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Abstract
An infinite tree is called thin if it contains only countably many infinite branches. Thin trees
can be seen as intermediate structures between infinite words and infinite trees. In this work we
investigate properties of regular languages of thin trees.

Our main tool is an algebra suitable for thin trees. Using this framework we characterize
various classes of regular languages: commutative, open in the standard topology, closed under
two variants of bisimulational equivalence, and definable in WMSO logic among all trees.

We also show that in various meanings thin trees are not as rich as all infinite trees. In
particular we observe a parity index collapse to level (1, 3) and a topological complexity collapse
to co-analytic sets. Moreover, a gap property is shown: a regular language of thin trees is either
WMSO-definable among all trees or co-analytic-complete.
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1 Introduction

Since the decidability results by Büchi [7] and Rabin [18], regular languages of infinite words
and trees have been intensively studied. Those languages can be equivalently described in
monadic second-order (MSO) logic, by nondeterministic finite automata, or in terms of
homomorphisms to finite algebras. Apart from the emptiness problem, which is known to
be decidable, one ask about decidability for other, more subtle properties of a given language.

Suppose that X is a subclass of regular languages of infinite trees, e.g. X can be the lan-
guages that are definable in first-order (FO) logic with descendant; or definable in weak MSO
(WMSO); or recognized by a nondeterministic parity automaton with priorities {i, . . . , j}.
An effective characterization for X is an algorithm which inputs a regular language of infin-
ite trees and answers if the language belongs to X. As far as decidability is concerned the
representation of the language is not very important, since there are decidable translations
between the many ways of representing regular languages of infinite trees.

Effective characterizations are a lively and important topic in the theory of regular
languages. In the case of finite words there are many celebrated results, e.g. characterizations
of FO [19], two-variable FO [22] or piecewise testable languages [20]. Many of these results
carry over to infinite words, see [24], [17], or [13]. For finite trees much less is known, but still
there are some techniques [3]. The main reason why effective characterizations are studied is
that an effective characterization of a class X requires a deep insight into the structure of the
class. Usually this insight is achieved through an algebraic framework, such as semigroups
for finite words, Wilke semigroups for infinite words, or forest algebra for finite trees. Apart
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2 Regular languages of thin trees

from having a well-developed structure theory, another advantage of algebra is that many
effective characterizations can be elegantly stated in terms of identities.

Effective characterizations are technically challenging, and in fact there are very few
effective characterizations for languages of infinite trees: for languages recognized by top-
down deterministic automata one can compute the Wadge degree [15], for arbitrary regular
languages one can decide definability in the temporal logic EF [4] or in the topological class
of Boolean combinations of open sets [5]. One of the reasons why effective characterizations
are so difficult for infinite trees is that, so far, there is no satisfactory algebraic approach to
infinite trees, or even a canonical way to present a regular language. Proposed algebras (see
[4], [2]) either have no finite representation or yield no effective characterizations.

In this paper, we propose to study thin trees, which generalize both finite trees and
infinite words, but which are still simpler than arbitrary infinite trees. A tree is called thin
if it has only countably many infinite branches (or equivalently, it does not contain a full
binary tree as a minor). We believe that thin trees are a good stepping stone on the way to
understanding regular languages of arbitrary infinite trees.

Our contributions can be divided into two sets:
Effective characterizations. We characterize the following classes of regular languages of
thin trees in terms of finite sets of identities:

closed under rearranging of siblings,
closed under bisimulation equivalence (in two variants),
open in the standard topology,
definable in the temporal logic EF,
definable among all forests in WMSO logic.

The crucial ingredient of these characterizations is an observation that a regular language
of thin trees can be canonically represented by a finite algebraic object, called its syntactic
thin-forest algebra. For general trees no such representation is known.
Upper bounds. We show that in various contexts thin trees are not as rich as generic trees:

The Rabin-Mostowski index hierarchy collapses to level (1, 3) on thin trees.
The projective hierarchy of regular languages collapses to level Π1

1 on thin trees (com-
paring to ∆1

2 in the case of all trees).
We observe a gap property (see [16]): a regular language of thin trees treated as a subset
of all trees is either definable in WMSO logic or non-Borel.
If we treat thin trees as our universe then no regular language is topologically harder
than Borel sets.

2 Preliminaries

This section introduces basic notions and facts used in the proofs. To avoid technical diffi-
culties when introducing algebras, we operate on finitely branching forests instead of partial
binary trees. The difference is only technical, all the results can be naturally transferred
back to the framework of partial binary trees.

2.1 Forests
Fix a finite alphabet A. By AFor we denote the set of all A-labelled forests. Formally a forest
is a partial mapping from its set of nodes dom(t) ⊂ ω+ into A. We additionally assume
that a forest is finitely branching: for every w ∈ ω∗ there are only finitely many nodes of
the form w0, w1, w2, . . . , wn in dom(t). For w = ε those nodes are called roots of the forest
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t and for w 6= ε these are children of the node w. In both cases the list of nodes of the form
wn ordered by n is called a list of siblings in t.

A node w ∈ dom(t) is branching if it has at least two distinct children wn1, wn2 ∈ dom(t).
A node in dom(t) is a leaf of t if it has no children in t.

A forest with exactly one root is called a tree. The empty forest is denoted as 0. For
a given forest t and a node x ∈ dom(t) by t �x we denote the subtree of t rooted in x:
dom(t�x) = {0 · w ∈ ω∗ : xw ∈ dom(t)}, t�x (0 · w) = t(xw).

Let t be a forest. A sequence π ∈ ω∗ is a finite branch of t if either π = ε and t = 0
or π ∈ dom(t) and π (as an element of ω+) is a leaf of t. A sequence π ∈ ωω is an infinite
branch of t if for every sequence w ∈ ω+ such that w ≺ π we have that w is a node of t.

A forest is regular if it has finitely many distinct subtrees. A forest is thin if it has
countably many branches. The set of all thin forests is denoted as AThinFor ⊂ AFor. A forest
is thin if and only if it is a tame tree in the meaning of [14].

We say that a forest s is a prefix of a forest t if dom(s) ⊆ dom(t) and for every x ∈ dom(s)
we have s(x) = t(x). We denote it by s ⊆ t.

Let t be a forest and s ⊆ t be a prefix of t. A node y ∈ t is off s if y /∈ s and either y is
a root, or the parent of y is in s. Since a branch π of t can be treated as a prefix of t this
definition also extends to branches.

An A-labelled context is a forest over the alphabet A∪{�}, where the label � is a special
marker, called the hole, which occurs exactly once and in a leaf. A context is guarded if its
hole is not in a root. For every letter a ∈ A we denote by a� the single-letter tree context
with a in the root and the hole below it.

Since we are interested in algebraic frameworks for forests, we need a set of operations
which will allow to build forest from basic elements. Following [6] we introduce following
operations on forests. For a graphical presentation of these operations, compare Figure 1
and Figure 2 in [6]. We can

concatenate two forests s, t, which results in the forest s+ t,
compose a context p with a forest t, which results in the forest pt, obtained from p by
replacing the hole with t,
compose a context p with a context q, which results in the context pq that satisfies
(pq)t = p(qt).

We write at, ap for a composition of a single-letter context a� with t or p (thus a0 is
a forest of one node labelled a). Additionally we have an operation which allows us to
produce infinite forests:

compose a guarded context p with itself infinitely many times, which results in the forest
p∞ that satisfies p(p∞) = p∞. Note that we exclude non-guarded contexts from this
definition. (For example the result of (� + a0)∞, even if well-defined, is not finitely
branching.)

2.2 Automata and regular languages

A (nondeterministic parity) forest automaton over an alphabet A is given by a set of states
Q equipped with a monoid structure, a transition relation ∆ ⊆ Q × A × Q, a set of initial
states QI ⊆ Q and a parity condition Ω: Q→ N. We use additive notation + for the monoid
operation in Q, and we write 0 for the neutral element.

We say that a forest automaton A has index (i, j) (or shortly that A is (i, j)-automaton)
if i is the minimal and j is the maximal value of Ω on Q.
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A run of this automaton over a forest t is a labelling ρ : dom(t)→ Q of forest nodes with
states such that for any node x with children x1, . . . , xn

(ρ(x1) + ρ(x2) + · · ·+ ρ(xn), t(x), ρ(x)) ∈ ∆.

Note that if x is a leaf, then the above implies (0, t(x), ρ(x)) ∈ ∆.
A run is accepting if for every (infinite) branch π of t, the highest value of Ω(q) is even

among those states q which appear infinitely often along the branch π. The value of a run
over a forest t is obtained by adding, using +, all the states assigned to roots of the forest.
A forest is accepted if it has an accepting run whose value belongs to QI . The set of forests
accepted by an automaton is called the language recognized by the automaton.

A language is regular if it is definable by a formula of monadic second-order logic (MSO).

I Theorem 1 ([11]). A language of thin forests is regular if and only if it is recognized by
some forest automaton. Every nonempty language of thin forests contains a regular forest.

We use MSO logic to describe properties of infinite forests. An infinite forest is treated
as a relational structure, where the universe is the nodes, and the predicates are: a binary
child predicate, a binary next sibling predicate, and one unary predicate for each label in
the alphabet. Additionally, we consider WMSO: the logic with the same syntax as MSO
but with the semantical restriction that all set quantifiers range over finite subsets of the
domain. Since the property that a given set is finite is MSO-definable on finitely branching
infinite forests, so WMSO can be naturally embedded into MSO. There are examples of
languages of infinite forests that are definable in MSO but not in WMSO.

2.3 Topology
A topological space X is Polish if it is separable and has a complete metrics. Polish topo-
logical spaces are the principal objects studied in descriptive set theory.

The set of forests AFor, equipped with the natural Tikhonov topology, is an uncountable
Polish topological space. The base of the topology is given by the sets of the form {t :
t�ω≤d= r} for finite forests r and a number (depth) d.

Let X be an uncountable Polish topological space. The class of open sets in X is denoted
as Σ0

1(X). The class of complements of open sets (called closed) is denoted as Π0
1(X). The

Borel hierarchy is defined inductively, the building ingredients are countable unions and
intersections. For a countable ordinal α let:

Σ0
α(X) be the class of countable unions of sets from

⋃
β<α Π0

β(X),
Π0
α(X) be the class of countable intersections of sets from

⋃
β<α Σ0

β(X).

The class of Borel sets is the union of all classes Σ0
α and Π0

α for α < ω1. A more detailed
introduction to the Borel hierarchy can be found e.g. in [12, Chapter II]. If the space is clear
from the context we will omit it and write just Σ0

α and Π0
α.

The class of Borel sets is not closed under projection. Each set that is a projection of a
Borel set is called analytic. The class of analytic sets is denoted by Σ1

1. The superscript 1
means that the class is a part of the projective hierarchy. The rest of the projective hierarchy
is defined as follows:

Π1
i consists of the complements of the sets from Σ1

i ,
Σ1
i+1 consists of the projections of the sets from Π1

i .
The sets from the class Π1

1 are called co-analytic.
The Borel hierarchy together with the projective hierarchy constitute the so-called bold-

face hierarchy. The most important property of this hierarchy is strictness: all the inclusions
on the following diagram are strict.
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I Fact 2. Every regular language of forests is in the intersection of Σ1
2 and Π1

2 (denoted by
∆1

2).
The set of thin forests AThinFor is Π1

1(AFor)-complete, thus non-Borel.

2.4 Ranks and skeletons
The crucial tool in our analysis of thin forests is structural induction — we inductively
decompose a given forest into simpler ones. A measure of complexity of thin forests is called
a rank — a function that assigns to each thin forest a countable ordinal number. The rank
we use, denoted CB-rank (or shortly rankCB), is based on the Cantor-Bendixson derivative
on closed subsets of ωω.

Intuitively, a forest t has rankCB equal M if t contains M levels of infinite branches:
The CB-rank of the empty forest is 0,
The CB-rank of a forest with finitely many branches is 1,
if s is a prefix of t of rank 1 and for every x that is off s we have rankCB(t�x) ≤M , then
rankCB(t) ≤M + 1.

The set of forests of CB-rank bounded by a given ordinal η is denoted as AThinFor≤η.
The second tool used to analyze structural properties of thin forests are skeletons. A

skeleton can be seen as a witness that a given forest is thin. Moreover, a skeleton of a thin
forest t represents a structural decomposition of t.

A subset of nodes σ ⊆ dom(t) of a given forest t ∈ AFor is a skeleton of t if:
from every set of siblings in t exactly one is in σ,
on every infinite branch π of the forest t almost all nodes x ≺ π belong to σ.

Observe that we can identify σ with its characteristic function — a labelling of nodes of
t by {0, 1}. Therefore, σ ∈ {0, 1}For and we can treat a pair of a forest and a skeleton (t, σ)
as an element of A× {0, 1}For.

An easy inductive argument shows that a forest t has a skeleton if and only if t is a thin
forest. Moreover, for every thin forest t one can define its canonical skeleton σ(t).

