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23:2 Computing measures of weak-MSO definable sets of trees

1 Introduction26

The non-emptiness problem asks if an automaton accepts at least one object. From a logical27

perspective, it is an instance of the consistency question: does a given specification have28

a model? Sometimes it is also relevant to ask a quantitative version of this question:29

whether a non-negligible set of models satisfy the specification. When taken to the realm30

of probability theory, this boils down to estimating the probability that a random object31

is accepted by a given automaton. In this paper, models under consideration are infinite32

binary trees labelled by a finite alphabet. Our main problem of interest is the following.33

B Problem 1. Given a regular tree language L, compute the probability that a randomly34

generated tree belongs to L.35

In other words, we ask for the probability measure of L. Here, the tree language L might36

be given by a formula of monadic second-order logic, but for complexity reasons it is more37

suitable to present it by a tree automaton or by a formula of modal µ-calculus, see e.g. [9,13].38

By default, the considered measure is the uniform coin-flipping measure, where each letter39

is chosen independently at random; but also more specific measures are of interest. If the40

computed probability is rational then it can be represented explicitly, but the measure can be41

irrational, see e.g. [15], and may require more complex representation. One of the possible42

choices, exploited in this paper, is a formula over the field of reals R.43

Chen et al. [6] addressed Problem 1 in the case where the tree language L is recognised44

by a deterministic top-down automaton and the measure is induced by a stochastic branching45

process, which then makes also a part of the input data. Their algorithm compares the46

probability with any given rational number in polynomial space and with 0 or 1 in polynomial47

time. The limitations of this result come from the deterministic nature of the considered48

automata: deterministic top-down tree automata are known to have limited expressive power49

within all regular tree languages.50

Michalewski and Mio [15] stated Problem 1 explicitly and solved it for languages L given51

by so-called game automata and the coin-flipping measure. This class of automata subsumes52

deterministic ones and captures some important examples including the game languages,53

cf. [10], but even here the strength of non-determinism is limited; in particular, the class is54

not closed under finite union. The algorithm from [15] reduces the problem to computing the55

value of a Markov branching play, and uses Tarski’s decision procedure for the theory of reals.56

These authors also discover that the measure of a regular tree language can be irrational,57

which stays in contrast with the case of ω-regular languages, i.e. regular languages of infinite58

words, where the coin-flipping measure is always rational, cf. [5].59

Another step towards a solution to Problem 1 was made by the second author of the60

present article, who proposed an algorithm to compute the coin-flipping measure of tree61

languages definable in fragments of first-order logic [20]. This work is subsumed in a re-62

port [21] (accepted for publication in a journal) co-authored with the third author, where63

a new class of languages L is also resolved: tree languages recognised by safety automata,64

i.e. non-deterministic automata with a trivial accepting condition.65

An analogue of Problem 1 can be stated for ω-regular languages. As noted by [6], the66

problem then reduces to a well-known question in verification solved by Courcoubetis and67

Yannakakis [8] already in the 1990s, namely whether a run of a finite-state Markov chain68

satisfies an ω-regular property. The algorithm runs in single-exponential time w.r.t. the69

automaton (and linear w.r.t. the Markov chain). A related question was also studied70

by Staiger [24], who gave an algorithm to compute Hausdorff dimension and Hausdorff71

measure of a given ω-regular language.72
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In general, Problem 1 remains unsolved. At first sight, one may even wonder if it is73

well-stated, as regular tree languages need not in general be Borel, cf. [18]. However, due74

to [12,16], we know that regular languages of trees are always universally measurable.75

In the present paper, we solve Problem 1 in the case where the language L is recognised76

by a weak alternating automaton or, equivalently, defined by a formula of weak monadic77

second-order logic, cf. [17]. The class of tree languages in consideration is incomparable with78

the one considered by Michalewski and Mio [15], but subsumes those considered in [20,21].79

Yet another presentation of this class can be given in terms of alternation-free fragment of80

modal µ-calculus, see [1] for details. This fragment is known to be useful in verification and81

model checking, in particular, temporal logic CTL embeds into this fragment.82

We consider the coin-flipping measure as our primary case, but we also show how83

to extend our approach to measures generated by stochastic branching processes, as in [6].84

The computed probability is presented by a first-order formula in prenex normal form over85

the field of reals. The provided formula is exponential in the size of the automaton and86

polynomial in the size of the branching process. Moreover, the quantifier alternation of the87

computed formula is constant (equal 4). Combined with the known decision procedures for88

the theory of reals, this gives the following.89

I Theorem 2. There is an algorithm that inputs a weak alternating parity automaton A,90

a branching process P, and a rational number q encoded in binary; and decides if the measure91

generated by P of the language recognised by A is equal, smaller, or greater than q. The92

algorithm works in time polynomial in q, doubly exponential in A, and singly exponential93

in P.94

Similarly to the approach taken in [21], we reduce the problem to computation of an ap-95

propriate probability distribution over the powerset of the automaton’s states. To do so, we96

consider the set of all such distributions DP(Q) with a suitable ordering �. The structure is97

in fact a finitary case of a probabilistic powerdomain introduced by Saheb-Djahromi [22]98

(see also [14]), but we do not exploit category-theoretic concepts in this paper. The key step99

is an approximation of the target language L by two families of tree languages representing100

safety and reachability properties, respectively. Then we can apply fixed-point constructions101

thanks to a kind of synergy between the order and topological properties of DP(Q).102

2 Trees, topology, and measure103

The set of natural numbers {0, 1, 2, . . .} is denoted by N, or by ω whenever we treat it as104

an ordinal. A finite non-empty set A is called an alphabet. By P(X) we denote the family of105

all subsets of a set X. The set of finite words over an alphabet A (including the empty word106

ε) is denoted by A∗, and the set of ω-words by Aω. The length of a finite word w ∈ A∗ is107

denoted by |w|. A full infinite binary tree over an alphabet A (or simply a tree if confusion108

does not arise) is a mapping t : {L, R}∗ → A. The set of all such trees, denoted by TrA, can109

be equipped with a topology induced by a metric110

d(t1, t2) =
{

0 if t1 = t2
2−n with n = min{|w| | t1(w) 6= t2(w)} otherwise.111

It is well-known that this topology coincides with the product topology on Aω, where A112

is a discrete topological space. The topology can be generated by a basis consisting of all the113

sets Uf , where f : dom(f)→ A is a function with a finite domain dom(f) ⊂ {L, R}∗, and Uf114

consists of all trees t that coincide with f on dom(f). If A has at least 2 elements then this115

topology is homeomorphic to the Cantor discontinuum {0, 1}ω (see, e.g. [19]).116

CVIT 2016
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The set of trees can be further equipped with a probabilistic measure µ0, which is the stand-117

ard Lebesgue measure on the product space defined on the basis by µ0 (Uf ) =
∣∣A∣∣−|dom(f)|.118

We note a useful property of this measure, which intuitively amounts to saying that119

events happening in incomparable nodes are independent. For t ∈ TrA and v ∈ {L, R}∗, the120

subtree of t induced by v is a tree t�v ∈ TrA defined by t�v(w) = t(vw), for w ∈ {L, R}∗.121

I Remark 3. If v1, . . . , vk ∈ {L, R}∗ are pairwise incomparable nodes (i.e., none is a prefix of122

another) and V1, . . . , Vk ⊆ TrA are Borel sets then123

µ0
(
{t ∈ TrA | t�vi

∈ Vi for i = 1, . . . , k}
)

= µ0(V1) · . . . · µ0(Vk). (1)124

We refer to e.g. [12] for more detailed considerations of measures on sets of infinite trees.125

3 Tree automata and games126

An alternating parity automaton over infinite trees can be presented as a tuple A =127

〈A,Q, qI, δ,Ω〉, where A is a finite alphabet; Q a finite set of states; qI ∈ Q an initial128

state; δ : Q×A→ BC+({L, R}×Q
)
a transition function that assigns to a pair (q, a) ∈ Q×A129

a finite positive Boolean combination of pairs (d, q′) ∈ {L, R} ×Q; and finally Ω: Q→ N is130

a priority mapping.131

In this paper, we assume that automata are weak, i.e. the priorities Ω(q) are non-increasing132

along transitions. More precisely, if (d, q′) is an atom that appears in the formula δ(q, a)133

then Ω(q) ≥ Ω(q′). Given n ∈ N, we denote by Q<n and Q≥n the subsets of Q consisting134

of those states whose priority is respectively strictly smaller or greater than n.135

The semantics of an automaton can be given in a terms of a game played by two players136

∃ and ∀ over a tree t in TrA from a state p ∈ Q. Let Γ be the set of all sub-formulae137

of the formulae in δ(q, a), for all (q, a) ∈ Q × A. The set of positions of the game is the138

set
(
Q t Γ

)
× {L, R}∗ and the initial position is

(
p, ε
)
. The positions of the form

(
q, v
)
,139 (

φ1∨φ2, v
)
, and

(
(d, q), v

)
are controlled by ∃, while the positions of the form

(
φ1∧φ2, v

)
are140

controlled by ∀. The edges connect the following types of positions:141 (
q, v
)
and

(
δ(q, t(v)), v

)
,142 (

φ1∨φ2, v
)
and

(
φi, v

)
for i = 1, 2,143 (

φ1∧φ2, v
)
and

(
φi, v

)
for i = 1, 2,144 (

(d, q), v
)
and

(
q, v · d

)
.145

We assume that every formula in the image δ(Q×A) is non-trivial and, thus, every position146

is a source of some edge.147

The directed graph described above forms the arena of our game that we denote by G(t, p).148

