procedure
to decide whether a non-deterministic automaton is guidable ([14, Theorem 4.7]).

4 Game automata as guidable automata

It is straightforward to see that deterministic automata are guidable (the function ¢ in
the definition above does not depend on the argument in AB). Hence, guidable automata
can be viewed as a semantic extension of deterministic automata. However, there already
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exists an established notion of automata naturally extending the deterministic ones, namely
the game automata, see [8]. In this section we recall this notion in the framework of
non-deterministic automata, and prove the following new result.

» Proposition 9. Every game automaton is guidable.

Since every deterministic automaton is also game, we get a syntactic stratification:
Deterministic C Game C Guidable, (1)

with each consecutive class not only containing more automata but also recognising more
languages. Theorem 1 means that the last class in this stratification is expressively complete
for all regular tree languages.

We say that a non-deterministic tree automaton A is a game automaton if it satisfies
the following two properties. First of all, () contains a non-initial all-accepting state T € Q:
Q(T) is even and for each letter a € A there is a unique transition starting from T over a,
namely (T,a, T, T) (thus L(A, T) = Try). Moreover, for a state ¢ € Q@ — {T} and a letter
a € ¥ we say that (q,a) is in one of the following modes:

conjunctive: there is a unique transition starting from ¢ over a of the form (g, a, qv., gz)

with both ¢; and ¢g distinct from T;

disjunctive: there are exactly two transitions starting from ¢ over a, one of the form

(¢,a,q, T) and the other of the form (q,a, T, qr), with both ¢ and ¢z distinct from T.

The above definition is a direct translation of the alternating formulation of game automata
into the format of non-deterministic automata. The two modes above correspond to the use
of A or V in the transition formula d(g, a), see [11, Definition 3.2].

Before we move to a proof of Proposition 9, we need to recall that game automata admit

a syntactic complementation construction. Fix a game automaton A4 = (X, Q, q1, A, ).

Consider another game automaton denoted A° defined as A° = (X, Q, g1, A, '), where A’
and ' are defined as follows. First of all, '(q) & Q(q) + 1 for all ¢ distinct than T and

() e Q(T). Moreover, A’ contains the following transitions:
for each a € ¥ we have (T,a, T, T) € A/;
ifge @ —{T} and a € ¥ are in conjunctive mode and (g, a, g, gz) € A then the mode
of (¢q,a) in A° is disjunctive, with (¢,a,q., T) and (g,a, T,q) in A’;
ifge Q@—{T} and a € ¥ are in disjunctive mode and (q,a,q., T), (¢,a, T,qr) € A then
the mode of (g, a) in A® is conjunctive, with (q, a,q., gr) € A'.

The following fact is an immediate consequence of the alternating semantics of game
automata, see [11, page 24:7].

» Fact 10. The automaton A€ is also a game automaton and L(A®) = Try — L(A).

The rest of this section is devoted to a proof of Proposition 9. Fix a game automaton
A=(2,Q,q,A,Q) and let A 4f ¢ denote its syntactic complement defined as above. Let
A’ be the set of transitions of A’. Notice that (up to subtracting 2 from §2) the automaton
(A")° is equal to the original automaton A. We will now apply the procedure of constructing
a guidable automaton for L. Recall that this procedure involves a deterministic automaton
Winning(A’) that accepts a product tree t ® 7 € Try, g zyar if and only if none of its
paths is losing. The desired guidable automaton Complement(.A’) is then obtained from
Winning(A’) by projection on the component ¥. The automaton Winning(A’) itself is not
concretely specified; it can be any deterministic automaton with the required property. We
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will define it in such a way that the eventual automaton Complement(.A") will coincide with
the original automaton A. It is convenient here to use a variant of a deterministic automaton
where transitions leading to non-productive states are undefined, so that there is always
at most one transition rather than exactly one. (So we momentarily suspend our proviso
that all automata are trimmed, but the projection automaton will be trimmed again.) Let
Ay = (E x {1, R}A,, Q, q1, Ay, 2); that is, the automaton shares the states and the priority
function with A. The transitions of A,, are defined as follows.

For each a € ¥ and f € {L,8}2", we have (T, (a, f), T, T) € A,.

If (g, a) are in disjunctive mode in A, and (g, a,qr, T), (¢,a, T,qr) € A, which implies that

(¢,a,q1,qz) € A, and if f: (q,a,qL,qr) — d (for f € {L,R}A/) then the unique transition

of Ay, from q over (a, f) is (g, (a, f),qu, T) or (g, (a, f), T,qr) depending on whether d =t

or d =-r.