3 Algebra

In this section we define thin-forest algebra. Its operations and axioms are constructed
in such a manner that the free object of this algebra is the set of all regular thin forests
and regular thin contexts. Thin-forest algebra is a common generalization of both Wilke
algebra [25] and forest algebra [6].

A thin-forest algebra is a three-sorted algebra (H,V+, V�, act, inl , inr , inf ). It consists of
two monoids H and V = V+ ∪ V� (partitioned into a subsemigroup V+ and a submonoid
V�) along with an operation of left action act : H × V → H of V on H, two operations
inl , inr : H → V� and an infinite loop operation inf : V+ → H. Instead of writing act(h, v),
we write vh (notice a reversal of arguments). Instead of writing inf (v), we write v∞. We
will call H the horizontal monoid and V the vertical monoid.

The above construction is based on forest algebra (see [6]). In fact we take forest algebra
and introduce the new operation inf ; this operation corresponds to infinite composition
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of contexts. However, since infinite composition is defined only for guarded contexts, we
are forced to make a distinction between guarded and non-guarded objects, therefore we
partition the sort V into two parts V+ and V� respectively.

3.1 Axioms and free objects
A thin-forest algebra must satisfy the following axioms:

A1. (H,+, 0) is a monoid with operation + and neutral element 0,
A2. (V, ·,�) is a monoid with operation · and neutral element �; it contains two disjoint

subalgebras: (V�, ·,�) is a monoid and (V+, ·) is a semigroup,
A3. (action axiom) (vw)h = v(wh) for every v, w ∈ V , h ∈ H,
A4. (insertion axiom) inl(h)g = h+ g, inr(h)g = g + h for every h, g ∈ H,
A5. (vw)∞ = v(wv)∞ for v, w ∈ V , excluding the case when v, w ∈ V�,
A6. (vn)∞ = v∞ for v ∈ V+ and every n ≥ 1.

Given an alphabet A we define the free thin-forest algebra over A, which is denoted by
AregThin4, as follows:
1. the horizontal monoid is the set of regular thin forests over A, with the operation of

forest concatenation;
2. the vertical monoid is the set of regular thin contexts over A (respectively guarded and

non-guarded), with the operation of context composition;
3. the action is the substitution of forests in contexts;
4. the inl operation takes a regular thin forest and transforms it into a regular thin context

with the hole to the right of all the roots in the forest (similarly for inr but the hole is
to the left of the roots);

5. the infinite loop operation takes a regular thin context and transforms it into a regular
thin forest by performing infinite composition.

I Theorem 3. The algebra AregThin4 is a thin-forest algebra. Moreover it is the free algebra
in the class of thin-forest algebras over the generator set A� = {a� : a ∈ A}.

Since the insertion operations are somewhat cumbersome to use, we will use the operation
+ to concatenate forests with contexts, meaning h+ v = inl(h)v, v + h = inr(h)v.

We note that it is possible to introduce an algebra where the free object would be the
set of all thin forests and all thin contexts (not only regular ones). This can be done
by generalizing ω-semigroups. However, since regular languages of forests are uniquely
described by regular forests which they contain, this more general algebra gives us the same
information about the language as thin-forest algebra. See [11] for more details.

3.2 Recognizability by thin-forest algebra and regularity
A morphism between two thin-forest algebras is defined in a natural way. A set L of thin
forests over an alphabet A is recognized by a morphism α : AregThin4 → (H,V ) if L = α−1(I)
for some I ⊆ H.

We will consider terms in the signature of thin-forest algebra with typed variables. Vari-
ables can be of type τH , τV , or τV+ , which means that a valuation of a term should assign
to the variable an element of the sort H, V or V+ respectively. Similarly a term is of certain
type if a valuation of this term results in an element from the corresponding sort.

Two thin forests t, s are L-equivalent if for every term σ over the signature of thin-
forest algebra of type τH of one variable x of type τH , either both or none of the forests
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σ[x ← t], σ[x ← s] belong to L (note that we evaluate the term σ in the free thin-forest
algebra). Similarly we define the L-equivalence of contexts (but now the variable x is of
type τV ).

The relation of L-equivalence is a congruence, and the quotient of AregThin4 with respect
to L-equivalence is the syntactic thin-forest algebra for L. The syntactic morphism of L
assigns to every element of AregThin4 its equivalence class in the syntactic thin-forest algebra
of L.

I Theorem 4. A language of thin forests is recognizable by a finite thin-forest algebra if
and only if it is regular. Every regular language of thin forests is recognizable by its syn-
tactic morphism. The syntactic thin-algebra and the syntactic morphism can be effectively
calculated, based on a parity automaton.

Let L be a regular language of thin forests and α : AregThin4 → (H,V ) its syntactic
morphism. We say that an element h ∈ H is the bottom element for L if α−1(h) ∩ L = ∅
and vh = h for every v ∈ V .

Note that the bottom element is unique, since if h1 and h2 are both bottom elements,
then h1 = (�+ h2)h1 = h1 + h2 = (h1 +�)h2 = h2.

4 Applications of thin-forest algebra

In this section we show how thin-forest algebra can be used to give decidable characteriza-
tions of certain properties of languages. Many such characterizations boil down to checking
whether the syntactic algebra of a given regular language satisfies a set of identities. An
identity is a pair of terms (of the same type) in the signature of thin-forest algebra over
typed variables. An algebra satisfies an identity if for every valuation the two terms have
the same value. We usually assume that the operation v 7→ vω is a part of the signature.
This operation assigns to every v ∈ V its idempotent power, i.e. such a power vk that
satisfies vk · vk = vk. For every v there exists a unique idempotent power, since V is a
semigroup [17] (the number k is not unique, but the value vk is).

In the following subsections we show how to decide whether a given regular language of
thin forests is commutative, invariant under bisimulation, open in the standard topology,
and definable by a formula of the temporal logic EF.

4.1 Commutative languages
The notion of commutative language of finite forests is quite natural: it is a language closed
under rearranging of siblings. In the case of finite forests, a language is commutative if and
only if its syntactic algebra satisfies the identity

h+ g = g + h for g, h ∈ H. (1)

In the case of infinite forests we have more flexibility. We get different “degrees of
commutativity” by allowing rearranging of siblings finitely many times, finitely many times
on every branch, or arbitrarily many times. We think that the last (unrestricted) definition
is the most appealing. However, it is not captured by the identity (1). Consider the language
L = “every node has 0 or 2 children and every branch goes left only finite number of times”.
The language L does satisfy (1), but it is not commutative, as witnessed by two thin forests
a(a0 +a�)∞ ∈ L, a(a�+a0)∞ 6∈ L. The problem with the above example is that we would
like to be able not only to rearrange forests, but also to rearrange a forest with a context.
This property is expressed by the following identity:
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I Theorem 5. A regular language of thin forests L is commutative if and only if its syntactic
thin-forest algebra satisfies the identity

h+ v = v + h for h ∈ H and v ∈ V .

Identity (1) corresponds to a weaker notion of commutativity, where on every branch we
allow only finite number of rearrangements of siblings (see [11]).

4.2 Languages invariant under bisimulation
Two forests t0 and t1 are called bisimilar if Duplicator wins the following game, which
is played by players Spoiler and Duplicator. Spoiler begins the game by choosing some
i ∈ {0, 1} and a root node xi of the forest ti. Duplicator responds by chosing a root node
x1−i of the other forest t1−i, which has the same label (if no such node exists, the game
is terminated and Spiler wins). For i ∈ {0, 1}, let si be the forest obtained by taking the
subtree of ti rooted in xi and removing the root. If Duplicator did not lose, then a new
round of the game is played with the forests being s0 and s1. Duplicator wins if infinitely
many rounds are played without Spoiler winning.

A language of thin forests L is called invariant under bisimulation if for every forests
which are bisimilar, either both or none belong to L.

I Theorem 6. A regular language of thin forests L is invariant under bisimulation if and
only if its syntactic thin-forest algebra satisfies the following identities:

h+ v = v+ h, h+ h = h, (w∞ +w)∞ = w∞ for v ∈ V , w ∈ V+ and h ∈ H.

4.3 Open languages
In this section we give a characterization of the class of languages that are open in the
standard topology on forests (see Section 2.3). An equivalent definition says that a forest
language L is open if for every forest t ∈ L there is a finite prefix of t such that changing nodes
outside of the prefix does not affect membership in L. Checking whether a given regular
forest language L is open was known to be decidable, our contribution lies in showing that
for thin forests it can be done by testing the syntactic morphism of L:

I Theorem 7. A regular language of thin forests L is open if and only if its syntactic
morphism α : AregThin4 → (H,V ) satisfies the following condition for v ∈ V+ and h ∈ H:

if v∞ ∈ α(L) then vωh ∈ α(L).

The notion of open sets is also applicable to the case of infinite words. It is interesting
to note that the above condition also characterizes open languages of infinite words.

Moreover, one can extend the theory of ordered algebras (see [17]) to thin-forest algebras.
Then the above condition could be simply stated as v∞ ≥ vωh.

4.4 Temporal logic EF
The logic EF is a simple temporal logic which uses only one operator EF, which stands for
“Exists Finally”. Formulas of the logic EF are defined as follows:
1. every letter a is an EF formula, which is true in trees with root label a,
2. EF formulas admit Boolean operations, including negation,
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3. if ϕ is an EF formula, then EFϕ is an EF formula, which is true in trees that have a
proper subtree where ϕ is true.

A tree t satisfies an EF formula ϕ if ϕ holds in the root of the tree t. There are some
technical difficulties with generalizing this definition to forests, therefore we will only allow
Boolean combinations of formulas of the form ϕ ∨ EFϕ to describe forests (we call them
forest EF formulas; a forest t satisfies such a formula if ϕ holds in any node of t).

A forest language L is invariant under EF-bisimulation if for every forests t0, t1 which
are EF-bisimilar either both or none belong to L. The relation of EF-bisimilarity is similar
to the relation of bisimilarity, but in the game Spoiler chooses an arbitrary node xi of ti (not
necessarily a root), and Duplicator responds with an arbitrary node x1−i of t1−i. Note that
if t1, t2 are EF-bisimilar and ϕ is an forest EF formula then t1 |= ϕ if and only if t2 |= ϕ.

The following theorem (in a version for general infinite forests) was proved in [4]:

I Theorem 8. A regular language of thin forests L can be defined by a forest EF formula if
and only if
1. it is invariant under EF-bisimulation,
2. its syntactic thin-forest algebra satisfies the identity

vωh = (v + vωh)∞ for v ∈ V+ and h ∈ H.

For forests that are not necessarily thin, we could not find how to express the first
condition in terms of identities. We show how to do it in the case of thin forests:

I Theorem 9. A regular language of thin forests L is invariant under EF-bisimulation if and
only if its syntactic thin-forest algebra satisfies the identities for v, u ∈ V , w ∈ V+, h ∈ H:

h+ v = v + h, vh = vh+ h, (w + (wv)∞)∞ = (wv)∞, (wvu)∞ = (wuv)∞.

5 Descriptive properties

5.1 Automata
First we show that it is possible to recognize regular languages of thin forests using „simple”
automata.

I Theorem 10. Every regular language of thin forests can be recognized among all forests
by a (1, 3)-automaton.

The principal idea is to guess a skeleton of a given forest and use nondeterministic Büchi
automata on the branches of this skeleton to verify the types in the syntactic algebra.

The following theorem expresses that the collapse from Theorem 10 is the best we can
get from the point of view of the alternating index hierarchy (also known as the Rabin-
Mostowski hierarchy).

I Theorem 11. There exists a regular language of thin forests L that is not recognizable
among all forests by any alternating (1, 2)-automaton nor any alternating (0, 1)-automaton.

The following theorem shows that regular languages of thin forests can be recognized by
unambiguous automata relatively to thin forests. It is especially interesting, since there are
regular languages of forests that are not unambiguous, one of the examples is the language
„exists a node labelled by the letter a” (see [9]). The following theorem implies that the
language of thin forests containing a letter a is unambiguous among thin forests.
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I Theorem 12. For every regular language of thin forests L there exists a nondeterministic
forest automaton A such that L(A)∩AThinFor = L and for every thin forest t ∈ L there exists
exactly one accepting run of A on t.

The proof is based on a modification of a technique (called algebraic automata) proposed
by Marcin Bilkowski [1]. The idea is the following: we construct an automatonA that guesses
a marking τ of nodes of the given forest t by types in the syntactic algebra of L. Then A
runs on top of τ a deterministic top-down automaton verifying the following property:

For every node x and every infinite branch π that goes through x, the type guessed
in x is consistent with the guessed types of nodes that are off π and letters of t on π.

5.2 Languages that are WMSO-definable among all forests
In this section we consider a nonstandard approach to restricting the family of all forests to
thin ones. In this setting we show that it is decidable whether a given regular language of
thin forests is WMSO-definable. The difference between the standard approach and the one
used in this section is that we do not implicitly restrict our universe to thin forests.

I Definition 13. Let L be a regular language of thin forests and ϕ be a formula of WMSO.
We say that ϕ defines L among all forests if L =

{
t ∈ AFor : t |= ϕ

}
.