A play in the arena is any infinite path starting from the initial position
(
p, ε
)
. We call the149

positions of the form (q, v) state positions. Given a play π, the states of the play denoted150

states (π) is the sequence of states (q0, q1, . . .) ∈ Qω such that the successive state positions151

visited during π are
(
qi, vi

)
, for i = 0, 1, . . ., and some (vi)i∈ω.152

To complete the definition of the game, we specify a winning criterion for ∃. The default153

is the parity condition, but we will also consider other criteria. Let154

Runs def= {ρ ∈ Qω | ∀i ∈ ω. Ω(ρ(i)) ≥ Ω(ρ(i+1))
}

155

be the set that contains all sequences of states that induce non-increasing sequences of156

priorities. Notice that since A is weak, only such sequences may arise in the game. In general,157
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a winning condition is any set W ⊆ Runs. That is, a play π is winning for ∃ with respect158

toW if, and only if, states (π) ∈W . The game with a winning setW is denoted by G(t, p,W ).159

The parity condition WP ⊆ Runs for a weak automaton amounts to: (q0, q1, . . .) ∈WP160

if limi→∞Ω(qi) ≡ 0 mod 2, i.e. the limit priority of states visited in a play is even. Let161

L(A, p) be the set of trees such that ∃ has a winning strategy in G(t, p,WP ). Then, the162

language of an automaton A is the set L(A) def= L(A, qI), where qI is the initial state of A.163

As mentioned above, we will consider games with various winning criteria. The following164

simple observation is useful.165

I Remark 4. If W ⊆W ′ ⊆ Runs then the following implication holds: if ∃ wins G(t, p,W )166

then ∃ wins also G(t, p,W ′).167

Since the winning criteria in consideration will always be ω-regular languages of infinite168

words, we implicitly rely on the following classical fact (cf. [13]).169

I Proposition 5. Games on graphs with ω-regular winning conditions are finite memory170

determined.171

We will also use the following fact, cf. e.g. [17, 23].172

I Proposition 6. For a weak alternating parity automaton A, all tree languages L(A, p) are173

Borel and, consequently, measurable with respect to the uniform measure µ0 (and also any174

other Borel measure on TrA).175

Note that measurability holds for non-weak automata as well [12].176

4 Approximations177

For the sake of this section we fix a weak alternating parity automaton A. Our aim178

is to provide some useful approximations for the tree languages L(A, p). The approximations179

are simply some families of tree languages indexed by states p ∈ Q. Those families, called180

Q-indexed families, or Q-families for short, are represented by functions L : Q → P(TrA).181

By the construction, we will guarantee that the tree languages L(q) will themselves be182

recognisable by some weak alternating automata. Each Q-family naturally possesses a dual183

representation by a mapping TrA → P(Q) that we denote by the same letter (but with184

different brackets)185

L[t] def= {q ∈ Q | t ∈ L(q)} ∈ P(Q).186

If ρ ∈ Runs ⊆ Qω is an infinite sequence of states then limi→∞ Ω(ρ(i)) (denoted by limit(ρ))187

exists, because by the definition of Runs the priorities are non-increasing and bounded.188

Recall that WP ⊆ Runs is the set of runs satisfying the parity condition, i.e. WP = {ρ ∈189

Runs | limit(ρ) ≡ 0 mod 2}. For i, n ∈ N, consider the following subsets of Runs:190

Sni
def= WP ∪

{
ρ ∈ Runs | Ω(ρ(i)) ≥ n

}
,191

Sn∞
def= WP ∪

{
ρ ∈ Runs | limit(ρ) ≥ n

}
,192

Rni
def= WP ∩

{
ρ ∈ Runs | Ω(ρ(i)) < n

}
,193

Rn∞
def= WP ∩

{
ρ ∈ Runs | limit(ρ) < n

}
.194

195

Connotatively, the name of the sets Sni comes from the condition of safety, while the sets Rni196

are named after reachability. More precisely, Sni is an over-approximation of WP , that197

CVIT 2016
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makes ∃ win also if she manages to reach a priority ≥ n in the ith visited node of a given198

tree. Analogously, Rni is an under-approximation of WP that makes ∀ win in the above case.199

Based on the above definitions, we define the respective Q-families. For p ∈ Q, let Sni (p),200

Sn∞(p), Rni (p), and Rn∞(p) be the sets of trees such that ∃ has a winning strategy in the201

game G(t, p,W ), where W is respectively Sni , Sn∞, Rni , and Rn∞. Figure 1 below depicts the202

way these Q-families are used in the general construction.203

It is easy to see that all the tree languages above can be recognised by weak parity204

alternating automata.205

I Lemma 7. For every n ∈ N and i ∈ N, we have206

Sni ⊇ Sni+1 ⊇ Sn∞ and Rni ⊆ Rni+1 ⊆ Rn∞.207

Analogously, for every p ∈ Q,208

Sni (p) ⊇ Sni+1(p) ⊇ Sn∞(p) and Rni (p) ⊆ Rni+1(p) ⊆ Rn∞(p).209

Proof. The first property follows directly from the definition of Runs, which guarantees that210

Ω(ρ(0)) ≥ Ω(ρ(1)) ≥ . . . ≥ limit(ρ). Then, the second property follows from Remark 4. J211

It is straightforward to see that Sn∞ =
⋂
i∈N S

n
i and Rn∞ =

⋃
i∈NR

n
i . However, it is not clear212

that these equalities imply the desired properties for the respective sets of trees. Lemma 9213

below implies that it is the case. The proof relies on combinatorics of binary trees, namely214

on König’s Lemma.215

I Lemma 8. Take n ∈ N and p ∈ Q. Let Bn∞ = {ρ ∈ Runs | limit(ρ) < n} and, for i ∈ N,216

let Bni = {ρ ∈ Runs | Ω(ρ(i)) < n}. If σ is a winning strategy of ∃ in G(t, p, Bn∞) then there217

exists a number J ∈ N, such that σ is actually winning in G(t, p, BnJ ). An analogous property218

holds if σ is a winning strategy for ∀.219

Proof. Let σ be a winning strategy of ∃ in G(t, p, Bn∞) (the case of ∀ is completely analogous).220

Let T ⊆
(
Q× {L, R}

)∗ be the set of sequences (qi, di)i≤`, with q0 = p, such that there exists221

a play consistent with σ that visits all the positions (qi, d0 · · · di−1) for i = 0, 1, . . . , `, and222

additionally Ω(q`) ≥ n. Observe that T is prefix-closed. Thus, we can treat T as a tree.223

Moreover, as Q×{L, R} is finite, T is finitely branching. If T is finite then there exists J such224

that all the sequences in T have length at most J . In that case σ is winning in G(t, p, BnJ ),225

and we are done.226

For the sake of contradiction, suppose that T is infinite. Apply König’s Lemma to obtain227

an infinite path (qi, di)i∈ω in T . By the definition of T , it implies that there exists an infinite228

play consistent with σ such that (qi)i∈ω is the sequence of states visited during the play. But229

this is a contradiction, because limit
(
(qi)i∈ω

)
≥ n by the definition of T and, therefore, the230

considered play is losing for ∃. J231

I Lemma 9. Using the above notions, for every state p ∈ Q, we have232

Sn∞(p) =
⋂
i∈N
Sni (p) and Rn∞(p) =

⋃
i∈N
Rni (p).233

Proof. Consider the first claim and take a tree t ∈ TrA such that for every i ∈ N we234

have t ∈ Sni (p). We need to prove that t ∈ Sn∞(p). Assume contrarily, that t /∈ Sn∞(p).235

By determinacy, see Proposition 5, it means that there exists a strategy σ′ of ∀ such236

that for every play π consistent with σ′, we have limit(states (π)) < n and limit(states (π))237

is odd. Hence, in particular, σ′ is winning for ∀ in G(t, p, Bn∞). Therefore, by Lemma 8,238
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we know that there exists a number J ∈ N such that, for every π consistent with σ′ with239

states (π) = (q0, q1, . . .), we have Ω(qJ) < n. Therefore, the strategy σ′ witnesses that240

t /∈ SnJ (p), a contradiction.241

We now prove the second claim. Take a tree t ∈ Rn∞(p). We need to prove that t ∈ Rni (p)242

for some i ∈ N. Let σ be a strategy of ∃ witnessing that t ∈ Rn∞(p). Again, Lemma 8243

guarantees that there exists a number J ∈ N such that if π is a play consistent with σ with244

states (π) = (q0, q1, . . .) then Ω(qJ) < n. Thus, t ∈ RnJ(p). J245

The following lemma provides another characterisation of the above Q-families.246