If (¢, a) are in conjunctive mode in A, and (g, a, g, gz) € A, which implies that (¢, a, q., T),

(g,a,T,qr) € A’, and if moreover the selector f “behaves properly” in the sense that

fi(g,a,qu, T)—vrand f: (q,a,T,qr) — & then the unique transition of A,, from ¢ over

(a, f)is (q,(a, f),qu,qr). In all other cases, a transition from g over (a, f) is undefined.

Now, it is clear that an automaton Complement(A4,,) obtained from A by replacing
each transition (q, (a, f), qL,qR) by (q,a, qL,qR) (cf. Section 2) coincides with the original
automaton A. So the proof of Proposition 9 boils down to the following.

> Claim 11. The automaton 4,, accepts a product tree t ® 7 € TrZX{LR}A/ if and only if
none of its paths is losing.

Proof. Let the automaton A,, accept a product tree t ® 7 € Try,, {(LR}A by a unique run 7.

For the sake of contradiction, suppose that there exists a losing path ( (s fn), dn) along

new
with a sequence of transitions (6; = (pn, an,pL,n,pR,n))nEW of A’, such that pg = qf“/7 and
Vn € w, pp+1=Pd, n N dn=rn(0}). Let (qn)new be the sequence of states visited by the run
7 on this path, i.e. ¢, = 7(dy...d,—1). We verify by induction on n that ¢, = p, # T.
Clearly ¢, = ¢f* = qf‘v = pg # T. Suppose the claim holds for n. If (¢,a,) is in
conjunctive mode in A with the unique transition (¢, an,qr,qr) (With ¢u,qz # T) then
(pn,arn) (with p, = ¢,) is in disjunctive mode in A’, with two possible transitions. Let
8, = (Pn, @, Py Pron) = (Gn, Gn, Guon, 1 ); the other case is symmetric. It follows from the
definition of 4, that in this case f,: 0/, — L, as otherwise the next transition would not be
defined and the run 7 would not be accepting. Clearly, the transition of A,, used at this
point is (¢n, (@n, fn), qu,qr). Therefore, we have d,+1 =1 and ¢u11 = g = Pnt1 # T, as
required. If (gn,a,) is in disjunctive mode in A and hence 9], = (pn, an, P n,Pr.n) is the
unique transition of A’ from p,, = ¢, over a,, and moreover f,: d/, — d, then the transition
of A, from g, over (an, fn) is (Pn, (an, fn),Prn, T) O (¢, (an, fn), T,Prn) depending on
whether d,, =1 or d =&, but in any case we have ¢,+1 = q. = Pn+1 # T, as required.

As the sequence of states (qn)n co is parity accepting in A, (hence also in A), it cannot
be at the same time parity accepting in A’, which yields a contradiction.

Now let ¢ ® 7 € Try, gy gyar be a product tree not accepted by A,. There are two
possibilities: either the unique run of A,, on ¢t ® 7 is non-accepting, or there is no (complete)
run at all, because the transitions are blocked at some place. We will show that in both cases
there is a losing path in ¢ ® 7. Suppose first that in a run p of A, on t ® 7 there is a path
(qn, d")nEw’ with gg = qIA and ¢n+1 = p(do ... dy,), such that the sequence (qn)new is parity
rejecting. Thus in particular ¢, # T, for all n. Let a,, = t(dy...dn—1) and f,, = 7(dp . . . dp—1).

We will define inductively a sequence of transitions (6, = (Pn,@n,PLn,Prn)), e, Of A
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with p, = ¢, which along with the sequence (d,)ne, will witness a losing path. As
usual, we consider two cases. If (¢n,a,) are in disjunctive mode in A then we let 0/, et
(qn, an, qu, qr), where the last is the unique transition of A’ from ¢,, over a,. Suppose further
that fn: (gn,an,qu, @r) — L (the other case is symmetric). Then the transition used by the
automaton A, is (qn7 (an, fn),qL, T), and we know that ¢,+1 = qu (because it is different
from T), hence d,, =1 and the local condition of a losing path is satisfied. If (g, a,) are in
conjunctive mode in A with the transition (g, an,qr, gr) then, since the transition of A,
over (an, frn) is defined, we know that f,, “behaves properly”, i.e. fn: (¢n,an,qL, T) — L and
f: (gn,an, T,qr) — r. Suppose d,, = L (the other case is symmetric), hence ¢, +1 = q.. We
let &7, def (qn, @n, qu, T); then again the local condition of a losing path is satisfied. Thus we
have obtained a losing path in £ ® 7, as expected.