Note that the class of languages definable in WMSO among all forests is not closed under
complement with respect to thin forests: the relative complement of the empty language
∅ ⊆ AThinFor is AThinFor which is not WMSO-definable among all forests.

The following fact says that even in this restricted setting we can define languages as
complicated as in the general case.

I Fact 14. The examples of WMSO-definable languages lying arbitrarily high on the finite
levels of the Borel hierarchy (see [21]) can be encoded into thin forests in a way WMSO-
definable among all forests.

The main result of this section is the following characterization.

I Theorem 15. Let L be a regular language of thin forests. The following conditions are
equivalent:
1. there exists M ∈ N such that every forest t ∈ L satisfies rankCB(t) ≤M ,
2. L is WMSO-definable among all forests,
3. L is not Π1

1(AFor)-hard,
4. the syntactic morphism for L satisfies the following condition:

if h = v(w + h)∞ or h = v(h+ w)∞ for some v ∈ V,w ∈ V+,
then h is the bottom element for L. (2)

The following list presents a sketch of the argumentation.
From 1 to 2. A direct construction of a formula.
From 2 to 3. Folklore.
From 3 to 4. A pumping argument: a counterexample to the equations can be used to

construct a continuous function f from the space of trees over ω to AFor. If a given
tree t is well-founded (does not contain an infinite branch) then the result f(t) is in L.
Otherwise the result f(t) is not thin, therefore does not belong to L. Since the set of
well-founded trees over ω is Π1

1-hard then so is L (f is a continuous reduction).
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From 4 to 1. Estimating: condition (2) introduces an order on types in H. The height of
this order bounds the maximal CB-rank of forests in the language L.

Note that the last condition in the theorem is effective, therefore we obtain the following
corollary.

I Corollary 16. It is decidable whether a given regular language of thin forests L is WMSO-
definable among all forests.

I Proposition 17. Assume that L is a regular language of forests that is recognized by a
nondeterministic (or equivalently alternating) (1, 2)-automaton. Assume additionally that
L contains only thin forests. Then L can be defined in WMSO among all forests.

Proof. Since L is recognizable by a (1, 2)-automaton so L is an analytic subset of AFor.
Therefore, L cannot be Π1

1-hard, thus L satisfies the condition 3 in Theorem 15. J

5.3 Topological properties
In this section we give a couple of results showing that regular languages of thin forests are
topologically simpler then generic regular languages of forests.

I Theorem 18. Every regular language of thin forests L is co-analytic as a set of forests.

Note that despite the fact that the space of thin forests AThinFor is co-analytic among all
forests, it contains arbitrarily complicated subsets. In fact, already the family of forests of
CB-rank equal 1 is an uncountable Polish topological space, so the whole boldface hierarchy
(see Section 2.3) can be constructed using only such forests.

Theorems 15 and 18 imply the following dichotomy or gap property in the spirit of [16].
I Remark. For every regular language of thin forests L exactly one of the following possib-
ilities holds, it can be effectively decided which one:

L is WMSO-definable among all forests and lies on a finite level of the Borel hierarchy,
L is Π1

1(AFor)-complete.

The following theorem shows that, when treating thin forests as our universe, there are
no topologically hard regular languages.

I Theorem 19. Let X be a Polish topological space, f : X → AThinFor be continuous and L
be a regular language of thin forests. Then f−1(L) is Borel in X.

The following theorem can be seen as complementing Theorem 19.

I Theorem 20. There exists a regular language of thin forests LW over an alphabet AW
that is Borel-hard: for every Polish topological space X and every Borel set B ⊆ X there
exists a continuous function f : X → AW

ThinFor such that f−1(LW ) = B.

The principal concept of the above language is based on a construction proposed in [10].
Using the structure of the language LW one can deduce the following corollary.

I Corollary 21. The language LW cannot be defined in WMSO among thin forests.
This statement holds true even if we provide with every forest t ∈ AW ThinFor its canonical

skeleton σ(t): there is no WMSO formula ϕ over the alphabet AW × {0, 1} such that

LW =
{
t ∈ AW ThinFor : (t, σ(t)) |= ϕ

}
.
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A Ranks

The definition of ranks we use is based on the appropriate derivative: we inductively remove
simple parts of a given forest. Depending on which forests are treated as simple, we obtain
different ranks.

I Definition 22. Let B be a set of thin trees. We say that B is good as a rank basis if it
satisfies the following conditions for every tree t:
1. if every subtree of t does not belong to B then t contains a branching node.
2. if t belongs to B, then all the subtrees of t also belong to B.

We use two families B giving rise to two ranks:
Let BP contain all trees containing one node and those trees that consists of exactly one
infinite branch.
Let BCB contain all trees containing only finitely many finite and infinite branches.

Note that both families BP , BCB are good as rank basis.
The definition of the derivative and rank on thin forests is an adopted version of the

Cantor-Bendixson derivative on closed sets (see e.g. [12, Exercise 6.15 and Chapter IV
Section 34.D]). In the case of BCB it is in principle the same operation.

Consider the following operation on forests called the derivative, parametrized by a set
of thin trees B that is good as a rank basis.

I Definition 23. For a forest t ∈ AFor we define the forest DvB(t) ⊆ t that contains only
those nodes x ∈ dom(t) such that t�x /∈ B.

We inductively extend the notion of the above derivative to transfinite sequences of its
compositions.

I Definition 24. Put Dv0
B(t) = t. Inductively define DvηB(t) for any countable ordinal

η < ω1. Let Dvη+1
B (t) = DvB(DvηB(t)) and if η is a limit ordinal let

DvηB(t) =
⋂
β<η

DvβB(t),

where the intersection is set-theoretical — it restricts the set of nodes of a forest to the
common fragment.

I Fact 25. Let t ∈ AFor be a forest. The sequence DvηB(t) for η < ω1 is a decreasing sequence
of forests. There exists η0 < ω1 such that

Dvη0
B (t) = Dvη0+1

B (t) = Dvη0+2
B (t) = . . . .

The following proposition shows a connection of this iterated derivative and thin forests.

I Proposition 26. Let t be a forest and η be the least ordinal such that DvηB(t) = Dvη+1
B (t).

The forest DvηB(t) is the empty forest if and only if t is a thin forest.

Proof. Assume that DvηB(t) is the empty forest. Observe that every application of the
derivative decreases the number of branches of t by countably many: there are countably
many nodes x ∈ dom(t) and the subtree under a removed node x belongs to the family B,
therefore is thin. Since there are countably many applications of the derivative, the total
number of removed branches is also countable.
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Assume that t′ = DvηB(t) is not the empty forest. We show that in that case t′ ⊆ t

has uncountably many branches. We construct a Cantor scheme that maps finite sequences
b ∈ {L,R}∗ into nodes xb ∈ dom(t′). We start with any xε ∈ dom(t′). Let b ∈ {L,R}∗
be a sequence such that the node xb ∈ dom(t′) is defined. Observe that there must be a
branching node y under xb (since all subtrees of t′ �xb

do not belong to B and B is good as
a rank basis). Put xbL, xbR as some two distinct children of y.

The above definition gives us the unique, infinite branch of t′ for every π ∈ {L,R}ω.
Therefore, t′ has uncountably many infinite branches. So t /∈ AThinFor. J

I Definition 27. Let t ∈ AThinFor be a thin forest and B be good as a rank basis. We define
the B-rank of the forest t (denoted rB(t)) as the smallest ordinal η such that DvηB(t) =
Dvη+1

B (t) = 0. We extend it to rB(x, t) (the rank of x in t) for a node x ∈ dom(t) in such a
way that rB(x, t) is the least η < ω1 such that x /∈ dom (DvηB(t)).

I Fact 28. For every thin forest t ∈ AThinFor and node x ∈ dom(t) we have rB(x, t) = rB(t�x).
If t is a thin forest and B is good as a rank basis then rB(t) is not a limit ordinal. In

particular the ordinal rB(t)− 1 is defined.
If x � y are two nodes of a thin forest t, then rB(x, t) ≤ rB(y, t).

The observation that rB(t) is not a limit ordinal follows from the fact that each forest has
only finitely many roots. Therefore, if DvηB(t) is the empty forest and η is a limit ordinal,
then there are finitely many η1 ≤ η2 ≤ . . . ≤ ηn < η such that the i-th root of t has rank ηi
in t. It means that already Dvηn

B (t) is the empty forest.
Now we can fix our two derivatives: DvCB = DvBCB

, DvP = DvBP
, and ranks: rankCB =

rBCB
and rank = rBP

.

I Definition 29. For an ordinal η < ω1 by AThinFor≤η we denote the set of thin forests of
CB-rank at most η.

The crucial way of using ranks is induction: we can decompose a given forest as its core
fragment and a number of trees connected to it. Since all those trees have smaller rank, we
can assume the induction hypothesis about them. There are two notions of core fragments
for our two ranks.

I Definition 30. Let t be a nonempty thin forest. The spine of t is Dvrank(t)−1
P (t). The

final prefix of t is DvrankCB(t)−1
CB (t).

I Fact 31. Let t be a nonempty thin forest. The spine of t is of the form t1 + t2 + . . .+ tn for
some trees t1, . . . , tn belonging to BP — each ti is either a one-node tree or a one-infinite-
branch tree.

The final prefix t′ of t is a thin forest of CB-rank equal 1. Therefore, t′ has the form of
a finite forest r and finitely many infinite branches π1, π2, . . . , πn starting from distinct leafs
of r. If t is infinite then there are some infinite branches in t′ (i.e. n > 0).

Proof. It is enough to observe that the next application of the appropriate derivative to the
spine (resp. final prefix) results in the empty forest. Therefore the spine is a sum of trees
in BP and the final derivative is a sum of trees in BCP . J

The following figure presents a sequence of forests of increasing CB-rank. The leftmost
branch of each forest is its final prefix. In the case of these forests the final prefix coincides
with the spine.
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t1

rankCB(t1) = 1

t2

rankCB(t2) = 2

t3

rankCB(t3) = 3

. . . tω

rankCB(tω) = ω + 1

t1
t2

t3
t4

A.1 Skeletons
I Definition 32. Assume that (t, σ) is a forest with a skeleton. Take any node x ∈ dom(t).
The branch π starting in x that follows at every point the skeleton σ is called themain branch
of σ from x. It can be defined as the unique maximal finite or infinite branch π ∈ ω≤ω such
that: x � π ∧ ∀y�π (y � x ∨ y ∈ σ) .

Note that the main branch may be finite if it reaches a leaf of the forest. Otherwise it is
infinite.

I Fact 33. Take a forest t ∈ AFor with a skeleton σ and an infinite branch π of t. There
exists a node x ∈ t such that π is the main branch of σ from x.

I Proposition 34. A given forest t ∈ AFor has a skeleton σ if and only if t ∈ AThinFor.

Proof. If a forest has a skeleton, then by the above fact every infinite branch of t is from
some point on its main branch (from some node of t). So there are at most countably many
branches of t.

Now assume that a forest t is thin. We inductively on the rank of t construct a skeleton
of t. For a technical reason the inductively constructed skeleton does not contain any root
of the given forest. After the induction is performed, we can add one of the roots to σ.

If t = 0 then the empty set is its skeleton. Assume that rank(t) = η > 0 and let
s = s1 + s2 + . . .+ sn be the spine of t (see Definition 30). Let σ contain all non-root nodes
of s1, s1, . . . , sn. Since all subtrees that are off s have smaller rank, we can inductively define
σ on them. Finally, for every si that is a single node and not a leaf in t we add to σ the
leftmost child of si.

First observe that σ defined this way contains exactly one node from each set of siblings.
Let us take any infinite branch π of a thin forest t. Note that ranks of nodes along this branch
are non-increasing, so from some point on they are all equal some ordinal η. Therefore at the
η’th step of our induction one of the trees si had the form of one infinite branch containing
almost all nodes along π. So, by the definition of σ, almost all nodes along π belong to
σ. J

I Definition 35. The skeleton σ constructed in the above construction is called the canonical
skeleton for t and is denoted by σ(t).

B Thin-forest algebra

This section is devoted to proving Theorem 3, i.e. that the free thin-forest algebra over A
is the free object (in the sense of universal algebra, see [8]) among thin-forest algebras over
A when the set of generators is A�.
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B.1 The free algebra is generated by the alphabet
Let σ be a term without variables over A and let α(σ) be the evaluation of this term in
AregThin4 with the valuation a 7→ a�, which assigns to every letter a ∈ A a single-letter
context a�.

First we prove that the free thin-forest algebra is generated by elements of A�, i.e. α is
surjective.

I Lemma 36. For every regular thin forest t (regular thin context p) there is a term σ(t)
(σ(p)) without variables such that it evaluates in the thin-forest algebra over A to t (p).

Proof. We only need prove the lemma for thin trees. Indeed, for every thin forest

t = t1 + t2 + · · ·+ tn

where ti are thin trees which are generated by terms σ(ti), the forest t is generated by a
term

σ(t) := σ(t1) + σ(t2) + · · ·+ σ(tn).