I Lemma 10. For each p ∈ Q, we have S0
i (p) = TrA and R0

i (p) = ∅. Take n > 0. If247

Ω(p) ≥ n then Sn0 (p) = TrA and Rn0 (p) = ∅. If Ω(p) < n then248

L(A, p) = Sn0 (p),
L(A, p) = Sn−1

∞ (p) for odd n,
L(A, p) = Rn0 (p),
L(A, p) = Rn−1

∞ (p) for even n.249

Proof. The cases of n = 0 are trivial. The first two claims in the case Ω(p) ≥ n follow250

directly from the definitions. Take p such that Ω(p) < n. Notice that in that case the251

sequence of states ρ in a play in G(t, p) satisfies252

ρ ∈WP ⇐⇒ ρ ∈ Sn0 ,
ρ ∈WP ⇐⇒ ρ ∈ Sn−1

∞ for odd n,
ρ ∈WP ⇐⇒ ρ ∈ Rn0 ,
ρ ∈WP ⇐⇒ ρ ∈ Rn−1

∞ for even n.253

where the first two equivalences follow from the fact that Ω(ρ(0)) = Ω(p) < n. The last254

two equivalences can be derived from the fact that limit(ρ) ≤ Ω(p) < n. First, we have255

limit(ρ) ≥ n−1⇔ limit(ρ) = n−1. Thus, if n is odd and limit(ρ) ≥ n−1 then we know that256

limit(ρ) is even. Analogously, if n is even then n−1 is odd and the fact that limit(ρ) is even257

guarantees that limit(ρ) < n−1.258

Clearly, the above equivalences imply that, under the assumption of the lemma, a strategy259

winning for the condition WP is winning for the respective conditions and vice-versa. J260

Our aim now is to define a function ∆: P(Q)×A×P(Q)→ P(Q) that will allow us to form261

equations over Q-families. An ordered pair of sets of states PL, PR ∈ P(Q) induces a valuation262

vPL,PR to the atoms in {L, R} × Q defined by: vPL,PR(d, p) is true if p ∈ Pd. Now, consider263

additionally a letter a ∈ A and put264

∆(PL, a, PR) =
{
q ∈ Q | vPL,PR |= δ(q, a)

}
.265

Equivalently, q ∈ ∆(PL, a, PR) if ∃ can play the finite game represented by δ(q, a) in such266

a way to reach only such atoms (d, p) that satisfy p ∈ Pd.267

I Lemma 11. The function ∆: P(Q)×A× P(Q)→ P(Q) is monotone, i.e. if PL ⊆ P ′L and268

PR ⊆ P ′R then ∆(PL, a, PR) ⊆ ∆(P ′L, a, P ′R).269

Proof. It follows directly from the fact that the Boolean formulae in δ(q, a) are positive. J270

Recall that t�v ∈ TrA denotes the subtree of t induced by a node v, cf. Section 2. The271

following lemma shows how to increase the index i of the above Q-families Sni and Rni .272

I Lemma 12. Take n ∈ N, i ∈ N, and a tree t ∈ TrA. Then we have:273

Sni+1[t] = ∆
(
Sni [t�L], t(ε),Sni [t�R]

)
,274

Rni+1[t] = ∆
(
Rni [t�L], t(ε),Rni [t�R]

)
.275

276
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Figure 1 A schematic presentation of the relationship between the distributions used in the proof.
The vertical axis represents the order �, i.e. ~µ0(S0

0 ) � ~µ0(S0
∞). The edges marked F , Q<n, and

Q≥n represent applications of the respective operations. The vertical convergence is understood
in terms of pointwise limits in RP(Q).

The proof of this lemma is based on a standard technique of merging strategies: the277

game G(t, p) can be split into a finite game corresponding to the formula δ
(
p, t(ε)

)
that leads278

to the sub-games G(t�L, pL) and G(t�R, pR) for some states pL, pR ∈ Q.279

Proof. Take a play π in the arena G(t, p) for some state p ∈ Q. Recall that, by the definition280

of the game, the initial position of the play is (p, ε) and the next state position will have281

the form (q, d), for some q ∈ Q and d ∈ {L, R}. Consider the suffix of the play π starting282

from that position. Clearly, this suffix induces a play, say π′, in the arena G(t�d, q), starting283

from the position (q, ε) (technically, to satisfy our definition, we need also to replace every284

position (α, dv) by (α, v) in the original play). Moreover, the sequence of states visited by π′,285

states (π′), is a suffix of the sequence states (π) obtained by removing just the first element.286

By the definition of Sni and Rni we have therefore287

states(π) ∈ Sni+1 ⇐⇒ states(π′) ∈ Sni , and states(π) ∈ Rni+1 ⇐⇒ states(π′) ∈ Rni . (2)288

We will now provide the proof for Sni+1, the case of Rni+1 is analogous. Let PL and PR289

equal respectively Sni [t�L] and Sni [t�R]. Put a = t(ε). Recall that by the duality of the two290

representations of Q-families, p ∈ Sni+1[t] iff t ∈ Sni+1(p). So we need to prove that for every291

p ∈ Q we have t ∈ Sni+1(p) if and only if p ∈ ∆(PL, a, PR).292

Assume that t ∈ Sni+1(p). Take a strategy σ witnessing that. Notice that if a position of293

the form (q, d) can be reached by σ then by (2) we know that t�d ∈ Sni (q), i.e. q ∈ Pd. Thus,294

the strategy σ witnesses that p ∈ ∆(PL, a, PR).295

For the opposite direction, assume that p ∈ ∆(PL, a, PR). This means that there exists a296

finite strategy of ∃ that allows her to resolve the formula δ(p, a) in such a way that for every297

atom (d, q) that can be reached by this strategy, we have (d, q) ∈ Pd. The last means that ∃298

has a winning strategy in the game G(t�d, q,Sni ). Now we can combine all above strategies299

in a strategy in the game G(t, p, Sni+1), which by Equation (2) is again winning for ∃. Hence,300

t ∈ Sni+1(p), as desired. J301

5 Measures and distributions302

Following an approach started in [21], we transfer the problem of computing measures303

of tree languages L(A, p) to computing a suitable probability distribution on the sets of the304

automaton states. We start with a general construction. For a finite set X, consider the set305

of probability distributions over X, DX def=
{
α : X → [0, 1] |

∑
x∈X α(x) = 1

}
. Observe that,306

if X is partially ordered by a relation ≤ then DX is partially ordered by a relation � defined307
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as follows: α � β if for every upward-closed1 set U ⊆ X, we have
∑
x∈U α(x) ≤

∑
x∈U β(x).308

In this article, we are interested in 〈X,≤〉 being the powerset P(Q) ordered by inclusion ⊆.309

I Remark 13. The relation � is a partial order on DX (as an intersection of a finite family310

of partial orders).311

Every Q-family L for a weak alternating automaton A induces naturally a member312

of DP(Q), which is a distribution ~µ0
(
L
)
defined by313

~µ0
(
L
)
(P ) = µ0

{
t ∈ TrA | L[t] = P

}
.314

Here µ0 is the uniform probability measure on TrA. The sets in consideration are measurable315

thanks to Proposition 6.316

Note that if the language family is exactly L(q) = L(A, q) then the probability assigned317

to a set of states P amounts to the probability that a randomly chosen tree, with respect318

to µ0, is accepted precisely from the states in P .319

I Lemma 14. If for each q ∈ Q we have L(q) ⊆ L′(q) then ~µ0(L) � ~µ0(L′) in DP(Q).320

Proof. Take any upward-closed family U ⊆ P(Q). Then321

∑
P∈U

~µ0
(
L
)
(P ) =

∑
P∈U

µ0
{
t ∈ TrA | L[t] = P

}
= µ0

{
t ∈ TrA | L[t] ∈ U

}
≤322

≤ µ0
{
t ∈ TrA | L′[t] ∈ U

}
=
∑
P∈U

µ0
{
t ∈ TrA | L′[t] = P

}
=
∑
P∈U

~µ0
(
L′
)
(P ),323

where the middle inequality follows from the assumption that L(q) ⊆ L′(q) and the fact that324

the family U is upward-closed. J325

We now examine the sequences of distributions ~µ0
(
Sni
)
, ~µ0

(
Rni
)
, ~µ0

(
Sn∞
)
, and ~µ0

(
Rn∞

)
326

arising from the Q-families introduced in the previous section. Our aim is to bind them327

by equations computable within DP(Q). As an analogue to the operation ∆, we introduce328

a function F : DP(Q)→ DP(Q) defined for β ∈ DP(Q) and P ∈ P(Q) by329

F(β)(P ) = 1
|A|
·

∑
(PL,a,PR)∈∆−1(P )

β(PL) · β(PR). (3)330

Note that the formula guarantees that F(β) is indeed a probabilistic distribution in DP(Q).331

The operator F allows us to lift the inductive definitions of the Q-families Sni+1 and Rni+1332

given by Lemma 12, to their counterparts in the level of probability distributions.333

I Lemma 15. For each n ∈ N and i ∈ N we have334

~µ0
(
Sni+1

)
= F

(
~µ0
(
Sni
))

and ~µ0
(
Rni+1

)
= F

(
~µ0
(
Rni
))
.335

1 That is if x ≤ y and x ∈ U then y ∈ U .
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Proof. Take P ∈ P(Q) and observe that336

F
(
~µ0
(
Sni
))

(P ) (1)= 1
|A|
·

∑
(PL,a,PR)∈∆−1(P )

~µ0
(
Sni
)
(PL) · ~µ0

(
Sni
)
(PR)337

(2)=
∑

(PL,a,PR)∈∆−1(P )

µ0
{
tL | Sni [tL]=PL

}
· 1
|A|
· µ0
{
tR | Sni [tR]=PR

}
338

(3)=
∑

(PL,a,PR)∈∆−1(P )

µ0
{
t | Sni [t�L]=PL ∧ t(ε)=a ∧ Sni [t�R]=PR

}
339

(4)= µ0

 ⋃
(PL,a,PR)∈∆−1(P )