Now suppose that there is no run of A, on t ® 7. We may however define a partial
run, i.e. a mapping p: dom — @, where dom C {r,r}* is closed under initial segment, such
that p(e) = ¢f*, and whenever 7(v) = ¢ and the transition (q, (t(v),p(v)),qL,qR) of A, is
defined then p(vr) = g and p(vr) = g. Since p is not complete, there must be a finite
path do, ...,dny—_1, such that p(do,...,dm-1) =q, t(do, ..., dm—1) = a, 7(do,- .., dm-1) = f,
and there is no transition of A, from ¢ over (a, f). (It is possible that m = 0.) This
means that (g, a) are in conjunctive mode in A with the transition (g, a, qr, wg), but f does
not “behave properly”; for example f: (¢,a,q., T) — r (the other case is symmetric). Let

gi=p(dy...di—1), for i =0,...,m. We define a finite sequence dj,...,d,, ; of transitions
of A’ corresponding to the path dy,...,d, _1, exactly as in the previous case, satisfying the
local condition of a losing path, with p; = ¢;, and hence p,, = ¢, = ¢. Now, under the

assumption that f: (¢,a,q., T) — &, we let §/, def (¢,a,q., T), dm =&, and p;py1 = T. Then

we can clearly prolong this path to a losing path (with 6/, for n > m + 1 being a transition
for T).
This concludes the proof of Claim 11, and hence also of Proposition 9. <

5 Decidability of guidable index

In this section we provide the main result of the present article:

» Theorem 12. Given a regular language of infinite trees L C Try and an index C' =
{4,...,7} it is decidable whether there exists a guidable C-parity automaton which recog-
nises L.

Let A= (%, Q4, ¢, A4, Q4) be a guidable parity automaton for the given language L,
which can be constructed as in Theorem 1.

Consider the following game, played between two players called 3 and V. The positions
of the game are pairs of states Q** x Q* of the automaton A, the initial position (po,pj) is
(¢, ¢i*). At an nth round for n = 0,1,... which starts in a position (p,,p,) € Q* x Q*:

1. 3 chooses a priority ¢, € C,

2. V chooses a transition 0, = (pn, @n,Prn, Prn) € AA from p,, over some letter a, € ¥,

3. 3 chooses a transition &), = (p),, an, Pl ,, Ph,) € A% from p), over the same letter a, € X,
4. ¥ chooses a direction d,, € {r,r}.

The next position of the game (pn+1,P541) 18 (Pd,,ns Py, n)-

The winning condition for 3 in that game is the conjunction of the following two conditions:
W1 If the sequence of states (p,)new is parity accepting in A then the sequence of priorities
(¢n)new must be also parity accepting.
W2 If the sequence of priorities (¢, )new 1S parity accepting then the sequence of states
(Pl )new is parity accepting in A.
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Clearly the winning condition of the game is w-regular so the winner effectively has
a finite memory winning strategy [3]. The rest of this section is devoted to a proof of the
following proposition.

» Proposition 13. The player 3 wins the game above if and only if there exists a guidable
C-parity automaton B which recognises the language L = L(A).

» Corollary 14. The problem of existence of a guidable C-parity automaton recognising
a given regular language is decidable. Moreover, it is possible to effectively construct such
an automaton whenever it exists.

The construction of a guidable automaton for the language recognised by a given non-de-
terministic automaton may involve a double-exponential growth in the number of states [14,
Proposition 4.8]. Therefore, already the size of the above game is in general double-exponen-
tial in the given representation of L. Since the index of the constructed automaton A is only
single-exponential, there exists a double-exponential deterministic parity automaton with
single-exponentially many priorities verifying the conjunction of the winning conditions W1
and W2 (cf. [6, Section 7]). It all implies that the complexity of the proposed algorithm is
2-EXPTIME.

Soundness

Assume that 3 has a (finite memory) winning strategy in the game above. Such a strategy
consists of a finite set of memory values M the initial memory value m; € M; a memory
update function of the type:

7: QA x QA x M x A% x {1z} — M,

which updates the memory value depending on the choices of the opponent in a given round;
and two skolemised decision functions:
Z: Q* x QA x M — C which gives the choices of the priorities ¢, depending only on the
position of the game and the memory value in M,
0" QA x QA x M x A4 — A4 which gives the choices of the transitions ¢/, depending
on the position of the game, the memory value in M, and the choice of the transition J,,
made by V in the given round.

We construct a non-deterministic automaton 5 which guesses the choices of the transitions
8, € A4 and simulates the above strategy. Together with a definition of B, we define a guiding
function ¢B: QB x AA — AP that will be used to witness that A < B.