Also, every thin context p can be factorized as

p = p0a1p1 · · · anpn

for some n ≥ 0, labels on the path to the hole a1, . . . , an ∈ A and (possibly empty) non-
guarded contexts p0, . . . , pn. Thus if σ(pi) generates pi, then the context p is generated by
the term

σ(p) = σ(p0)a1σ(p1) · · · anσ(pn).

Finally, every non-guarded context p can be factorized as

p = t1 + · · ·+ tj−1 +�+ tj+1 + · · ·+ tn

where ti are thin trees generated by terms σ(ti) and thus the context p is generated by the
term

σ(p) = σ(t1) + · · ·+ σ(tj−1) +�+ σ(tj+1) + · · ·+ σ(tn).

We prove the lemma by induction on the rank of a thin tree t. For the induction base
observe that the empty tree is generated by term 0. Now let t be any thin tree, and let S
be its spine. If S consists of one node, then t = as for some a ∈ A and forests s. The ranks
of every root of s are less than rank(t), thus by induction assumption there are terms which
generate them. If σ(s) is a term generating s, then σ(t) := aσ(s).

If S is infinite, then t can be factorized as

a1p1a2p2 · · ·

where a1, a2, . . . ∈ A are the labels of the path S and p1, p2, . . . are (possibly empty) non-
guarded contexts. The ranks of every root of pi are less than rank(t), thus by induction
assumption there are terms which generate them. We concatenate them: let σ(pi) be the
term generating pi. If t is regular then it has finite number of subtrees, therefore there exist
two indices i, j such that i < j and the subtree aipiai+1pi+1 · · · is equal to the subtree
ajpjaj+1pj+1 · · · . Then the regular thin tree t is generated in AregThin4 by the term

σ(t) := a1σ(p1)a2σ(p2) · · · ai−1σ(pi−1)
(
aiσ(pi)ai+1σ(pi+1) · · · aj−1σ(pj−1)

)∞
. J
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B.2 Terms which generate the same object are axiom-equivalent
In the realm of finite words the associativity of concatenation operation ensures that it is
of no importance in which order we perform the operations, as long as we obtain the same
word. We want to prove now that the axioms of forest algebra ensures that the „generalized
associativity” holds, i.e. it is not important in which order we perform the operations on
forests and contexts, as long as we obtain the same objects. Since we have a fair number
of operations, the proof is quite tedious. Therefore we sometimes use the axioms implicitly,
especially associativity in horizontal and vertical monoids.

The idea of the proof is to show that every term in thin-forest algebra is axiom-equivalent
to some form of a canonical term. Two terms are axiom-equivalent if we can rewrite one
into another using axioms of thin-forest algebra.

We say that a term is a forest-term if it is of type τH and it generates a regular thin
forest; it is a context-term if it is of type τV and it generates a regular thin context. For
simplicity of presentation, in the following lemmas we denote by t, s forest-terms rather than
forests. Analogously p, q are context-terms, not contexts.

We say that a (possibly empty) non-guarded context-term p is a brick-context-term if it
is of form t′ +�+ t′′ for some forest-terms t′, t′′.

I Lemma 37. For every context-term p there is an axiom-equivalent context-term of form

p′ = p0a1p1a2p2 · · · anpn

for some n ≥ 0, letters a1, . . . , an ∈ A and brick-context-terms p0, . . . , pn. If p is a tree-
context-term then p0 = �.

Proof. The proof goes on induction on the structure of the term p. If p = �, then the
term is in the desired form: we just put n = 0, p0 = �. If p = a�, we put n = 1, a1 = a,
p0 = p1 = �. If p = inl(t) for some forest-term t we put n = 0, p0 = t + �; similarly for
p = inr(t).

Finally, if p = qr for some context-terms q, r then from induction assumption we have
q = q0a1q1 · · · anqn, r = r0b1r1 · · · bmrm. Then clearly p = q0a1q1 · · · an(qnr0)b1r1 · · · bmrm
is in the desired form thanks to the associativity of the vertical monoid and from the fact
that qnr0 is a brick-context-term. J

I Lemma 38. For every forest-term t there is an axiom-equivalent forest-term of form

t′ = t1 + t2 + · · ·+ tn

for some n ≥ 0 and nonempty tree-terms t1, . . . , tn.

Proof. If t = t1 + t2, then we simply use the induction assumption and the associativity
of the horizontal monoid. If t = ps for some context-term p and forest-term s, then from
Lemma 37 p = p0a1p1 · · · anpn and from induction assumption s = s1 + s2 + · · ·+ sm. Thus
if n = 0 and p0 = �, t = s1 + · · · + sm. Otherwise p0 = s′ + � + s′′ for some forest-terms
s′, s′′ and from induction assumption s′ = s′1 + · · ·+ s′m′ , s′′ = s′′1 + · · ·+ s′′m′′ , thus

t = s′1 + · · ·+ s′m′ + a1p1 · · · anpns+ s′′1 + · · ·+ s′′m′′ .

Finally, if t = (p)∞ for some guarded context-term p, then from axiom (A5), t = p(p)∞, and
we reduced it to the previous case. J
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From the above lemma follows that every brick-context-term p is axiom-equivalent to a
brick-context-term of form

p′ = t1 + . . .+ tj−1 +�+ tj+1 + · · ·+ tn

for some n ≥ 0 and nonempty tree-terms t1, . . . , tn.

I Lemma 39. Let t be a tree-term and S be the spine of the tree generated by t. If S is
finite, then there is a tree-term t′ axiom-equivalent to t of form

t′ = a1p1 · · · anpnan+1s (3)

for some n ≥ 0, letters a1, . . . , an+1 ∈ A, brick-context-terms p1, . . . , pn and a forest-term
s such that the rank of t is the rank of an+1s and every root of the contexts generated by
p0, . . . , pn and every root of the forest generated by s has rank strictly less than the rank of
the tree t.

If S is infinite, then there is a tree-term t′ axiom-equivalent to t of form

t′ = a1p1 · · · anpn(b1q1 · · · bmqm)∞ (4)

for some n ≥ 0, m ≥ 1, letters a1, . . . , an, b1, . . . , bm ∈ A and brick-context-terms p1, . . . , pn,
q1, . . . , qm such that the rank of the tree is the rank of a tree generated by (b1q1 · · · bmqm)∞
and every root of contexts generated by p1, . . . , pn, q1, . . . , qm has rank strictly less than the
rank of t.

Proof. Of course if S is finite, then it contains only one node and n = 0 in (3). But we
use the more general form in the proof, since it is more similar to (4). The proof goes
by induction on the structure of the term t. Let t = ps for some tree-context-term p and
forest-term s. We use Lemmas 37 and 38 to find axiom-equivalent forms of p and s, thus
w.l.o.g. we assume that p = a1p1 · · · anpn for n ≥ 0 and brick-context-terms p1, . . . , pn; and
s = t1 + · · ·+ tm for m ≥ 0 and tree-terms t1, . . . , tm. We consider following cases:
1. There is an index i such that rank(t) = rank(ti). By the induction assumption tree ti is

axiom-equivalent to t′i which is of form (3), or (4). Then

t′ = a1p1 · · · an
(
pn(t1 + · · ·+ ti−1 +�+ ti+1 + · · ·+ tm)

)
t′i

is also of the same form as t′i.
2. There are indices i, j, j′ and j > j′ (the case j < j′ is done analogously) such that

pi = (s1 + · · · + sj′−1 + � + sj′+1 + · · · + sl) and rank(t) = rank(sj). By the induction
assumption we have that sj is axiom-equivalent to s′j which is of form (3), or (4). Then

t′ = a1p1 · · · ai(s1 + · · ·+ sj′−1 + ai+1pi+1 · · · anpns+
+ sj′+1 + · · · + sj−1 + � + sj+1 + · · · + sl)s′j .

3. Otherwise if i is the greatest index such that rank(t) = rank(aipi · · · anpn) then the tree
is in the desired form (3).

Finally if t = (p)∞ for some guarded tree-context-term p then from Lemma 37 we have
p = a1p1 · · · anpn and t = (a1p1 · · · anpn)∞ is in the desired form (4). J

Let us consider a tree-term of form (4) and call it a loop-term of size (n,m). On the
loop-term t of size (n,m) we can perform two operations. Shift of t is a loop-term of size
(n+ 1,m):

a1p1 · · · anpnb1q1(b2q2 . . . bmqmb1q1)∞,



Mikołaj Bojańczyk, Tomasz Idziaszek, and Michał Skrzypczak 19

and k-expansion of t is a loop-term of size (n, km):

a1p1 · · · anpn(b1q1 · · · bmqm · · · b1q1 · · · bmqm︸ ︷︷ ︸
k times

)∞.

From the axioms it is easy to see that both shift and k-expansion of t are axiom-equivalent
to t.

I Lemma 40. Let t0, t1 be two forest-terms which generate the same regular forest. Then
t0, t1 are axiom-equivalent.

Proof. From Lemma 38 we can assume that the terms generate a tree, call it t. The proof
is by induction on the rank of t. Let S be the spine of t. From Lemma 39 we get that for
i = 0, 1, ti is axiom-equivalent to t′i of certain form.

If S is infinite, then forests-terms t0 and t1 are axiom-equivalent to two loop-terms of
sizes (n0,m0) and (n1,m1) respectively. W.l.o.g. assume that n0 ≥ n1. We shift the latter
term n0 − n1 times, and we m1−i-expand i-th term. Therefore we have two loop-terms of
sizes (n0,m0m1):

t′i = ai,1pi,1 · · · ai,n0pi,n0(bi,1qi,1 · · · bi,m0m1qi,m0m1)∞.

Since letters ai,1, . . . , ai,ni+1 are the labels of the spine of t, then n0 = n1 and a0,j = a1,j .
Moreover brick-context-terms p0,j and p1,j generate the same objects and the trees in the
roots of p0,j , p1,j are of smaller rank than rank(t), therefore from induction assumption we
get that they are axiom-equivalent. The same applies to letters bi,j and contexts qi,j . Thus
t′0 is axiom-equivalent to t′1 and hence t0 is axiom-equivalent to t1.

If S consists of one node then simply t′i = asi, and we use induction assumption to get
that s0 and s1 are axiom-equivalent. J

I Lemma 41. Let p0, p1 be two context-terms which generate the same context. Then p0, p1
are axiom-equivalent.

Proof. From Lemma 37 we get that for i = 0, 1, pi is axiom-equivalent to

p′i = pi,0ai,1pi,1 · · · ai,ni
pi,ni

and since ai,1, . . . , ai,ni
are the labels on the path to the hole, then n0 = n1 and a0,j =

a1,j . Moreover brick-context-terms p0,j and p1,j generate the same objects, thus applying
Lemma 40 to the trees in the roots of p0,j and p1,j we get that they are axiom-equivalent.
Thus p′0 is axiom-equivalent to p′1 and hence p0 is axiom-equivalent to p1. J

C Algebra and automata

C.1 Automaton to algebra
In this section we show how to calculate, given a nondeterministic forest automaton A, a
thin-forest algebra that recognizes the language recognized by A. This algebra is called the
automaton algebra.

Let us fix a nondeterministic forest automaton A, with states Q, input alphabet A,
priorities {0, . . . , k} and a set of initial states QI ∈ Q. Below we describe automaton
algebra (H,V ), together with associated morphism α : AregThin4 → (H,V ), which recognizes
the language L(A).

Before describing the algebra itself, we define the morphism α. This morphism should
explain what are the intended meanings of H and V .
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(a) To each thin forest t, the morphism α associates a subset of Q. A state q belongs to α(t)
if some accepting run ρ over t has value q.

(b) To each thin context p, the morphism α associates a subset of Q × {0, . . . , k} × Q. A
triple (q1, i, q2) belongs to α(p) if there exists a thin forest s and accepting run ρ over ps
such that the value of ps in ρ is q2 and the value of s in ρ is q1, and the highest priority
assigned to nodes that are ancestors of the hole in p is i (this priority is equal to 0 if p
is non-guarded).

Therefore, the carriers of the horizontal and vertical monoids are subsets

H ⊆ P (Q), V ⊆ P (Q× {0, . . . , k} ×Q),

which are images of α on thin forests and thin contexts, respectively. These might be proper
subsets, for instance not every subset of Q need be an image α(t). A thin forest belongs to
L if and only if its image under α contains a state from QI .

We say that two thin forests s, t are automaton-equivalent if the subsets associated to
these forests by the morphism α are the same. We denote it by s ∼A t. Similarly we define
automaton-equivalence for thin contexts.

I Lemma 42. The relation of automaton-equivalence ∼A is a congruence with respect to
the operations in the free thin-forest algebra.

Proof. We show it for forest concatenation and for infinite loop operation. The proof for
other operations follows the same lines.

Let t, t′, s be thin forests and t ∼A t′. We must show that t+ s ∼A t′ + s. Suppose that
q ∈ α(t + s), thus there is an accepting run ρ over t + s such that the value of t is q′ and
the value of s is q′′ in ρ, and q = q′ + q′′. The run ρ is accepting over the forest t, and since
t ∼A t′, there is an accepting run ρ′ over t′ of value q′. Combining the run ρ′ over t′ with
the run ρ over s we get an accepting run over t′ + s of value q = q′ + q′′, thus q ∈ α(t′ + s).