{
t | Sni [t�L]=PL ∧ t(ε)=a ∧ Sni [t�R]=PR

}340

(5)= µ0

{
t ∈ TrA | ∆

(
Sni [t�L], t(ε),Sni [t�R]

)
=P
}

341

(6)= µ0

{
t ∈ TrA | Sni+1[t]=P

}
(7)= ~µ0

(
Sni+1

)
(P ),342

343

where: (1) is just the definition of F
(
~µ0
(
Sni
))

; (2) follows from the definition of ~µ0
(
Sni
)
;344

(3) follows from Remark 3 and the independence of {t(ε) = a} from the other events345

in consideration; (4) follows from the fact that the measured sets are pairwise disjoint;346

(5) follows simply from the definition of ∆; (6) follows from Lemma 12; and (7) is just the347

definition of ~µ0
(
Sni+1

)
.348

The proof for Rni+1 follows the same steps, except it uses the Rni variant of Lemma 12. J349

Now, recall that Q≥n and Q<n are sets of states of respective priorities. Let the350

functions Q<n,Q≥n : DP(Q)→ DP(Q) be defined by351

Q<n(β)(P ) def=
∑
P ′ : P ′∩Q<n=P β(P ′), (4)352

Q≥n(β)(P ) def=
∑
P ′ : P ′∪Q≥n=P β(P ′). (5)353

Again, the formulae guarantee that Q<n(β) and Q≥n(β) are both probabilistic distributions354

in DP(Q). The following lemma shows the relation between these functions and the limit355

distributions ~µ0
(
Sn−1
∞

)
and ~µ0

(
Rn−1
∞
)
.356

I Lemma 16. For each n ∈ N we have357

Q<n
(
~µ0
(
Sn−1
∞

))
= ~µ0

(
Rn0
)

if n is odd,358

Q≥n
(
~µ0
(
Rn−1
∞
))

= ~µ0
(
Sn0
)

if n is even.359
360

This lemma follows from Lemma 10 in a similar way as Lemma 15 follows from Lemma 12.361

Proof. Consider the case of even n and a tree t ∈ TrA. We need to show that362

Q≥n
(
~µ0
(
Rn−1
∞
))

= ~µ0
(
Sn0
)
.363

Lemma 10 implies that364

Sn0 [t] =
(
Rn−1
∞ [t]

)
∪Q≥n. (6)365
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Therefore, for each P ∈ P(Q) we have366

~µ0
(
Sn0
)
(P ) = µ0

{
t ∈ TrA | Sn0 [t] = P

}
367

= µ0
{
t ∈ TrA |

(
Rn−1
∞ [t]

)
∪Q≥n = P

}
368

= µ0

 ⋃
P ′ : P ′∪Q≥n=P

{
t ∈ TrA | Rn−1

∞ [t] = P ′
}369

=
∑

P ′ : P ′∪Q≥n=P
µ0
{
t ∈ TrA | Rn−1

∞ [t] = P ′
}

370

=
∑

P ′ : P ′∪Q≥n=P
~µ0
(
Rn−1
∞
)
(P ′)371

= Q≥n
(
~µ0
(
Rn−1
∞
))

(P )372
373

The case of odd n is entirely analogous. J374

The two above lemmata express the properties of the operators F , Q<n, and Q≥n375

as depicted on Figure 1.376

6 Limit distributions ~µ0
(
Sn

∞

)
and ~µ0

(
Rn

∞

)
377

In this section we show how to represent the distributions ~µ0
(
Sn∞
)
and ~µ0

(
Rn∞

)
as fixed378

points. We begin by proving that these distributions are limits in RP(Q) of the sequences379

of vectors
(
~µ0
(
Sni
))
i∈N and

(
~µ0
(
Rni
))
i∈N respectively. This is a consequence of Lemmata 7380

and 9.381

I Lemma 17. For each n ∈ N and P ∈ P(Q) we have382

lim
i→∞

~µ0
(
Sni
)
(P ) = ~µ0

(
Sn∞
)
(P ) and lim

i→∞
~µ0
(
Rni
)
(P ) = ~µ0

(
Rn∞

)
(P ).383

Proof. We consider case of ~µ0
(
Sn∞
)
, the case of ~µ0

(
Rn∞

)
(P ) is entirely dual. First, we show384

that the respective limits agree when taking sums over any upward closed family U ⊆ P(Q),385

see (7) below. For i ∈ N let Xi =
⋃
P ′∈U{t ∈ TrA | Sni [t] = P ′} and X∞ =

⋃
P ′∈U{t ∈386

TrA | Sn∞[t] = P ′}. Lemma 7 together with the fact that U is upward-closed imply that387

X0 ⊇ X1 ⊇ . . . ⊇ X∞. Lemma 9 and finiteness of Q imply that for every tree t there388

exists an index J such that SnJ [t] ⊆ Sn∞[t]. Therefore,
⋂
i∈NXi = X∞. By continuity of the389

measure µ0 we get that limi→∞ µ0(Xi) = µ0(X∞). This means that390

lim
i→∞

∑
P ′∈U

~µ0
(
Sni
)
(P ′) = lim

i→∞
µ0(Xi) = µ0(X∞) =

∑
P ′∈U

~µ0
(
Sn∞
)
(P ′). (7)391

Clearly, {P} = {P ′ ∈ P(Q) | P ′ ⊇ P} \ {P ′ ∈ P(Q) | P ′ ) P} with both these families392

upward closed. Therefore, we can apply (7) twice and obtain the desired equation. J393

The monotonicity of ∆, see Lemma 11, implies the following lemma.394

I Lemma 18. The operator F : DP(Q)→ DP(Q), see Equation (3), is monotone in �.395

Proof. We need to prove that F is monotone w.r.t. the order �. Thus, for every α �396

β ∈ DP(Q) and an upward-closed family U ⊆ P(Q) we should have
∑
P∈U F(α)(P ) ≤397 ∑

P∈U F(β)(P ).398
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After multiplying by 1
|A| and splitting the sum over separate letters a ∈ A (see the399

definition of F , cf. (3)), it is enough to show that for each a ∈ A and Oa
def= {(PL, PR) |400

∆(PL, a, PR) ∈ U} we have401 ∑
(PL,PR)∈Oa

α(PL) · α(PR) ≤
∑

(PL,PR)∈Oa

β(PL) · β(PR).402

Now, by monotonicity of ∆ (see Lemma 11) and the fact that U is upward-closed, we403

know that if PL ⊆ P ′L, PR ⊆ P ′R, and (PL, PR) ∈ Oa then also (P ′L, P ′R) ∈ Oa. By P−1
L · Oa404

and Oa · P−1
R we will denote the sections {PR | (PL, PR) ∈ Oa} and {PL | (PL, PR) ∈ Oa}405

respectively. Notice that both of them are upward-closed. Thus, using the assumption that406

α � β twice, we obtain407

∑
(PL,PR)∈Oa

α(PL) · α(PR) =
∑

PL∈P(Q)

α(PL) ·

 ∑
PR∈P

−1
L ·Oa

α(PR)

408

≤
∑

PL∈P(Q)

α(PL) ·

 ∑
PR∈P

−1
L ·Oa

β(PR)

409

=
∑

(PL,PR)∈Oa

α(PL) · β(PR) =
∑

(PL,PR)∈Oa

β(PR) · α(PL)410

=
∑

PR∈P(Q)

β(PR) ·

 ∑
PL∈Oa·P−1

R

α(PL)

411

≤
∑

PR∈P(Q)

β(PR) ·

 ∑
PL∈Oa·P−1

R

β(PL)

412

=
∑

(PL,PR)∈Oa

β(PR) · β(PL) =
∑

(PL,PR)∈Oa

β(PL) · β(PR).413

414

J415

With the two lemmata above, we are ready to conclude this section: we characterise the416

distributions ~µ0
(
Sn∞
)
and ~µ0

(
Rn∞

)
, see Figure 1, by a specialised variant of the Knaster-Tarski417

fixed point theorem.418

I Proposition 19. For each n ∈ N the distribution ~µ0
(
Sn∞
)
is the �-greatest distribution β419

satisfying β = F(β) and β � ~µ0
(
Sn0
)
. Similarly, ~µ0

(
Rn∞

)
is the �-least distribution β420

satisfying β = F(β) and β � ~µ0
(
Rn0
)
.421

Proof. Consider the case of ~µ0
(
Sn∞
)
. Observe that F is continuous in RP(Q). Indeed,422

it is given by a vector of quadratic polynomials from RP(Q) to RP(Q). Now, take P ∈ P(Q)423

and observe that424

~µ0
(
Sn∞
)
(P ) = lim

i→∞
~µ0
(
Sni
)
(P ) = lim

i→∞
F
(
~µ0
(
Sni
))

(P ) =425

F
(

lim
i→∞

~µ0
(
Sni
)
(P )
)

= F
(
~µ0
(
Sn∞
)
(P )
)

426
427

where the first equality follows from Lemma 17; the second from Lemma 15; the third428

from continuity of F ; and the last from Lemma 17, again. Therefore, β = ~µ0
(
Sn∞
)
satisfies429

β = F(β). Moreover, Lemmata 7 and 14 imply that β � ~µ0
(
Sn0
)
.430
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Consider now any distribution β ∈ DP(Q) such that β = F(β) and β � ~µ0
(
Sn0
)
. We need431

to prove that β � ~µ0
(
Sn∞
)
. Lemma 18 states that F is monotone. Therefore, by inductively432

applying Lemma 15 for i = 0, . . ., we infer that433

β = F(β) ≤ F
(
~µ0
(
Sni
))