Let the set of states of the automaton B be Q4 x Q4 x M. The initial state is
(¢, ¢i*,m1). The priority of a state (p,p’,m) is ¢(p,p’,m). Given a state (p,p’,m) of
B and a transition § = (p,a,pL,ps) € A* we define gB((p,p’7m),(5) as the transition

(.2 ). (pr,pL o). (pa. ph mon) ) such that 3 (p,p/,m, 8) = &' = (¢, a.pf..ph) € A% and
for each direction d € {t,r} we have 7(p,p’, m,d,d) = mq4. The set of transitions of B consists
of all the transitions g5 ((p,p’,m),8) for (p,p’,m) € QF and é € AA. This concludes the
definition of the automaton B.

In the following two proofs we will rely on the path-wise definition of when a guiding
function preserves acceptance, see Remark 6.

The following fact follows directly from the assumption that we began with a winning
strategy of 3 and therefore its choices satisfy the winning condition W1.
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» Fact 15. The guiding function g® defined above preserves acceptance. Thus, it witnesses
that A — B and in particular L(A) C L(B).

» Lemma 16. We have B — A and in particular L(B) C L(A).

Proof. We can use the decision function ¢ as a guide function g**: Q4 x AB — AA. More
formally, consider a transition v of BB that is of the form gB((p,p’7 m),§) for some! § € A4,
Let g(p',7) = 0'(p, ', m, d); the remaining values of g**(p”, ) with the first argument p”
different than p’ that comes from ~ are irrelevant.

The fact that g* preserves acceptance follows directly from the assumption that we began
with a winning strategy of 3 and therefore its choices satisfy the winning condition W2. <«

The two above observations allow us to use Corollary 8 to learn the following fact.
» Fact 17. The automaton B is guidable and recognises the language L = L(A).

Since B is a C-parity automaton, the above fact concludes this direction of the proof.

Completeness

We will now show that if there exists a guidable C-parity automaton B which recognises
L then 3 has a winning strategy in the game above. Let B = (%, Q5, qf3, AB QB) be such
a guidable automaton.

Fix two guiding functions g: Q4 x AB — A4 and ¢B: QB x AA — AB, witnessing that
B — A and A — B, respectively.

Let the memory structure of the constructed strategy of 3 consists of the set of states of
B. The initial memory value qq is qIB . In an nth round of the game that starts in a position
(pn,Pl,) € QA x Q4 and with a memory value g, € QB let 3 play as follows:

3 plays the priority ¢, df B (qn),

V plays a transition d,, = (pn, Gn, Prns Pr,n) € A4, which is mapped by ¢ to a transition

Y= (G, s G rn) = 95 (00, 0) € AP,

3 plays the transition d;, = (p},, Gn, PL > Pr.n) def gA(pl,, ) € A4,

V plays a direction d,, € {t,r},
and the next memory value ¢n41 is ga,, n-

The following fact is an immediate consequence of the assumptions that the functions g®
and ¢** map accepting runs into accepting runs, see Remark 6.

» Lemma 18. The strategy defined above is winning for 3.

Proof. Consider an infinite play of the game where 3 played according to the above defined
strategy. First consider the winning condition W1. Assume that the sequence of states
(Pn)new is parity accepting in A. Therefore, by the assumption on ¢ we know that the
sequence of states (¢ )new i parity accepting in B. But the choice of priorities ¢, as Q5(g,)
guarantees that the sequence of priorities (¢;,)n, must also be parity accepting.

Now consider the winning condition W2 and assume that the sequence of priorities (¢, )new

is parity accepting. Therefore, the sequence of states (g, )ne, must be parity accepting in B.

Based on the assumption on g we know that the sequence of states (p/,)nc., must be parity
accepting in A. <

1 In fact the transition § is uniquely determined by .
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6 Index transfer results

In this section we show results binding deterministic, game, and guidable indices of languages,
as expressed by the following proposition.

» Proposition 19. Assume that L C Trys; can be recognised by some deterministic (resp. game)
automaton and by some guidable C-parity automaton. Then L can be recognised by a determ-
inistic (resp. game) C-parity automaton.

First consider the case of deterministic automata. Let D be any deterministic automaton
recognising L and let A be a guidable C-parity automaton recognising L. Let g”: QA x AP —
AA be a guiding function witnessing that D — A.

Consider the automaton B constructed as a product of D and A. More formally, the set
of states of B is QP x Q#; the initial state of B is (qP, qIA); the priority function is defined
as 08(q,p) = Q4(p); and the transitions of B are of the form

((a.p), a, (a,pr), (qr. pr)) € AP
where v = (¢, a, g1, gz) is the unique transition of D from ¢ over a and 6 = (p, a, pL, pr) def
g™(p,7) € A4 is the transition given by the guiding function g*. Directly from the definition
we see that B is a deterministic C-parity automaton. Therefore, the following fact concludes
the proof of Proposition 19 in the case of deterministic automata.