Let p, p′ be guarded thin contexts and p ∼A p′. We must show that p∞ ∼A p′∞. Suppose
that q ∈ α(p∞), thus there is an accepting run ρ over forest p∞ of value q. For i ≥ 1 we
denote by qi−1 the sum of states assigned to the roots of the i-th (counting from the top)
instance of the context p (of course q = q0), and by ki the highest priority assigned to nodes
on the path to the i-th hole. Thus for every i ≥ 1 we have (qi−1, ki, qi) ∈ α(p), and therefore
(qi−1, ki, qi) ∈ α(p′). That means that for every i there is an accepting run ρi of value qi−1
over p′si for some forest si which is evaluated to qi. Combining these runs we get that
q ∈ α(p′∞). J

The following fact is a direct consequence of Lemma 42 by a standard universal algebra
method.
I Fact 43. The function α induces a structure of thin-forest algebra on sets (H,V ) in such
a way that α : AregThin4 → (H,V ) is a homomorphism.

I Lemma 44. The morphism α recognizes the language L(A).

Proof. Let I = {h ∈ H : QI ∩ h 6= ∅}. From the definition we have that a forest t in in L
if some accepting run over t has value from QI . It is equivalent to say that QI ∩ α(t) 6= ∅,
thus α(t) ∈ I, and t ∈ α−1(I). Therefore L(A) = α−1(I). J

Now we show how to effectively calculate the automaton algebra. Defining the operations
is straightforward, keeping in mind the intended meaning of the morphism α. We denote
by TC(v) a transitive closure of v with respect to · operation. Formally (p, α, q) ∈ TC(v) if
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there exist a sequence of states p = qn, qn−1, . . . , q0 = q and priorities αn, αn−1, . . . , α1 such
that α = max{αn, . . . , α1} and (qi, αi, qi−1) ∈ v for every 1 ≤ i ≤ n.

The operations are as follows:

h+ g = {p+ q | p ∈ h, q ∈ g} for h, g ∈ H,
vw = {(p,max(i, j), q) | (p, i, r) ∈ w, (r, j, q) ∈ v} for v, w ∈ V.
v∞ = {q | (p, i, p), (p, ·, q) ∈ TC(v), i is even} for v ∈ V+,

vh = {q | p ∈ h, (p, ·, q) ∈ v} for v ∈ V, h ∈ H,
inl(h) = {(q, 0, p+ q) | p ∈ h} for h ∈ H,
inr(h) = {(q, 0, q + p) | p ∈ h} for h ∈ H.

Finally, we also define the morphism:

α(a�) = {(q,Ω(p), p) | (q, a, p) ∈ ∆} for a ∈ A,
α(�) = � = {(p, 0, p) | p ∈ Q},
α(0) = 0 = {0}

The proof of correctness of the above operations mimics the reasoning in Lemma 42.
Finally, to calculate the syntactic algebra of L, we can first calculate automaton algebra

for A, and then calculate the L-equivalence relation ∼L over (H,V ) using the idea from
Moore’s algorithm for minimizing automata. First we put h 6∼L g for every h, g ∈ H such
that exactly one of the types h, g belongs to I ⊆ H. Then we try to extend the number of not
L-equivalent pairs of elements using every operation. For example for forest concatenation
and for infinite loop we do:

if there are elements h, h′, g ∈ H such that h + g 6∼L h′ + g or g + h 6∼L g + h′, then
h 6∼L h′,
if there are elements v, v′ ∈ V+ such that v∞ 6∼L v′∞, then v 6∼L v′.

We terminate the algorithm when there is no new pair we can add.

C.2 Algebra to (1,3)-automaton
Let L be a regular language of thin forests, (H,V ) the syntactic thin-forest algebra of L
and α : AregThin4 → (H,V ) the syntactic morphism of L. We will construct a forest (1, 3)-
automaton A recognizing L. Let the space of states of A be

Q = H3 ∪ Qσ ∪ q⊥ where Qσ = H3 × V × (V ∪ {?}).

The main idea is that the automaton A will (among other things) guess a skeleton σ on
the forest t. The nodes in σ are precisely those which will be assigned a state from Qσ. The
state q⊥ is the „error” state.

We will use the notation h = (h′, h, h′′) for h ∈ H3. The idea is that if a node x is
assigned a state h or a state from h × V × (V ∪ {?}) ⊆ Qσ, then the type of the subtree
rooted at node x is h (i.e. α(t�x) = h), and the type of the subforest rooted in the siblings
of x which lie to the left (respectively to the right) of x is h′ (respectively h′′).

First we define a monoid operation on Q. If h1, h2 ∈ H3 then the result is fromH3∪{q⊥}:

h1 + h2 =
{

(h′1, h1 + h2, h
′′
2) if h′1 + h1 = h′2 and h′′1 = h2 + h′′2 ,

q⊥ otherwise.

If one argument is from H3 and another from Qσ then the result is from Qσ:

h1 + (h2, e, u) = (h1 + h2, e, u), (5)
(h1, e, u) + h2 = (h1 + h2, e, u), (6)
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if h1 + h2 6= q⊥, or q⊥ otherwise.
Finally, if both arguments are from Qσ or at least one is q⊥, then the result is q⊥.
Now we define the transition relation ∆:

(h, a, h1) ∈ ∆ iff h′ = h′′ = 0 and α(a)(h) = h1. (7)(
(h, e, ?), a, h1

)
∈ ∆ iff (h, a, h1) ∈ ∆ and h = e∞.(

(h, e, u), a, (h1, e, u1)
)
∈ ∆ iff (h, a, h1) ∈ ∆

and


u(h′1 + α(a) + h′′1) = u1 if u, u1 ∈ V,
h′1 + α(a) + h′′1 = u1 if u = ?, u1 ∈ V,

u(h′1 + α(a) + h′′1) = e if u ∈ V, u1 = ?,

h′1 + α(a) + h′′1 = e if u = u1 = ?.

(q⊥, a, q⊥) ∈ ∆.

Finally we define priorities Ω:

Ω(q) =


3 if q ∈ H3,

2 if q ∈ H3 × V × {?},
1 otherwise.

The initial states of A are precisely those (0, h, 0) ∈ H3 that α−1(h) ⊆ L.

I Lemma 45. The language accepted by the automaton A equals L.

Proof. First, we show that a forest t has an accepting run ρ if and only if it is thin.
Suppose that t has an accepting run ρ. First we show that σ ⊆ dom(t) defined as the

set of nodes assigned a state in Qσ in ρ is in fact a skeleton of t. If at least one node is
assigned with q⊥, then the „error” state propagates upwards and the forest is not accepted.
From acceptance condition the maximum priority which appears infinitely often on each
path must be 2. Thus priority 3 can appear only finitely often, thus there is only finitely
many nodes marked by a state from H3, thus on every path there is only finitely many
nodes outside σ. Since Qσ + Qσ = {q⊥}, thus at most one sibling is in σ. Since there is
no transition in ∆ of form H3 × A × Qσ, thus for every node in σ there is a child from σ.
Therefore all conditions for σ are satisfied — thus t is thin.

Suppose now that t is thin. Denote Qh = (H×{h}×H)∪(H×{h}×H×V ×(V ∪{?})).
We prove by induction over the rank of the nodes that if a node x is assigned a state from
Qh then α(t�x) = h.

If all successors x1, . . . , xn of x have smaller ranks than rank(x), then from the inductive
assumption xi is assigned a state from Qhi

where hi = α(t �xi
). Then from (5) we get

that the sum of states assigned to these successors is from Qh1+···+hn
. Thus from (7) x is

assigned a state from Qα(a)(h1+···+hn), where a is the label of x.
Otherwise there is an infinite path π = x0x1x2 . . . from x of nodes which have the same

rank as rank(x). Every successor y of xi which does not belong to π has smaller rank than
rank(x), thus from the induction assumption ρ(y) ∈ Qh if and only if α(t �y) = h. Let pi
denotes the context which comes after putting hole instead of xi+1 in t�xi

. We must ensure
that α(p0p1 · · · ) = α(t�x0).

From Ramsey theorem there are u, e ∈ V+ and a partition

(p0p1 · · · pk0−1)(pk0 · · · pk1−1)(pk1 · · · pk2−1) · · ·
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such that p0p1 · · · pk0−1 = u and pki
· · · pki+1−1 = e for all i ≥ 0. The transition relation

over Qσ is devised to guess the values of u and e and the partition. Let xi be assigned a
state (hi, e, ui). A block pki

· · · pki+1−1 of the partition is encoded by uki
= ? and uj =

α(pjpj+1 · · · pki+1−1). Since there is infinite number of encoded blocks, thus on every path
must be infinite number of states of priority 2. Finally, the transitions ensure that α(t�x0) =
ue∞.

Therefore from assumption that t is thin we conclude that there is an accepting run on
t such that the sum of states assigned to roots of t is α(t). Thus t is accepted by A if and
only if t ∈ L. J

C.3 Language not recognizable by any alternating (0,1)-automaton
In this section we show the following theorem.

I Theorem 11. There exists a regular language of thin forests L that is not recognizable
among all forests by any alternating (1, 2)-automaton nor any alternating (0, 1)-automaton.

We define the language L ⊆ {a, b}ThinFor as containing those thin forests that have a
branch with infinitely many letters a. First we observe that this language is Π1

1-hard, so
cannot be recognized by an (1, 2)-automaton.

What remains is to show that L cannot be recognized by any alternating (0, 1)-automaton.
We assume contrary and use a standard de-alternation technique to conclude that in that
case Lc = {a, b}For \ L would be recognizable by a nondeterministic forest (1, 2)-automaton
A. Let n be the number of states Q of A. Consider thin forests defined inductively:

t0 = 0, ti+1 = (b(�+ ati))∞ .

Let t = tn+1. Note that t is thin and t ∈ Lc. Let ρ be an accepting run of A on t.
Observe that ρ is accepting on every b-labelled branch. Therefore, one can find a node with
a state of rank 2 on such branch. Therefore, we can inductively find a sequence of nodes
u0 ≺ u1 ≺ . . . ≺ un of t such that for every i = 0, 1, . . . , n− 1:

the run ρ has a state of rank 2 on the path between ui and ui+1,
there is a node with label a on the path between ui and ui+1.

Since n is the number of the states of A, so ρ(ui) = ρ(uj) for some i < j. Therefore, we
can decompose (t, ρ) as the context c1 with a hole in ui, the context c2 between ui and uj ,
and the tree t3 rooted in uj , in such a way that

(t, ρ) = c1 · c2 t3.

Let (t′, ρ′) be the forest over the alphabet {a, b} × Q equal c1 · c∞2 . Note that t′ has a
branch with infinitely many letters a, so t′ ∈ L but ρ′ is an accepting run of A on t′ — a
contradiction.

C.4 Unambiguous automaton
In this section we show the following result:

I Theorem 12. For every regular language of thin forests L there exists a nondeterministic
forest automaton A such that L(A)∩AThinFor = L and for every thin forest t ∈ L there exists
exactly one accepting run of A on t.
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Let a regular language of thin forests L be given. Let αL : AThinFor → (H,V ) be the
syntactic morphism of L.

The construction of the automaton can be seen as divided into two layers. First layer
marks a given tree by types in H while the second layer is supposed to verify that the
marking is correct.

I Definition 46. Let t be a thin forest. A forest τ ∈ (H × V )ThinFor is called a correct
marking of t if dom(t) = dom(τ) and for every list of siblings x1, x2, . . . , xn in t and every
i = 1, 2, . . . , n we have τ(xi) = (h, v), α(t�xi

) = h, and:

α(t�x1) + . . .+ α(t�xi−1) +�+ α(t�xi+1) + . . .+ α(t�xn
) = v.

Note that every forest has exactly one correct marking. If a marking τ is fixed and x is
a node of a given forest then we denote by (hx, vx) the types assigned by τ to x.

I Lemma 47. A forest τ ∈ (H × V )ThinFor is the correct marking of a thin forest t if and
only if the following conditions are satisfied:

Let x1, x2, . . . , xn be a list of siblings in t. Then for every i = 1, 2, . . . , n we have:

hx1 + hx2 + . . .+ hxi−1 +�+ hxi+1 + . . .+ hxn
= vxi

.

If y is a child of a node x in t then

hx = α(t(y)) · vy · hy.

If x is a leaf of t then hx = α(t(x)) · 0.
Let π be an infinite branch of t and x ≺ π be a node of t. Let x = x0 ≺ x1 ≺ x2 ≺ . . . be
the sequence of consecutive nodes along π. Then

hx = α(t(x0)) · vx1 · α(t(x1)) · vx2 · . . . .

The proof of this lemma is inductive on the rank of a given forest t. What remains is
to observe that the above conditions divide into local ones (depending only on a node and
its children) and a path condition that depends only on the sequence of labels along infinite
branches of a given forest.