= ~µ0
(
Sni+1

)
.434

Take any upward-closed family U ⊆ P(Q). The above inequality implies that for each i ∈ N435

we have
∑
P∈U β(P ) ≤

∑
P∈U ~µ0

(
Sni
)
(P ). By taking the limit as in Lemma 17 we obtain436

that
∑
P∈U β(P ) ≤

∑
P∈U ~µ0

(
Sn∞
)
(P ). This implies that β � ~µ0

(
Sn∞
)
.437

The case of ~µ0
(
Rn∞

)
is similar, we utilise the opposite monotonicity β � ~µ0

(
Rni+1

)
. J438

7 Computing measures439

In this section, we conclude our solution to Problem 1 for weak alternating automata. This440

is achieved by a reduction to the first-order theory of the real numbers R = 〈R, 0, 1,+, ·〉.441

The theory is famously decidable thanks to Tarski-Seidenberg theorem, see e.g. [25].442

Throughout this section, we assume that the reader is familiar with the syntax and443

semantics of first-order logic. We say that a formula ϕ(x1, . . . , xk) represents a relation r ⊆ Rk444

if it holds in R according to an evaluation v of the free variables x1, . . . , xn, precisely when445

the tuple 〈v(x1), . . . , v(xk)〉 belongs to r. For example, the formula ∃z. x + (z·z) = y446

represents the standard ordering ≤ on real numbers. A formula represents a number a ∈ R447

if it represents the singleton {a}; for example the formula x·x = 1+1∧∃z. x = z·z, represents448

the number
√

2.449

I Theorem 20. Given a weak alternating automaton A one can compute a formula ψA(x)450

that represents the number µ0
(
L(A)

)
. Moreover, the formula is in a prenex normal form, its451

size is exponential in the size of A, and the quantifier alternation of ψA(x) is constant.452

Proof. Fix a weak alternating automaton A = 〈A,Q, qI, δ,Ω〉. Let N > Ω(qI) be an even453

number (either Ω(qI)+1 or Ω(qI)+2). Fix an enumeration {P1, . . . , PK} of P(Q) with K =454

2|Q|. We will identify a distribution α ∈ DP(Q) with its representation α = (a1, . . . , aK) ∈ RK455

as a vector of real numbers. Following this identification, α(Pk) stands for ak. Clearly the456

properties that F(α) = β, Q<n(α) = β, and Q≥n(α) = β are definable by quantifier free457

formulae of size polynomial in K.458

The following formula defines the fact that α ∈ DP(Q).459

dist(α) ≡
K∑
k=1

α(Pk) = 1 ∧
K∧
k=1

0 ≤ α(Pk) ≤ 1460

461

Analogously to our representation of distributions, every subset U ⊆ P(Q) can be462

represented by its indicator: a vector of numbers ι = (i1, . . . , iK) such that ι(P ) is either 0 (if463

P /∈ U) or 1 (if P ∈ U). Note that if U is upward closed then whenever P ⊆ P ′ and ι(P ) = 1464

then ι(P ′) = 1. The following formula defines the fact that ι represents an upward-closed set.465

upward(ι) ≡
K∧
k=1

(
ι(Pk)=0 ∨ ι(Pk)=1

)
∧
∧
P⊆P ′

ι(P )=1→ ι(P ′)=1.466

467

Thus, to check if α � β one can use the following formula (see Claim 21 below)468

minor(α, β, ι) ≡
K∑
k=1

α(Pk) · ι(Pk) ≤
K∑
k=1

β(Pk) · ι(Pk).469

470
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α0 = ~µ0(S0
0 )

β0 = ~µ0(S0
∞)

♥

β1 = ~µ0(R0
∞)

α1 = ~µ0(R0
0)

♠

Q<1

α2 = ~µ0(S0
0 )

β2 = ~µ0(S0
∞)

♥

β3 = ~µ0(R0
∞)

α3 = ~µ0(R0
0)

♠

Q<3

Q≥2
· · ·

· · ·

· · ·

Q≥4

Figure 2 A diagram of the distributions αn and βn in the formula ψA(x), cf. Figure 1. The
symbol ♥ represents applications of Proposition 19 in the case of Sn

0 and Sn
∞; while ♠ corresponds

to the dual case of Rn
0 and Rn

∞.

Notice that all the above formulae: dist(α), upward(ι), and minor(α, β, ι) are quantifier471

free: the
∧

there are just explicitly written as finite conjunctions. Therefore, these formulae472

can be used to relativise quantifiers in a prenex normal form of a formula: for instance we473

write ∀α : dist(α). ∃β : dist(β). ψ(α, β) to denote ∀α. ∃β. dist(α)→
(
dist(β) ∧ ψ(α, β)

)
.474

B Claim 21. Given two distributions α and β, we have α � β if and only if475

∀ι : upward(ι). minor(α, β, ι).476

The formula ψA(x) is indented to specify the distributions (αn, βn)n=0,...,N in a way477

depicted on Figure 2. The value ~µ0
(
S0

0 (P )) is 1 if P = Q and 0 otherwise, see Lemma 10.478

Proposition 19 allows us to define ~µ0
(
Sn∞) (resp. ~µ0

(
Rn∞)) using ~µ0

(
Sn0 ) (resp. ~µ0

(
Rn0 )) as479

specific fixed points of the operation F . Finally, Lemma 16 allows us to define ~µ0
(
Rn0
)

480

using Q<n, and ~µ0
(
Sn0
)
using Q≥n. The value of x is related to those distributions based481

on Lemma 10 which implies that µ0
(
L(A)

)
=
∑
P : qI∈P∈P(Q) ~µ0

(
SN0
)
(P ).482

The following equation defines the formula ψA(x).483

ψA(x) ≡ ∃α0, β0 : dist(α0),dist(β0), β0=F(β0).484

... (8)485

∃αN , βN : dist(αN ),dist(βN ), βN=F(βN ).486

∀θ : dist(θ), θ=F(θ). (9)487

∃ι0 : upward(ι0).488

... (10)489

∃ιN : upward(ιN ).490

∀γ0 : upward(γ0).491

... (11)492

∀γN : upward(γN ).493 α0(Q) = 1 ∧
∧
P 6=Q

α0(P ) = 0

 ∧ (12)494

(
N∧
n=1

[n is odd]→ αn = Q<n(βn−1)
)
∧ (13)495 (

N∧
n=1

[n is even]→ αn = Q≥n(βn−1)
)
∧ (14)496
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(
N∧
n=0

[n is odd]→ minor(αn, βn, γn)
)
∧ (15)497 (

N∧
n=0

[n is even]→ minor(βn, αn, γn)
)
∧ (16)498 (

N∧
n=0

[n is odd]→
(
¬minor(αn, θ, ιn) ∨minor(βn, θ, γn)

))
∧ (17)499 (

N∧
n=0

[n is even]→
(
¬minor(θ, αn, ιn) ∨minor(θ, βn, γn)

))
∧ (18)500 ∑

P3qI

αN (P ) = x

 (19)501

502

Observe that the size of this formula is polynomial in K and N (in fact it is O(N ·K2)),503

i.e. exponential in the size of the automaton A. Moreover, the formula is in prenex normal504

form and its quantifier alternation is 4 (the sub-formulae that involve
∧

are written explicitly505

as conjunctions).506

We begin by proving soundness of the formula: we assume that ψA(x) holds and show507

that x = µ0
(
L(A)

)
. Consider a sequence of distributions (αn, βn)n=0,...,N witnessing (8).508

The following two lemmata prove inductively that for n = 0, . . . , N we have509

αn = ~µ0(Sn0 ) and βn = ~µ0(Sn∞) for even n, (20)510

αn = ~µ0(Rn0 ) and βn = ~µ0(Rn∞) for odd n.511
512

I Lemma 22. Using the above notations and the assumption that ψA(x) holds:513

for even n, if αn = ~µ0(Sn0 ) then βn = ~µ0(Sn∞),514

for odd n, if αn = ~µ0(Rn0 ) then βn = ~µ0(Rn∞).515
516

Proof. Both claims follow from Proposition 19. Take n odd and assume that αn = ~µ0(Rn0 ).517

We know that βn = F(βn) by (8). Moreover, by Claim 21, the arbitrary choice of γn, and (15)518

we know that αn � βn. It is enough to prove that if θ is any distribution satisfying αn � θ519

and θ = F(θ) then βn � θ.520

Assume contrarily that θ is a distribution such that αn � θ and θ = F(θ) but βn � θ.521

We know that θ must satisfy the sub-formula in (9). Take the upward closed sets (ι`)`=0,...,N522

given by (10). Now let (γ`)`=0,...,N be any sequence of upward closed sets such that γn523

witnesses the fact that βn � θ, i.e. ¬minor(βn, θ, γn) holds. But this is a contradiction524

with (17) because minor(αn, θ, ιn) is true as αn � θ and minor(βn, θ, γn) is false.525

The case of even n is analogous. J526

I Lemma 23. Using the above notations and the assumption that ψA(x) holds:527

αn = ~µ0(Sn0 ) for even n and αn = ~µ0(Rn0 ) for odd n.528
529

Proof. The proof is inductive in n. First, α0 = ~µ0(Sn0 ) because of (12) and the statement530

for n = 0 in Lemma 10 (we can take θ = β0 and γ` = ι` for ` = 0, . . . , N to check that531