» Lemma 20. L(B) = L.

Proof. The fact that L(B) C L(A) is immediate, as each accepting run of B encodes
an accepting run of A over the same tree. On the other hand, if ¢ € L(D) then the
assumptions on g% imply that the unique run of B over ¢ must be accepting. |

We now move to the proof of Proposition 19 in the case of game automata. Similarly
as before, take any game automaton D recognising L and let A be a guidable C-parity
automaton recognising L.

We first modify the automaton A by adding an additional state T of even priority and
a transition of the form (T,a, T, T) for each letter @ € ¥. Now, for each state p € Q4 — {T}
such that L(A, p) = Try, remove this state and replace each occurrence of p by T in all the
transitions of A. Clearly, these modifications do not change the language recognised by A.
Moreover, if the original automaton was guidable then the new one is also guidable. For the
sake of simplicity we assume that from this moment on A denotes the modified automaton.
Let ¢g*: Q4 x AP — A4 be a guiding function witnessing that D — A.

The automaton B is defined analogously as in the deterministic case, as a product of the
automata D and A using the guiding function g*. We additionally restrict the set of states
of B to those that can be reached from the initial state (¢, qIA) using the transitions of B.

> Claim 21. If a state (T,p) is reachable from the initial state of B by the transitions of B
then L(A, p) = Try, which means that p=T.

Proof. Since all the transitions of B follow the guiding function g*, whenever a state (g, p)
is reachable in the automaton B, we know that it is a winning position of 3 in the weak
inclusion game Ggyide(D, A), see Lemma 5. This guarantees that L(D, ¢) C L(A, p), and as
L(D,T) = Try, we know that L(A,p) = Try. <
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The above claim implies that B is in fact a game automaton with the shape of transitions
inherited from D and (T, T) playing the role of the state T of B. Since the priority function
08 is again inherited from A, B is a C-parity automaton.

It remains to show that L(B) = L. Similarly as in the deterministic case, the inclusion
L(B) C L(A) is immediate as each accepting run of B encodes an accepting run of A. On the
other hand, the inclusion L(D) C L(B) is direct from the assumptions on g** — each accepting
run of D is mapped by g into an accepting run of B.

This concludes the proof of Proposition 19.

Consequences

By combining Proposition 19 and Proposition 9 (or by direct construction) we can observe
the following.

» Remark 22. If I C Try is recognised by some deterministic automaton and by some game
C-parity automaton then L can be recognised by a deterministic C-parity automaton.

Thus the stratification from (1) preserves indices of the languages: if a language happens to
be recognisable by a less expressive automaton then its parity index is the same from the
point of view of both less and more expressive classes.

On the other hand, it is known that there is no such transfer when moving between
deterministic and (general) non-deterministic automata. Indeed, we have the following
property on w-words.

» Fact 23 ([22]). For each C ={i,...,j} C w there exists a regular language of w-words,
which can be recognised by a non-deterministic {1,2}-parity (Biichi) w-word automaton, but
not by any deterministic C-parity w-word automaton.

This property can be easily shifted to infinite trees (e.g., by considering the set of all trees
whose leftmost branch belongs to a given regular language of w-words). Thus we obtain the
following consequence of Proposition 19.

» Corollary 24. For each C = {i,...,j} C w there exists a regular tree language L which
can be recognised by some deterministic automaton and some non-deterministic {1,2}-parity
automaton but not by any deterministic, game, nor guidable C-parity automaton.

7 Conclusions

The present work is focused on the class of guidable automata. We show that they syntactically
extend the previously studied classes of deterministic and game automata. Moreover, we
provide an algorithm solving the guidable index problem. Finally, we show that for the
three considered classes of deterministic, game, and guidable automata, the index can be
transferred. As a negative consequence of this fact (Corollary 24) we show that there is no
correspondence between the general non-deterministic index of a regular tree language and
its guidable index.

Although these results do not bring a direct progress in the general non-deterministic
index problem; we hope that they may be useful in at least two ways.

First, we believe that the class of guidable automata is worth separate attention. As
our new results indicate, this class of tree automata is tractable and extends the previously
considered classes of structurally simple automata: deterministic and game. This is especially
important as, contrarily to the other two classes, guidable automata are expressively complete
for all regular tree languages.
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Second, the present results indicate a new way of approaching the index problems, by

providing new game-based techniques. In particular, we believe that the interplay between
the two sequences of transitions, §, and ¢/,, constructed in the game from Section 5, gives
some insight on ways of forcing the players to witness the existence of certain objects.
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