Let LM be the language of forests (t, τ) ∈ (A×H × V )ThinFor such that τ is a correct
marking of t. By Lemma 47 this language can be defined using only local and path conditions
therefore the language LM can be recognized by an unambiguous1 forest automaton.

Since every thin forest t has exactly one correct marking τ and one can decide whether
t ∈ L depending on the values of τ on roots of t, so Theorem 12 follows.

D Applications of thin-forest algebra

D.1 Components in a forest
Some proofs in this appendix use induction over the number of components in a regular thin
forest. In this section we give the definition of a component.

Let t be a forest. We say two nodes x, y of the forest are in the same component if the
subtree t�x is a subtree of the subtree t�y and vice versa.

1 In the case of trees the language LM can even be recognized by a deterministic top-down parity
automaton.
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To a forest we associate a directed graph Gt = (Vt, Et) (we call it the component graph
of the forest) in which the set of nodes Vt contains all non-isomorphic subtrees of t and
there is an edge (t1, t2) ∈ Et if the subtree t2 is an immediate subtree of the subtree t1 (i.e.
t2 = t1 �x for some child x of the root of t1). The graph Gt is finite if and only if the forest
t is regular. Every component in t corresponds to a strongly connected component in Gt.

There are two kinds of components: singleton components, which correspond to strongly
connected components in Gt of exactly one node and no edges, and connected components,
which correspond to other strongly connected components in Gt. Note that a node x in the
forest is in singleton component if and only if t�x is not a proper subtree of t�x.

A component is a root component if it contains a root of the forest.
On figure 1 there is a tree t and the corresponding graph Gt. The tree has five compon-

ents: two connected (which correspond to strongly connected components c1, c2 in Gt) and
three singleton (which correspond to s1, s2, s3). Note that the component which corresponds
to a strongly connected component c1 of one node but with a loop edge is in fact connected.
Note that the graph loses some information, so it is not possible to fully reconstruct the
forest t from Gt. However, it is only matter of adding the order and multiplicity to edges of
Gt.

Figure 1

I Lemma 48. In a thin regular forest t every connected component corresponds to a strongly
connected component in Gt which is a simple cycle, i.e. the graph induced by the nodes of
this component is a simple cycle.

Proof. Let c be the strongly connected component in Gt which corresponds to a connected
component in t. Let G′ be the graph induced by the nodes of c.

We first show that the out-degree of every node in G′ is at most 1. Let assume otherwise
– then there is a node u with at least two outgoing edges u → v1, u → v2. Adding a path
from v1 and v2 back to u we get a full binary tree that is a minor of t, thus the forest is not
thin.

Similarly we show that the in-degree of every node in G′ is at most 1. Since c does not
contain any isolated nodes, the out-degree and in-degree of any node is in fact exactly 1.
Since c is connected, it is indeed a simple cycle. J

D.2 Commutative languages
We start by formalizing the definition of the commutative language. We say that two forests
t0, t1 are commutatively equivalent (we denote it by t0 ∼C t1) if there exists a bijection
f : dom(t0)→ dom(t1) such that for every x, y ∈ dom(t0):
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(a) the nodes x and f(x) have the same labels,
(b) the node x is a parent of y if and only if f(x) is a parent of f(y).
Note that the condition (b) implies that the node x is a root if and only if f(x) is a root.
Observe that for any node x ∈ dom(t0) trees t0 �x and t1 �f(x) are commutatively equivalent.

A forest language L is called commutative if for every two forests t0, t1 which are com-
mutatively equivalent, either both t0, t1 belong to L or none of them.

The definition of commutativity could be rephrased also in the language of games. We
define a game, called the commutative game, which is used to test the similarity of two
forests in different degrees of commutativity.

Let t0, t1 be two forests. The commutative game over t0 and t1, denoted by G(t0, t1),
is played by two players: Spoiler and Duplicator. For convenience we add an auxiliary root
node at the top of the forest ti, which results in a tree t′i.

The game proceeds in rounds. The state of the game is a pair (x0, x1), which means that
there is a pebble in a node xi ∈ dom(t′i). Initially both pebbles are in the roots of the trees
t′0, t′1. A round is played as follows. If the number of children of node x0 is different than
the number of children of node x1, then Spoiler wins the whole game. Otherwise Duplicator
chooses a bijection f which maps the children of x0 to the children of x1.

Then Spoiler moves the pebble x0 to a child x of x0 and the pebble x1 to a child f(x). If
the labels of nodes x and f(x) are different – Spoiler wins. Otherwise, the round is finished
and a new round is played with the state updated to (x, f(x)).

It is easy to see that two forests t0, t1 are commutatively equivalent if Duplicator can
survive for infinitely may rounds in the commutative game G(t0, t1).

I Lemma 49. Let σ : τH → τH be a forest-valued term with one forest-valued variable over
the signature of forest algebra and let s, t be forests. If Duplicator wins the commutative
game G(s, t), then he also wins the commutative game G(σ[x← s], σ[x← t]).

Proof. The strategy of Duplicator is very simple. As long as the children of nodes with
pebbles are in σ, Duplicator choose the identity bijection. Otherwise he uses the strategy
from the game G(s, t). J

We say that a thin-forest algebra is faithful if there are no two distinct elements v, w ∈ V
such that

vh = wh for all h ∈ H and
(vu)∞ = (wu)∞ for all u ∈ V such that vu,wu ∈ V+.

We will use the fact that every syntactic thin-forest algebra is faithful.

I Theorem 5. A regular language L of thin forests is commutative if and only if its syntactic
thin-forest algebra satisfies the identity

h+ v = v + h. (8)

Proof. The “only if” part is standard. Suppose that we want to show that the identity (1)
is satisfied. By unraveling the definition of the syntactic algebra we need to show that for
any term σ of type τH and of one variable x of type τH and any forests t, s we have

σ[x← t+ s] ∈ L iff σ[x← s+ t] ∈ L. (9)

It is easy to see that Duplicator wins the commutative game on forests t+ s and s+ t, thus
from Lemma 49 he wins the commutative game on forests σ[x ← t + s] and σ[x ← s + t].
Therefore we get (9) from the fact that the language L is weakly commutative.
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To show that (8) is satisfied, we use the faithfulness of the syntactic thin-forest algebra
and we show that the algebra satisfies the identities

h+ vg = vg + h, for v ∈ V+, h, g ∈ H,
(u(v + h))∞ = (u(h+ v))∞, for u, v ∈ V+, h ∈ H.

Again, this boils down to show that Duplicator wins the commutative game on forests t+ s

and s+ t for any forests s, t as well as on forests (p+ t)∞ and (t+ p)∞ for any forest t and
guarded context p.

The “if” part of the theorem follows directly from Lemma 51. J

I Fact 50. Let t0 and t1 be two thin trees which are commutatively equivalent. Then
rank(t0) = rank(t1).

I Lemma 51. Suppose that identity (8) holds. If two thin forests t0, t1 are commutatively
equivalent, then α(t0) = α(t1).

Proof. We prove the lemma for trees, the generalization for forests is straightforward. The
proof is by induction on the rank of the trees.

First, observe that from Fact 50, rank(t0) = rank(t1). From the same argument, the
spines of the trees have the same length. Suppose that they are infinite, the remaining case
is similar.

Let xi1, xi2, xi3, . . . be the nodes on the spine of ti which give us a decomposition ti =
pi1p

i
2p
i
3 . . ., where pij is a context with a root in xij and a hole in xij+1.

Let f : dom(t0) → dom(t1) be a bijection which witnesses that t0 ∼WC t1. Again from
Lemma 50, f(x0

j ) = x1
j for all j.

Let T ij be the multiset of trees rooted in the children of xij , but not in xij+1. Abusing
the notation slightly, we see that mapping f gives a natural bijection between T 0

j and T 1
j ,

such that for any s ∈ T 0
j , the trees s and f(s) are commutatively equivalent. Since trees

from the sets T ij have ranks smaller than rank(t0), we can use the induction assumption to
get that α(s) = α(f(s)) for every s ∈ T 0

j . Thus from (8) we have α(p0
j ) = α(p1

j ) for all j.
Therefore we get that α(t0) = α(t1). J

D.3 Languages invariant under bisimulation

The definition of bisimilarity could also be rephrased in terms of games. Let t0, t1 be forests.
The bisimulation game over t0 and t1, denoted by G(t0, t1), is played by two players: Spoiler
and Duplicator. The game proceeds in rounds. For convenience we add an auxiliary root
node at the top of the forest ti, which results in a tree t′i. At the beginning of each round,
the state in the game is a pair of nodes (x0, x1), which means that there is a pebble in a
node xi ∈ dom(t′i). A round is played as follows. First Spoiler selects one of the forests ti
(i = 0, 1) and moves a pebble xi to the node x′i which is the child of xi. Then Duplicator
moves the second pebble from the node x1−i to its child x′1−i. If the labels of nodes x′0, x′1
are different, the Spoiler wins the game. Otherwise a new round is played with the state
updated to (x′0, x′1).

It is easy to see that two forests t0, t1 are bisimilar if and only if Duplicator can survive
for infinitely many rounds in the bisimulation game G(t0, t1).

I Theorem 6. A regular language L of thin forests is invariant under bisimulation if and
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only if its syntactic thin-forest algebra satisfies the following identities:

h+ v = v + h, (10)
h+ h = h, (11)

(v∞ + v)∞ = v∞. (12)

Proof. The “only if” part is standard and follows exactly the same lines as in the proof of
Theorem 5.

The “if” part of the theorem follows directly from Lemma 53. J

First we show that the identity (12) is sufficient to conclude that the types of two bisimilar
forests

t = (ab)∞, s =
(
a((ba)∞ +�)b((ab)∞ +�)

)∞
.

depicted on Figure 2 are the same.

Figure 2

I Lemma 52. If a thin-forest algebra (H,V ) satisfies identity (12) then it also satisfies
identity

(v1v2 · · · vn)∞ =
(
v1(h1 +�)v2(h2 +�) · · · vn(hn +�)

)∞
where n ≥ 1, vi ∈ V , hi = (vi+1 · · · vnv1 · · · vi)∞ for i = 1, . . . , n and v1v2 · · · vn ∈ V+.

Proof. We denote wn+1 = �, wi = vi(hi + wi+1) for i ∈ {1, . . . , n}. We will prove by
induction that for every i we have

(wi+1v1 · · · vi)∞ = hi. (13)

For the base of the induction (i = n):

(wn+1v1 · · · vn)∞ = (v1 · · · vn)∞ = hn.
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For the inductive step we assume that (13) is true for i+ 1 ≤ n and we prove it for i:

(wi+1v1 · · · vi)∞ = (vi+1(hi+1 + wi+2)v1 · · · vi)∞ =
= vi+1

(
(hi+1 + wi+2)v1 · · · vi+1

)∞ =

= vi+1(hi+1 + wi+2v1 · · · vi+1)∞ (13)=

= vi+1
(
(wi+2v1 · · · vi+1)∞ + wi+2v1 · · · vi+1

)∞ (12)=

= vi+1(wi+2v1 · · · vi+1)∞ (13)=
= vi+1hi+1 =
= vi+1(vi+2 · · · vnv1 · · · vi+1)∞ =
= (vi+1 · · · vnv1 · · · vi)∞ =
= hi.

Finally putting i = 0 in (13) we get(
v1(h1 +�)v2(h2 +�) · · · vn(hn +�)

)∞ = w∞1
(13)= h0 = (v1v2 · · · vn)∞. J

I Lemma 53. Suppose that identities (10)–(12) hold. If two regular forests t0, t1 are bisim-
ilar, then α(t0) = α(t1).

The rest of this section is devoted to the proof of Lemma 53.
For a node x ∈ dom(ti) we denote by Bi(x) = [ti �x]∼B

the equivalence class under
the bisimilarity relation of the subtree rooted in x. We say that a node x ∈ dom(ti) is
bisimilar to a node y ∈ dom(tj) if the subtrees ti �x and tj �y are bisimilar, or equivalently
Bi(x) = Bj(y). We extend the definition to paths: when π = x1x2 . . . ∈ dom(ti)∞ is a path,
then Bi(π) = Bi(x1)Bi(x2) . . .

First assume that t0 and t1 are trees and their root components are connected. Recall
that since the trees are thin and regular, from Lemma 48 their root components correspond
to cycles in the component graphs. Thus there is an unique path which starts in the root of
t0 (respectively t1) and goes only through nodes of the root component.

I Lemma 54. Let t0, t1 be two regular trees which are bisimilar and their root components
are connected. Let πi be a path which starts in the root of ti and goes only through nodes of
the root component. Then B0(π0) = B1(π1).

Proof. We say that a node x ∈ dom(ti) is good if it satisfies the following condition:

there are paths π and π′ from x such that Bi(π) = B0(π0) and Bi(π′) = B1(π1). (14)

It is clear that if a node x is good then every node bisimilar to x is also good. Let `
be the least common multiple of the sizes of the root components. We build a sequence
(not necessarily a path) y0, y1, . . . of good nodes from t0 such that yi+1 will be in deeper
component than yi.