Condition (12) holds).532

Now assume that the above conditions are true for n−1 for some n ∈ {1, . . . , N}. Again,533

by the symmetry we assume that n is odd, i.e. αn−1 = ~µ0(Sn−1
0 ). By Lemma 22 we know534

that βn−1 = ~µ0(Sn−1
∞ ). Condition (13) says that αn = Q<n(βn−1) = Q<n

(
~µ0(Sn−1

∞ )
)
. Now535

Lemma 16 implies that Q<n
(
~µ0(Sn−1

∞ )
)

= ~µ0
(
Rn0
)
and the induction step is complete. J536
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Equation (20) together with Condition (19), imply that x = µ0{t ∈ TrA | qI ∈ SN0 [t]}.537

Since N > Ω(qI) is even, Lemma 10 implies that SN0 (qI) = L(A, qI) and therefore, qI ∈ SN0 [t]538

if and only if t ∈ L(A). This guarantees that x = µ0
(
L(A)

)
.539

We will now prove completeness of the formula: if x = µ0
(
L(A)

)
then ψA(x) holds.540

Choose the distributions (αn, βn)n=0,...,N in (8) as in (20). We will show that then the541

rest of the formula holds. Consider any distribution θ. For each n = 0, . . . , N let ιn be542

an upward-closed set witnessing that αn � θ for n odd (resp. θ � αn for n even); or any543

upward closed set if the respective inequality holds.544

Take any (γn)n=0,...,N that are upward closed. We need to check that the sub-formula545

starting in (12) holds. Conditions (12) — (16) and (19) hold by the same lemmata as546

mentioned in the previous section. To check Conditions (17) and (18) one again invokes547

Proposition 19: either ιn witnesses that αn � θ (resp. θ � αn) or, if ιn was chosen arbitrarily,548

then Proposition 19 implies that also the respective inequality with βn holds. J549

8 Branching processes550

For the sake of simplicity we define only binary branching processes, the case of a fixed551

higher arity can be solved analogously. A branching process is a tuple P = 〈A, τ, αI〉 where A552

is a finite alphabet; τ : A→ DA2 a branching function that assigns a probability distribution553

over A2 to every letter in A; and αI ∈ DA an initial distribution. We assume that all554

probabilities occurring in these distributions are rational. By the size of P we understand555

the size of its binary representation.556

A branching process P can be seen as a generator of random trees: it defines a complete557

Borel measure µP over the set of infinite trees in the following way. Let f : dom(f) → A558

be a complete finite tree of depth d ≥ 0 i.e. dom(f) = {u ∈ {L, R}∗ | |u| ≤ d} = {L, R}<d+1.559

Then the measure µP of the basic set Uf , see Section 2, is defined by560

µP(Uf ) def= αI(f(ε)) ·
∏

u∈{L,R}<d

τ(f(u))
(
f(uL), f(uR)

)
. (21)561

Now, µP can be extended in a standard way to a complete Borel measure on the set of all562

infinite trees TrA. Intuitively, a tree t ∈ TrA that is chosen according to µP is generated563

in a top-down fashion: the root label t(ε) is chosen according to the initial distribution αI;564

and the labels of the children uL and uR of a node u are chosen according to the distribution565

τ(t(u)) ∈ DA2 defined for the label of their parent u.566

Observe that the uniform measure µ0 over trees TrA equals the measure µP0 defined567

by the branching process P0 = 〈A, τ0, α0〉, where α0(a) = |A|−1 and τ0(a)(aL, aR) = |A|−2
568

for each a, aL, aR ∈ A.569

I Theorem 24. Given a weak alternating automaton A and a branching process P one can570

compute a formula ψA,P(x) that represents the number µP
(
L(A)

)
. Moreover, the formula571

is in a prenex normal form; its size is exponential in the size of A and polynomial in the size572

of P; and the quantifier alternation of ψA,P is constant.573

If one does not care about the complexity, the above result can be obtained directly,574

by interpreting the branching process P in an automaton A. More precisely, there exists575

an algorithm that, given a weak alternating automaton A and a branching process P,576

computes another weak alternating automaton AP such that577

µP
(
L(A)

)
= µ0

(
L(AP)

)
.578
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Therefore, the decidability part of Theorem 24 follows directly from Theorem 20. A construc-579

tion of AP is given in Subsection 8.1. Another advantage of the construction given there is580

that it deals explicitly with branching processes of arbitrary branching (possibly non-binary).581

However, it is possible to provide a direct way of constructing the formula ψA,P with the582

size of the formula polynomial in the size of P, see Subjection 8.2.583

8.1 Encoding branching processes in automata584

This section shows how to use the expressive power of weak MSO to simulate branching585

processes within the uniform measure.586

An `-branching tree over an alphabet A is a function t : {D1, . . . , D`}∗ → A, where D1,. . . ,D`587

are ` distinct symbols (we assume that L = D1 and R = D2). The set of all such trees is denoted588

Tr(`)
A .589

Similarly, an `-branching process P = 〈A, τ, αI〉 is defined analogously to a branching590

process, except that a branching function τ : A→ DA` randomly produces `-tuples of letters.591

This implies that the measure µP is a Borel measure over the set of `-branching trees Tr(`)
A .592

An `-branching alternating automaton A is again analogous to a standard alternating593

automaton but the atoms (d, q′) in the transition formulae satisfy d ∈ {D1, . . . , D`}. If t is594

an `-branching tree and A is an `-branching automaton, then the game G(t, p) is defined595

analogously as in Section 2. Thus, the language L(A) is a subset of Tr(`)
A .596

According to the above definitions, standard trees, branching processes, and automata,597

as defined in the main body of this article, are 2-branching.598

I Proposition 25. Let A be a weak `-branching alternating automaton over an alphabet A599

and P be a `-branching process. Let A0 be any alphabet with at least two symbols. Then, one600

can construct a weak 2-branching alternating automaton AP over the alphabet A0 such that601

µP
(
L(A)

)
= µ0

(
L(AP)

)
, where µ0 is the uniform measure over 2-branching trees TrA0 .602

Notice that for ` = 2 this reduction is made redundant by the results of Subsection 8.2,603

which allows us to directly compute µP
(
L(A)

)
. Moreover, the construction provided there has604

better complexity: the obtained formula ψA,P is only polynomial in the size of P. However,605

we provide the present reduction because it shows that the class of languages recognisable by606

weak alternating automata is robust. In particular, if one does not care about the size of607

the respective formulae, then Theorem 24 can be obtained via the above reduction directly608

from Theorem 20. Also, this is the only place in the article when we explicitly deal with609

branching processes of higher branching than 2.610

We start with an encoding of rational numbers.611

I Lemma 26. Let X be a finite set, A0 any alphabet with at least two symbols, and α ∈612

DX a probabilistic distribution with rational values. Then there exists a weak alternating613

automaton Aα over the alphabet A0 with a set of states Qα and a function j : X → Qα such614

that:615

for x 6= x′ ∈ X the languages L(Aα, j(x)) and L(Aα, j(x′)) are disjoint;616

the union
⋃
x∈X L(Aα, j(x)) is the set of all trees Tr{0,1};617

for every x ∈ X the measure µ0
(
L(Aα, j(x))

)
equals α(x).618

Proof. Without loss of generality we can assume that A0 = {0, . . . , |A0| − 1}. Assume that619

X = {x1, . . . , xK}. Fix rational numbers rk
def=
∑
k′≤k α(xk′) for k = 0, . . . ,K. We know that620

r0 = 0 and rK = 1. For each k = 0, . . . ,K let ek be the M -ary expansion of rk, i.e. ek ∈ Aω0621

is a word such that rk = 0.ek. Since each of the numbers rk is rational, the words ek are622

ultimately periodic, i.e. of the form u · v · v · v · · ·623
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Each tree t ∈ TrA0 induces a real number r(t) ∈ [0, 1] that is obtained by reading the624

left-most branch of t and treating it as an |A0|-ary expansion of r(t).625

Let e, e′ ∈ Aω0 be two expansions of rational numbers with 0.e < 0.e′. It is now standard626

to construct a weak deterministic automaton Ae,e′ with an initial state qe,e′ that accepts627

a tree t ∈ TrA0 if and only if 0.e ≤ r(t) < 0.e′.628

Now, to obtain the automaton Aα it is enough to take the disjoint union of the automata629

Aek−1,ek
for k = 1, . . . ,K and define j(xk) = qek−1,ek

. J630

We now move to the proof of Proposition 25. Take a weak `-branching alternating631

automaton over an alphabet A and an `-branching process P over the same alphabet. For632

the sake of simplicity assume that the initial distribution αI of P is concentrated in a single633

letter aI ∈ A.634

The above construction will be used to simulate the random choice represented by the635

distributions τ(a) ∈ DA`. The automaton AP is defined as a disjoint union of the automata636

Aτ(a) for each a ∈ A together with a modified copy of A. This modified copy of A has states637

of the following two forms:638

pairs (q, a) where q is a state of A and a ∈ A;639

triples (d, q, a) where d ∈ {D1, . . . , D`}, q is a state of A, and a ∈ A.640

Given a transition δ(q, a) of the automaton A and a vector ~a ∈ A` let δ̄(q, a,~a) be defined641

as the same formula as δ(q, a), except that each atom (d, q) is replaced by
(

R, (d, q,~a(d))
)
—642

a transition to the right in a tree to the state (d, q,~a(d)) of AP . Now, the automaton AP ,643

together with all the transitions of Aτ(a) for a ∈ A has the following transitions for b ∈ A0:644