Let y0 be the root of t0. It is easy to see that it is good. Indeed, the path π through the
root component is equal to π0. Moreover since t0 is bisimilar to t1 and from the root of t1
goes the path π1, then from y0 must go a path π′ such that B0(π′) = B1(π1).

Suppose that we constructed good nodes y0, . . . , yj . Let π and π′ be two paths from yj ,
which satisfy the condition (14). If the component of yj is connected and both π and π′ lie
inside this component, then obviously π = π′, and thus B0(π0) = B0(π) = B0(π′) = B1(π1)
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and we are done. Otherwise one of these paths leaves the component. Without loss of
generality suppose that it is π and that it leaves the component after k nodes. Decompose
it as π = πAπB where πA is of length ` · k. Then the first node of πB is bisimilar to yj and
thus it is good. We denote this node by yj+1.

Observe that since the number of components in t0 is finite and yj+1 is in the deeper
component that yj , thus at some point this construction will lead to the desired conclusion
that B0(π0) = B1(π1). J

We say that a tree t is trimmed if it does not contain a node x ∈ dom(t) from the
root component such that it has two bisimilar children x′, x′′ such that x′ is from the root
component and x′′ lies outside the root component. We denote by trim(t) a trimmed version
of t in which for every such node x′′ the subtree t �x′′ is removed. It is easy to see that t is
bisimilar to trim(t).

I Lemma 55. Suppose that identities (10)–(12) hold. Let t, s be two regular trees which are
bisimilar, their root components are connected, s is trimmed and Lemma 53 holds for trees
which have smaller number of components than t and s. Then α(t) = α(s).

Proof. Let ` be the least common multiple of the sizes of the root components of t and s.
Since (v)∞ = (vk)∞ for every k, we can assume without loss of generality that the sizes of
the root components are equal to `.

From Lemma 54 we have that B0(π0) = B1(π1). Thus subsequent labels from the root
components are the same. Denote

t = (a1p1a2p2 . . . a`p`)∞, s = (a1p
′
1a2p

′
2 . . . a`p

′
`)∞

for some letters a1, . . . , a` ∈ A and non-guarded contexts p1, . . . , p`, p′1, . . . , p′`. We also see
that if we denote for i = 1, . . . , `

ti = piai+1pi+1 . . . a`p`t, si = p′iai+1p
′
i+1 . . . a`p

′
`s,

then ti is bisimilar to si.
Now fix i ∈ {1, . . . , `}. Let Ti be the set of trees which appear in roots of context pi.

Similarly define T ′i as the set of trees which appear in roots of context p′i. Since ti ∼B si,
then for every tree t ∈ Ti there must be a tree rooted in a root of si which is bisimilar to t.
Let Ri be as follows:

Ri = {t ∈ Ti : there is a tree t′ ∈ T ′i such that t ∼B t′}.

In other words, Ti −Ri contains those trees which must be bisimilar to ai+1si+1. Moreover
let

gi =
∑
t∈Ri

α(t), hi =
∑

t∈Ti−Ri

α(t).

Symmetrically we define R′i, g′i and h′i. Using these notations and identity (10), we can
express the types of contexts pi and p′i as

α(pi) = gi + hi +�, α(p′i) = g′i + h′i +�.

Since all trees from Ri (respectively R′i) have a smaller number of components than the
tree t (respectively s), we can apply the assumption and identities (10), (11) to get gi = g′i.
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Moreover, since s is trimmed, then T ′i = R′i. Otherwise s′′ ∈ T ′i −R′i would be bisimilar
to ai+1ti+1, thus it would be bisimilar to ai+1si+1 – a contradiction. Hence h′i = 0.

Finally, every tree t′′ ∈ Ti − Ri has a smaller number of components than t and it is
bisimilar to ai+1si+1, thus from the assumption and (11) we get hi = α(ai+1si+1).

In conclusion, we can express the types of pi and p′i as

α(pi) = gi + hi +�, α(p′i) = gi +�.

If we denote for i = 1, . . . , `

vi = α(ai)(gi +�),

then the types of trees t and s can be expressed as

α(t) =
(
v1(h1 +�)v2(h2 +�) · · · v`(h` +�)

)∞
, α(s) = (v1v2 · · · v`)∞

with

hi = (vi+1 . . . v`v1 . . . vi)∞.

Applying Lemma 52 we obtain α(t) = α(s). J

Proof of Lemma 53. (1) First we show how to reduce the problem to trees: we assume that
lemma is true for trees and we show that it is also true for a case when at least one of t0, t1
has more than one root.

Let Ti be the set of types in the roots of ti, i.e. Ti = {α(ti �x) : x is a root of ti}.
From the definition of bisimilarity for i = 0, 1 for every root xi ∈ dom(ti) exists a root
x1−i ∈ dom(t1−i) such that t0 �x0 is bisimilar to t1 �x1 . From the assumption we get
α(t0 �x0) = α(t1 �x1). Therefore T0 = T1. Thus from (10) and (11) we have α(t0) = α(t1).

(2) Let ni be the number of components in the tree ti for i = 0, 1. The proof is by
induction over the sum n0 + n1.

First, assume that the root component of t0 is a singleton component. If n0 = 1 (i.e. t0
has only one node), then from bisimilarity also n1 = 1 and the trees are equal (thus they
have the same type). This is also the base of the induction.

Thus assume that n0, n1 > 1. Assume that the root component of t1 is also a singleton
component. From bisimilarity the trees have the same label a in their roots, so the tree ti
can be written as ti = asi for a nonempty forest si, which has ni − 1 components. Now s0
and s1 are bisimilar and every tree rooted in a root of si has at most ni − 1 components.
Thus repeating reasoning from the case (1) and using induction assumption on these smaller
trees gives us that α(s0) = α(s1), and therefore α(t0) = α(t1).

Now, assume that the root component of t1 is a connected component. Again we write
ti = asi for a nonempty forest si, but this time forest s1 can have n1 components. But since
forest s0 has at most n0 − 1 components (so we can use the induction assumption), we can
repeat the above reasoning.

Finally, assume that t0 and t1 are trees and their root components are connected. From
Lemma 55 we get that α(t1) = α(trim(t1)). Since t1 is bisimilar to trim(t1), then from
the transitivity of bisimilarity relation we get that t0 is bisimilar to trim(t1) and thus from
Lemma 55, α(t0) = α(trim(t1)). Therefore α(t0) = α(t1). J
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D.4 Open languages

Let X be an infinite set of variable names. A thin multicontext over A is a thin forest over
A ∪X in which every variable x ∈ X appears in a leaf. The number of variables appearing
in a thin multicontext is not restricted. An open thin multicontext over A is a thin context
p such that p0 is a thin multicontext. For an (open) thin multicontext p we denote by
vars(p) ⊆ X the set of variables appearing in p.

Let p be a (open) thin multicontext and ζ : vars(p) → AThinFor be a mapping which
assigns thin forests to variables appearing in p. We denote by p[ζ] the forest which results
from replacing every variable x in p by the forest ζ(x). We say then that p is a prefix of t.

By pAThinFor we denote a language of all thin forests such that p is their prefix.
For example on figure 3 is depicted an open thin multicontext p with set of variables

vars(p) = {x1, x2}. For any forest s, ps is a thin multicontext such that

psAThinFor = {a(b0 + t1 + a(s+ t2)) : t1, t2 ∈ AThinFor}.

Figure 3

By the definition of open sets, L is open if there exists (possibly infinite) set P of finite
thin multicontexts such that

L =
⋃
p∈P

pAThinFor.

I Theorem 7. A regular language L of thin forests is open if and only if its syntactic
morphism α : AregThin4 → (H,V ) satisfies the following condition:

if v∞ ∈ α(L) then vωh ∈ α(L). (15)

Proof. It is obvious that if L is open, then it must satisfy (15). Indeed, let v ∈ V+ and
let t ∈ L be a forest of type v∞. Thus t = r∞ for some context r ∈ α−1(v). Since L is
open, then there exists a prefix p (of depth n) of the forest t such that pAThinFor ⊆ L. Thus
rkAThinFor ⊆ L for any k ≥ n. For k = |V |!, we have vk = vω for all v ∈ V . Since rks ∈ L
for every forest s, then for h = α(s), we have vkh = vωh ∈ I.

The converse implication follows from Lemma 58, which is formulated at the end of the
section. J

Let p, p′ be two thin multicontexts. We say that p could be immediately reduced to p′ if

p = qr∞ and p′ = qrωx?

for an open thin multicontext q, a context r and a variable x? 6∈ vars(q). We denote it
by p → p′ (see figure 4). We say that p could be reduced to p′ if there is a sequence
p = p0, p1, p2, . . . , pn−1, pn = p′ of thin multicontexts such that pi could be immediately
reduced to pi+1. We denote it by p→∗ p′.
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Figure 4

I Lemma 56. Let L be a regular language of thin forests which satisfies (15) and let p, p′
be two thin multicontexts. If pAThinFor ⊆ L and p→ p′, then p′AThinFor ⊆ L.

Proof. Let p = qr∞ and p′ = qrωx? where q is an open thin multicontext, r is a context
and x? is a variable not in vars(q). Observe that all the variables appearing in p are from q.
Similarly all the variables appearing in p′ (except for the additional variable x?) are also in
q.

Let t′ be any forest from p′AThinFor and ζ : vars(p′)→ AThinFor satisfies p′[ζ] = t′. Applying
ζ to thin multicontext p we get a forest t = p[ζ] ∈ pAThinFor. Since pAThinFor ⊆ L we get
that forest t = q[ζ]r∞ is in L. From (15) the tree t′ = q[ζ]rωζ(x?) is also in L. Therefore
p′AThinFor ⊆ L. J

In order to show that the language L is open we construct its set of prefixes. We show
that L = P ′′AThinFor for

P ′′ = {finite thin multicontext p : t→∗ p for some t ∈ L}.

I Lemma 57. Let L be a regular language of thin forests. For every regular thin forest t ∈ L
there is a finite thin multicontext p ∈ P ′′ which is a prefix of t.

Proof. Let t ∈ L. We prove the lemma by induction over the number of components in
the forest t, i.e. we prove the statement: if s is a subforest of t then there is a finite thin
multicontext p such that s→∗ p.

We can assume that t is a tree, otherwise we just concatenate prefixes for the trees which
are rooted in the roots of forest t.

If the root component of the tree t is a singleton component, then t = as for some a ∈ A
and a forest s. From the inductive assumption there is a finite thin multicontext p such that
s→∗ p. Clearly the thin multicontext ap satisfies t→∗ ap.

Let the root component of the tree t be connected. Thus t = (a1q1 · · · anqn)∞ for some
labels a1, . . . , an ∈ A and non-guarded contexts q1, . . . , qn. It is easy to see that for a variable
x?

t→ (a1q1 · · · anqn)ωx?.
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Let qi = t′i + � + t′′i for some forests t′i, t′′i . From the inductive assumption there are
finite thin multicontexts p′i, p′′i such that t′i →∗ p′i and t′′i →∗ p′′i . Without loss of generality
we can assume that these thin multicontexts have different variables appearing in them,
i.e. set {x?} as well as sets vars(p′i), vars(p′′i ) for i = 1, . . . , n are pairwise mutually disjoint.
Applying these thin multicontexts ω times we get

t→∗
(
a1(p′1 +�+ p′′1) · · · an(p′n +�+ p′′n)

)ω
x?. J

I Lemma 58. Let L be a regular language of thin forests which satisfies (15). Then L =
P ′′AThinFor.

Proof. Let

P ′ = {finite thin multicontext p : pAThinFor ⊆ L}.

Clearly P ′AThinFor ⊆ L. From Lemma 57 L ⊆ P ′′AThinFor. Finally from Lemma 56 we have
P ′′ ⊆ P ′, since for every t ∈ L we have tAThinFor = {t} ⊆ L. Therefore

L ⊆ P ′′AThinFor ⊆ P ′AThinFor ⊆ L. J

D.5 Temporal logic EF
This subsection is devoted to the proof of the following theorem:

I Theorem 9. A regular language L of thin forests is invariant under EF-bisimulation if
and only if its syntactic thin-forest algebra satisfies the identities

h+ v = v + h, (16)
vh = vh+ h, (17)

(v + (vw)∞)∞ = (vw)∞, (18)
(vwu)∞ = (vuw)∞. (19)

The proof follows the same lines as in [4], but we present it in full for the sake of
completeness.

Note that the identity

h+ g = g + h (20)

follows from (16). The identity (19) can be rephrased in a more general way:

I Lemma 59. Let a thin-forest algebra (H,V ) satisfy (19). Then

(v1v2 · · · vn)∞ = (vπ(1)vπ(2) · · · vπ(n))∞

for every permutation π of {1, . . . , n} and every v1, . . . , vn ∈ V such that v1v2 · · · vn ∈ V+.

Proof. Observe that for any v, w1, w2, u ∈ V such that vw1w2u ∈ V+ we have

(v w1 w2u)∞ (19)= (vw2 u w1)∞ (19)= (vw2w1u)∞.