δ
(
(q, a), b

) def=
∨
~a∈A`

(
L, j(~a)

)
∧ δ̄(q, a,~a)645

where j(~a) is the respective state of the automaton Aτ(a)646

such that µ0
(
L(Aτ(a);, j(~a)

)
= τ(a)(~a)647

δ
(
(D1, q, a), b

) def=
(

L, (q, a)
)

648

δ
(
(Dk+1, q, a), b

) def=
(

R, (Dk, q, a)
)

for k = 1, . . . , `−1.649

650
651

The priority mapping of AP is taken from Aτ(a) and A respectively, i.e. Ω(q, a) = Ω(d, q, a) =652

Ω(q) + 2 — we need this shift because the initial states of Aτ(a) have priority 2. Let the653

initial state of AP be (qI, aI).654

The automaton AP is designed in such a way to treat each tree t ∈ TrA0 as an encoded655

version of a tree t ∈ TrA. To formally prove this fact, we first need to define that encoding.656

For this purpose, we define a family of functions Ta from TrA0 into Tr(`)
A indexed by letters657

a ∈ A. Consider a ∈ A and a tree t ∈ TrA0 . Let t′
def= t�L be the left subtree of t. Similarly,658

for k = 1, . . . , ` let tk
def= t�RkL. Let ~a ∈ A` be the unique vector of letters such that659

t′ ∈ L
(
Aτ(a), j(~a)

)
. Notice that since t was chosen randomly, the probability distribution of660

the vectors ~a defined here is exactly τ(a). Then, let the resulting tree Ta(t) have the root661

labelled a and for k = 1, . . . , ` let the Dk-th subtree of Ta(t) equal T~a(k)(tk). See Figure 3 for662

a depiction of that definition.663

B Claim 27. Given a tree t ∈ TrA0 the automaton AP accepts t from a state (q, a) if and664

only if A accepts the tree Ta(t) from q. In other words,665

L
(
AP , (q, a)

)
= T−1

a

(
L(A, q)

)
.666
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t Ta(t)

_

t′

_

t1

_

t` _

a

T~a1(t1) T~a`
(t`)

Figure 3 An illustration of an operation Ta for a ∈ A. Nodes and the subtree marked with _ are
irrelevant in this construction. The subtree t′ is used to determine which vector ~a ∈ A` to use — it
simulates the random choice of that vector using τ(a). Then the subtrees tk for k = 1, . . . , ` are
recursively decoded by T~ak

according to the chosen letters of ~a.

Proof. First observe that Lemma 26 implies that whenever AP takes a transition of the667

form δ
(
(q, a), b

)
then there is exactly one candidate of ~a ∈ A` such that the left subtree668

under the current node can be accepted from the state j(~a). Therefore, player ∃ in the game669

G
(
t, (q, a)

)
is always forced to choose that disjunct there. If the proper disjunct is chosen,670

then the choice of the atom
(

L, j(~a)
)
is losing for ∀ because the respective subtree t′ belongs671

to L
(
Aτ(a), j(~a)

)
. Thus, we can assume that ∀ never chooses this atom.672

Under the two above assumptions, the game G
(
t, (q, a)

)
given by the automaton AP673

becomes equivalent to the game G(Ta(t), q) given by the automaton A. J674

The next lemma states that the mapping TaI for the initial symbol aI ∈ A allows to move675

between the measures µ0 and µP . Recall that we have assumed that αI(aI) = 1.676

I Lemma 28. The mapping TaI preserves the measure: for every measurable subset L ⊆ Tr(`)
A677

and its pre-image L′ def= T−1
aI

(L) we have µ0(L′) = µP(L).678

Proof. It is enough to check this on a basic set L as in (21). But in that case it follows from679

Lemma 26 and the fact that the subtrees t′ used to choose the respective vectors ~a have680

pairwise-incomparable roots. J681

By applying Claim 27 and Lemma 28 we obtain that682

µ0
(
L(AP)

)
= µ0

(
L
(
AP , (qI, aI)

))
= µ0

(
T−1
aI

(
L(A, qI)

))
= µP

(
L(A, qI)

)
= µP

(
L(A)

)
.683

This concludes the proof of Proposition 25.684

8.2 Branching processes - direct construction685

In this section we want to show how to extend our main result, of computing the uniform686

measure of a weak-MSO recognisable language, to measures generated by arbitrary branching687

processes.688
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The core of the proof will stay the same as in the main part of the article, we will define689

two types of operators F , Q, and explain, how the measure can be computed using those690

operators.691

Let us fix a regular language of trees L and a weak alternating automaton A such that692

L(A) = L.693

Let us fix a branching process P = 〈A, τ, αI〉. We want to distinguish between the694

alphabet A treated as the set of labels of trees, from A treated as vertices of the branching695

process P . Thus, we put V = A and use the symbol v ∈ V to denote letters generated by P .696

This means that τ : V → DV 2 and αI ∈ DV .697

By µP(v), where v ∈ V , we understand the measure induced by the process P with the698

initial distribution α′I concentrated in v, i.e. α′I(v) = 1 and α′I(v′) = 0 for v′ 6= v.699

By a simple calculation, we have that700

µP(L) =
∑
v∈V

αI(v) · µP(v)(L). (22)701

Thus, we only need to determine the values of ~µP(v)(L) for v ∈ V .702

The measure defined in a subtree, unlike in Remark 3, is not always uniform and703

may non-trivially depend on the label of the root of the subtree. This implies that the704

distributions β used in the whole procedure may depend on the initial vertex and, thus,705

this information has to be included. It turns out that simply lifting distributions to tuples706

indexed by the origin point in the branching process is enough. We lift distributions to707

tuples of distributions by defining βP : V → DP(Q). In other words, the basic space that we708

work is, instead of DP(Q) is now
(
V → DP(Q)

)
. Let the order � be defined on V → DP(Q)709

coordinate-wise: αP � βP if for every v ∈ V we have αP(v) � βP(v).710

Now, our definitions of previously used operations have to be adjusted accordingly. By711

slight abuse of notation, we will simply overload the definitions. This will not produce712

confusion, since we will not use the old definitions in this part.713

Take a Q-indexed family L. Define the distribution ~µP ∈ V → DP (Q).714

~µP
(
L
)
(v)(P ) def= µP(v)

{
t ∈ TrA | L[t] = P

}
(23)715

Notice that the set of trees with root labelled v is of full µP(v) measure. Thus716

µP(v)
{
t ∈ TrA | L[t] = P

}
= µP(v)

{
t ∈ TrA | L[t] = P ∧ t(ε) = v

}
(24)717

Also, the measure µP satisfies the following independence property similar to Remark 3.718

I Remark 29. Let LL, LR ⊆ TrA be two Borel sets and v ∈ V . Then719

µP(v)
{
t | t�L∈LL ∧ t(ε)=v ∧ t�R∈LR

}
=

∑
vL,vR∈V 2

τ(v)(vL, vR) · µP(vL)
(
LL
)
· µP(vR)

(
LR
)
.720

As before, the sets in consideration are measurable thanks to Proposition 6.721

I Lemma 30. Fix v ∈ V . If for every q ∈ Q we have L(q) ⊆ L′(q) then ~µP(L) � ~µP(L′) in722

V → DP(Q).723

The proof is the same as the proof of Lemma 14, as it depends on general properties724

of measures.725

Now, we examine the sequences of distributions ~µP
(
Sni
)
, ~µP

(
Rni
)
, ~µP

(
Sn∞
)
, and ~µP

(
Rn∞

)
726

arising from the Q-families introduced before. Our aim again is to bind them by some727

equations computable within V → DP(Q). As an analogue to the operation F , we introduce728
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the function FP : (V → DP(Q))→ (V → DP(Q)) defined for v ∈ V , βP ∈ V → DP(Q), and729

P ∈ P(Q) by730

FP(βP)(v)(P ) def=
∑

(PL,v,PR)∈∆−1(P )

∑
(vL,vR)∈V 2

τ(v)(vL, vR)
(
βP(vL)(PL) · βP(vR)(PR)

)
(25)731

As before, the formula guarantees that FP(βP)(v) is indeed a probabilistic distribution in732

DP(Q). The operator F will allow us to transfer the inductive definitions of the Q-families733

Sni+1 and Rni+1 given by Lemma 12, to the level of probability distributions.734

From now on, we omit the index P in FP .735

I Lemma 31. For each n ∈ N and i ∈ N we have736

~µP
(
Sni+1

)
= F

(
µP
(
Sni
))

and ~µP
(
Rni+1

)
= F

(
~µP
(
Rni
))
.737

Proof. Take P ∈ P(Q) and v ∈ V observe that738

F
(
~µP
(
Sni
))

(v)(P ) (1)=
∑

(PL,v,PR)∈∆−1(P )

∑
(vL,vR)∈V 2

τ(v)(vL, vR)·739

(
~µP
(
Sni
)
(vL)(PL) · ~µP

(
Sni
)
(vR)(PR)

)
740

(2)=
∑

(PL,v,PR)∈∆−1(P )

∑
(vL,vR)∈V 2

τ(v)(vL, vR)·741

(
µP(vL)

{
tL | Sni [tL]=PL

}
· µP(vR)

{
tR | Sni [tR]=PR

})
742

(3)=
∑

(PL,v,PR)∈∆−1(P )

µP(v)
{
t | Sni [t�L]=PL ∧ t(ε)=v ∧ Sni [t�R]=PR

}
743

(4)= µP(v)

 ⋃
(PL,v,PR)∈∆−1(P )

{
t | Sni [t�L]=PL ∧ t(ε)=v ∧ Sni [t�R]=PR

}744

(5)= µP(v)
{
t ∈ TrA | ∆

(
Sni [t�L], t(ε),Sni [t�R]

)
=P ∧ t(ε) = v

}
745

(6)= µP(v)
{
t ∈ TrA | Sni+1[t]=P ∧ t(ε) = v

}
746

(7)= µP(v)
{
t ∈ TrA | Sni+1[t]=P

}
(8)= ~µP

(
Sni+1

)
(v)(P ),747

748

where: (1) is just the definition of F
(
~µP
(
Sni
))

; (2) follows from the definition of ~µP
(
Sni
)
;749

(3) follows from the definition of µP and Remark 29; (4) follows from the fact that the750

measured sets are pairwise disjoint; (5) follows simply from the definition of ∆; (6) follows751

from Lemma 12; (7) follows from (24); and (7) is just the definition of ~µP
(
Sni+1

)
.752

The proof for Rni+1 is entirely analogous (we use the Rni variant of Lemma 12 instead). J753

Now, recall that Q≥n and Q<n are sets of states of respective priorities. Let the functions754

Q≥n,Q<n : (V → DP(Q))→ (V → DP(Q)) be defined by755

Q≥n(βP)(v)(P ) def=
∑

P ′ : P ′∪Q≥n=P
βP(v)(P ′),756

Q<n(βP)(v)(P ) def=
∑

P ′ : P ′∩Q<n=P
βP(v)(P ′).757

758

Again, the formulas guarantee that Q≥n(βP)(v) and Q<n(βP)(v) are both probabilistic759

distributions in DP(Q). The following lemma shows the relation between these functions760

and the limit distributions ~µP
(
Sn−1
∞

)
and ~µP

(
Rn−1
∞
)
.761
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I Lemma 32. For each n ∈ N we have762

Q<n
(
~µP
(
Sn−1
∞

))
= ~µP

(
Rn0
)

if n is odd,763

Q≥n
(
~µP
(
Rn−1
∞
))

= ~µP
(
Sn0
)

if n is even.764
765

Proof. Note that the proof of Lemma 16 does not depend on the underlying measure, and766

therefore it carries over. J767

Again, the two above lemmata show that the operators F , Q<n, and Q≥n are enough768

to perform the respective computations in V → DP(Q) as they do on Figure 1.769

In Section 6 we prove the connection between the limit distributions ~µP
(
Sn∞
)
, ~µP

(
Rn∞

)
770

(unary versions) and fixed points of the operator F , see Lemma 17. The same line of771

proof works in the case of tuples, if we apply the reasoning point-wise, i.e. we work now772

in (RP(Q))V = RP(Q)×V . The only missing ingredient is the monotonicity of the new773

operator FP .774

I Lemma 33. The operator F : (V → DP(Q))→ (V → DP(Q)) is point-wise monotone in775

the order � and continuous in RP(Q)×V .776

Proof. Continuity is again trivial. The fact that F is monotone follows from the monotonicity777

of ∆ and the point-wise definition of the order as follows. Recall the definition of FP , cf. (25):778

F(βP)(v)(P ) =
∑

(PL,v,PR)∈∆−1(P )

∑
(vL,vR)∈V 2

τ(v)(vL, vR)
(
βP(vL)(PL) · βP(vR)(PR)

)
779

We need to prove that for a fixed v ∈ V function F is monotone w.r.t. the order �. Thus,780

for every αP � βP ∈ V → DP(Q) and an upward-closed family U ⊆ P(Q) we should have781 ∑
P∈U FP(αP)(v)(P ) ≤

∑
P∈U FP(βP)(v)(P ). After splitting the sum over separate letters782

v, vL, vR ∈ V , it is enough to show that for Ov
def= {(PL, PR) | ∆(PL, v, PR) ∈ U} we have783 ∑

(PL,PR)∈Ov

αP(vL)(PL) · αP(vR)(PR) ≤
∑

(PL,PR)∈Ov

βP(vL)(PL) · βP(vR)(PR).784

The set Ov is again upward-closed on both coordinates, as in the proof of Lemma 18. We785

use the notation used there to denote the sections of that set. Thus, using the assumption786

that αP � βP twice (once for vL and once for vR), we obtain787

∑
(PL,PR)∈Ov

αP(vL)(PL) · αP(vR)(PR) =
∑

PL∈P(Q)

αP(vL)(PL) ·

 ∑
PR∈P

−1
L ·Ov

αP(vR)(PR)

788

≤
∑

PL∈P(Q)

αP(vL)(PL) ·

 ∑
PR∈P

−1
L ·Ov

βP(vR)(PR)

789

=
∑

(PL,PR)∈Ov

αP(vL)(PL) · βP(vR)(PR)790

=
∑

(PL,PR)∈Ov

βP(vR)(PR) · αP(vL)(PL)791

=
∑

PR∈P(Q)

βP(vR)(PR) ·

 ∑
PL∈Ov·P−1

R

αP(vL)(PL)

792
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≤
∑

PR∈P(Q)

βP(vR)(PR) ·

 ∑
PL∈Ov·P−1

R

βP(vL)(PL)

793

=
∑

(PL,PR)∈Ov

βP(vR)(PR) · βP(vL)(PL)794

=
∑

(PL,PR)∈Ov

βP(vL)(PL) · βP(vR)(PR).795

796

J797

Since F is continuous and monotone, ~µP
(
Sn∞
)
and ~µP

(
Rn∞

)
are the greatest-and798

least-fixed points of the appropriate operations. This observation allows us to compute the799

values µP(v)(L) and given Equation (22) we obtain the measure µP(L).800

9 Representing algebraic numbers801

We now use the formulae ψA and ψA,P constructed above to find the measure of the lan-802

guage L(A). We use the celebrated result of Tarski [25] and its two algorithmic improvements.803

I Theorem 34 ([2,3]). Given a formula ψ of first-order logic over R, one can decide if ψ804

holds in deterministic exponential space. Moreover, if ψ is in a prenex normal form and805

the alternation of quantifiers ∀ and ∃ in ψ is bounded then the algorithm works in single806

exponential time in the size of ψ.807

Proof of Theorem 2. Input a weak alternating automaton A, a branching process P, and808

a rational number q. Consider the formula ψ ≡ ∃x. ψA,P(x) ∧ q ./ x, where ./ is one of <,809

=, or >. Notice that ψ is in prenex normal form; its size is exponential in the size of A and810

polynomial in the size of P; and its quantifier alternation is constant. Apply the algorithm811

from Theorem 34 to check whether ψ is true in R. J812

We can also compute a representation of the measure µP
(
L(A)

)
. The quantifier elim-813

ination procedure due to Tarski [25] transforms a formula ψ(x1, . . . , xn) into an equivalent814

quantifier-free formula ψ̂(x1, . . . , xn), which moreover can be represented by a semialgebraic815

set, see [4, Chapter 2].816

I Theorem 35 ([7]). Given a formula ψ(x1, . . . , xn) of first-order logic over R, one can817

construct a representation of the set of tuples (x1, . . . , xn) satisfying ψ, as a semialgebraic818

set. Moreover, this algorithm works in time doubly-exponential in the size of ψ.819

Theorems 20 and 24 together with the above results imply the following claim.820

I Corollary 36. Given a weak alternating automaton A of size n, one can compute a repres-821

entation of the value µ0
(
L(A)

)
as a singleton semialgebraic set in time triply exponential822

in n. Moreover, given a branching process of size m, one can compute a representation of the823

value µP
(
L(A)

)
as a singleton semialgebraic set in time triply exponential in n and doubly824

exponential in m.825

10 Conclusions826

We have shown how to compute the probability measure of a tree language L recognised827

by a weak alternating automaton. The crucial trait is continuity of certain approximations828
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of the measure of L in a properly chosen order �, see Lemma 17. This continuity relies829

on König’s lemma, cf. Lemma 9. In terms of µ-calculus, it stems from both the absence830

of alternation between least and greatest fixed points in formulae and the boundedness of831

branching in models (for a study of continuity in µ-calculus see [11]).832

Whether our techniques can be extended beyond weak automata—hopefully to all tree833

automata or, equivalently, full MSO logic, or full µ-calculus—remains open. The question834

is of interest as, e.g. translation of the logic CTL* into µ-calculus requires at least one835

alternation between least and greatest fixed points (cf. [9], Exercise 10.13). On the other836

hand, fixed point formulas over binary trees are not continuous in general, and may require ω1837

iterations to reach stabilisation, already on the second level of the fixed-point hierarchy.838

This problem has been already successfully tackled in the context of measurability of839

regular tree languages—Mio [16] uses Martin’s axiom to control the behaviour of measure840

when taking limits of sequences of length ω1. Such behaviour cannot be directly simulated841

in DX, because each well-founded chain of distributions has a countable length. However,842

this need not be an absolute obstacle as it might be the case that the values of the measure843

of the iterations stabilise before the actual fixed point is reached, possibly in ω steps.844
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