Now the lemma follows from the fact that every permutation is a product of adjacent
transpositions. J
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We recall the definition of thin multicontexts defined in section D.4. An n-ary thin mul-
ticontext over variables x1, . . . , xn is a regular thin forest over alphabet A ∪ {x1, . . . , xn}
where the variables x1, . . . , xn are allowed only in leaves. We allow multiple (possibly in-
finitely many) occurrences of each variable. Given thin forests s1, . . . , sn and an n-ary thin
multicontext p, the thin forest p(s1, . . . , sn) over A is defined in the natural way.

An n-ary thin multicontext is called prime if, when treated as a thin forest over the
alphabet A∪{x1, . . . , xn}, it has one root component, and also all of the non-variable nodes
are in this component.

We say that two thin multicontexts are EF-bisimilar if they are EF-bisimilar when treated
as forests over the alphabet A ∪ {x1, . . . , xn}.

We say that an element h ∈ H is reachable from g ∈ H if there is some v ∈ V with
h = vg.

I Lemma 60. The reachability relation is antisymmetric.

Proof. We recall the proof from [4]. We prove that invariance under EF-bisimulation implies
property (17). Indeed, since α is surjective, there must be some context p with α(p) = v

and some forest t with α(t) = t. Since the forests pt+ t and pt are EF-bisimilar, their types
must be equal, and hence (17) holds.

Suppose that g is reachable from h, and vice versa. To prove antisymmetry, we need to
show that show g = h. By assumption there are v, w ∈ V with g = wh and h = vg. Then
we have

g = wh = wvg
(17)= wvg + vg = g + vg

(17)= vg = h. J

The “only if” part of the proof of Theorem 9 is quite obvious. The rest of this section is
devoted to the “if” part.

We want to show that if two thin forests s and t are EF-bisimilar, then they have the
same types, i.e. α(s) = α(t). The proof is by induction on the number of components in s
plus the number of components in t.

I Lemma 61. Without loss of generality, we can assume that s and t are trees.

Proof. Let s1, . . . , sn be all subtrees in s and t1, . . . , tm be all subtrees in t. By using
identities (17) and (20) we have

α(s) (17)= α(s) + α(s1) + · · ·+ α(sn) (20)= α(s1) + · · ·+ α(sn).

Similarly α(t) = α(t1) + · · · + α(tm). Since s and t are EF-bisimilar, then every si is EF-
bisimilar to some ŝi ∈ {t1, . . . , tm} and every ti is EF-bisimilar to some t̂i ∈ {s1, . . . , sn}.
Suppose we proved the proposition for trees. Then α(si) = α(ŝi) and α(ti) = α(t̂i), thus
{α(s1), . . . , α(sn)} = {α(t1), . . . , α(tm)}. Therefore α(s) = α(t). J

The induction base is when both trees s and t have a single component. If s is finite,
then it has a single node a. In this case t also has to be a, since this is the only tree that
is EF-bisimilar to a. (Note that we cannot check label in a root of a tree, but we can check
whether a tree is of height 1 and check label in a leaf.) Suppose now that s and t are infinite.
Let a1, . . . , an be the labels that appear in s (and therefore also in t). It is easy to see that
s and t are EF-bisimilar to a tree u = (a1 · · · an�)∞. All of trees s, t, u can be treated as
prime thin multicontexts of arity 0.
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From Lemma 48, s = (aπ(1) · · · aπ(n)�)∞ for some permutation π of {1, . . . , n}. Applying
Lemma 59 we get that α(s) = α(u). Analogously we get that α(t) = α(u).

We now do the induction step. Let s1, . . . , sn be all the subtrees of s that have fewer
components than s. In other words, there is a prime n-ary thin multicontext p such that

s = p(s1, . . . , sn).

Likewise, we distinguish all subtrees t1, . . . , tk inside t that have fewer components than t,
and find a prime k-ary thin multicontext q with

t = q(t1, . . . , tk).

Since the trees s and t are EF-bisimilar, each tree si must be EF-bisimilar to some
subtree ŝi of t. By the induction assumption, we know that the trees si and ŝi have the
same type (since si has fewer components than s and ŝi has not more components that t).
Likewise, each tree ti has the same type as some subtree t̂i of s.

By applying (17) in the same manner as in Lemma 61, we conclude that if either p or q
is finite then s and t have the same type. We are left with the case when both p and q are
infinite prime thin multicontexts. Suppose first that
(1) for some i, the tree ŝi has the same number of components as t; and
(2) for some j, the tree t̂j has the same number of components as s.
We use the same notion of reachability on types as was used in Lemma 60. From (1) we
conclude that the tree ŝi is in the root component of t, and therefore the type of both si
and ŝi is reachable from the type of t. Since si is a subtree of s, we conclude that the type
of s is reachable from the type of t. Reasoning in the same way from (2) we conclude that
type of t is reachable from the type of s. Therefore, by Lemma 60, the types of s and t are
equal (note that Lemma 60 used (17)).

Suppose now that one of (1) or (2) does not hold, say (1) does not hold (the other case
is symmetric).

I Lemma 62. Without loss of generality, we can assume that n ≤ k and

s = p(t1, . . . , tn).

Proof. Consider the tree ŝ = p(ŝ1, . . . , ŝn). Since we replaced trees with EF-bisimilar ones,
ŝ is bisimilar to s. Since we replaced trees with ones of the same type, ŝ has the same type
as s. So it is enough to prove the result for ŝ and t.

Since (1) does not hold, then every ŝi is equal to some tj . Rename the subtrees t1, . . . , tk
such that {ŝ1, . . . , ŝn} = {t1, . . . , tn′} for some n′ ≤ min(n, k). After possibly renaming
variables in p, the tree ŝ has the form p(t1, . . . , tn′), like in the statement of the lemma. J

What about the trees tn+1, . . . , tk that do not appear in s? Each of these is EF-bisimilar
to one of s, t1, . . . , tn. For those that are EF-bisimilar to some ti ∈ {t1, . . . , tn}, we use the
tree instead. Therefore, we can without loss of generality assume that

t = q(s, t1, . . . , tn).

I Lemma 63. Any label a ∈ A that appears in q also appears in p.
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Figure 5

Proof. Let a ∈ A be a label in q and consider the following strategy for Spoiler in the
game over the trees s and t: he picks t and in that tree, some occurrence of a in the root
component. Duplicator, in his response, cannot pick a node inside any of the trees t1, . . . , tn,
since none of these is EF-bisimilar to a tree in the root component of t, since (1) does not
hold. Therefore, he must pick a node inside p. J

Let a1, . . . , ai be the labels that appear in q. Thanks to the above lemma, the labels that
appear in p are a1, . . . , ai as well as possibly some other labels, say ai+1, . . . , aj for some
j ≥ i. Therefore the trees s, t look like on figure 5. Let us define the following two contexts

x = a1 · · · ai(�+ t1 + · · ·+ tn), y = ai+1 · · · aj�.

Observe that from Lemma 48 every tree with a connected component in the root can be
written as

u =
(
b1(t′1 +�+ t′′1) · · · bm(t′m +�+ t′′m)

)∞
for somem ≥ 1, letters b1, . . . , bm ∈ A, and thin forests t′1, t′′1 , . . . , t′m, t′′m. From the identities
we conclude that for every v1, . . . , vm ∈ V+ and h1, . . . , hm, g1, . . . , gm ∈ H we have

(
v1(h1 +�+ g1) · · · vm(hm +�+ gm)

)∞ (19)=
=
(
v1 · · · vm(h1 +�+ g1) · · · (hm +�+ gm)

)∞ =

=
(
v1 · · · vm(h1 + · · ·+ hm +�+ gm + · · ·+ g1)

)∞ (16)=
=
(
v1 · · · vm(�+ h1 + · · ·+ hm + g1 + · · ·+ gm)

)∞
.

That shows that the type of u is the same as the type of(
b1 · · · bm(�+ t′1 + · · ·+ t′m + t′′1 + · · ·+ t′′m)

)∞
Using identities (19) and (16) we can further rearrange letters bi and trees from forests t′i, t′′i .
From this it is easy to show that α(s) = α((xy)∞) and α(t) = α((x(�+ s))∞).

E Algebraic characterization of languages WMSO-definable among
all forests

The rest of this section is devoted to a proof of the missing implications in Theorem 15.
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E.1 (1)⇒ (2)
I Definition 64. Assume that t ∈ AFor is a forest and x � y are two nodes of t. We say
that a node z is off the path from x to y if z is not an ancestor of y (z 6� y) but there exists
x′ such that x � x′ ≺ y and z is a child of x′.

We start by showing the following lemma. The constructed formula ϕm will serve as a
basis in the following constructions.

I Lemma 65. For every m ∈ N there exists a WMSO formula ϕm defining among all forests
the language of thin forests of CB-rank at most m (denoted AThinFor≤m, see Definition 29).

Proof. Induction on m. For m = 0 it is trivial, since the only forest of CB-rank equal 0 is
the empty forest.

Assume that the thesis holds for m— we have defined a formula ϕm. Consider a WMSO
formula ϕm+1 that for a given forest t ∈ AFor says that:

there exists a finite forest r ⊆ t,
and a number of leafs x1, x2, . . . , xn of r (n may equal 0),
such that if y is off r in t then y is a child of one of the leafs x1, . . . , xn and
for every selected leaf xi of r,
there are infinitely many nodes y such that xi ≺ y and
for every node z that is off the path from xi to y,
the subtree t �z has CB-rank at most m (what corresponds to checking the formula ϕm
on t�z).

First assume that ϕm+1 holds on a given forest t. Take r ⊆ t and observe that by
Königs Lemma, there are infinite branches π1, π2, . . . , πn starting in leafs xi of r such that
for every node z that is off πi and below xi the CB-rank of t �z is at most m. Therefore
t′ = DvmCB(t) does not contain any of those nodes z. So the set of branches of t′ is contained
in π1, π2, . . . , πn and the branches of r, so Dvm+1

CB (t) = 0. So rankCB(t) ≤ m+ 1.
Now assume that rankCB(t) ≤ m + 1. Therefore, t′ = Dvm(t) has only finitely many

infinite branches. So it is of the form r(π1, π2, . . . , πn) where r is a finite forest and branches
πi go through some leafs x1, . . . , xn of r. We satisfy the formula ϕm+1 by taking r, π1, . . . , πn
as above and putting as nodes y all nodes of the form xi ≺ y ≺ πi. By the definition of t′,
every node z that is off one of the branches πi and below xi has CB-rank at most m. So the
subtree t�z satisfies ϕm. J

The crucial inductive part of the proof is expressed by the following proposition.
I Proposition 66. Let (H,V ) be a finite thin-forest algebra, α : AThinFor → (H,V ) be a
homomorphism and let M be a number. For every type h ∈ H there exists a WMSO
formula ϕM (h) that defines those forests t ∈ AFor such that t ∈ AThinFor, rankCB(t) = M

and the type of t is h with respect to α (i.e. α(t) = h).
For M = 0 the only forest of CB-rank equal 0 is the empty forest. So for h = 0 the

formula ϕ0(h) is equivalent to ϕ0 and for other types h it is false. Assume that the thesis
of the proposition holds for all types h and a given number M . We show it for M + 1.

First we write formulas ψm(x, y) for m > 0 expressing that for a given pair of nodes
x, y ∈ t:

x � y,
the subtrees t �x and t �y have CB-ranks exactly m (we check it using ϕm and ¬ϕm−1),
and
for every z that is off the path from x to y
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the CB-rank of t�z is at most m− 1 (i.e. check ϕm−1 on t�z).

The following lemma summarizes the most important properties of formulas ψm(x, y).

I Lemma 67. Assume that for a given forest t ∈ AFor and a node x ∈ dom(t) there are
infinitely many nodes y such that ψm(x, y). Then rankCB(t�x) = m and the set of nodes of
CB-rank equal m below x in t is contained in a single infinite branch π of t.

Moreover, ψm(x, y) holds for some y ∈ dom(t) if and only if x � y ≺ π.

Proof. Take a forest t and a node x ∈ dom(t) as in the statement. Observe that rankCB(t�x) =
m. Let S ⊆ dom(t) be the set of nodes y ∈ dom(t) such that ψm(x, y) holds. Observe that
if x � y1 � y2 ∈ t and y2 ∈ S then y1 ∈ S. Since there are infinitely many nodes y
satisfying ψm(x, y) so S is infinite. Observe that for every node z that is off S we have
rankCB(t�z) ≤ m− 1. Every node y ∈ S satisfies rankCB(t�y) = m. So S is the set of nodes
of CB-rank equal m in t below x.

Assume that there is a node x′ ∈ S such that two distinct children y1, y2 of x belong to
S. Then ψm(x, y1) holds, but y2 is off the path from x to y1. So rankCB(y2, t) ≤ m− 1 by
the definition of ψm. But y2 ∈ S so rankCB(y2) = m. A contradiction.

Therefore, S is contained in a single infinite branch of t. J

The above lemma states that the formula ψm(x, y) enables us to fix in WMSO-definable
way a particular branch π in our forest such that almost all nodes that are off this branch
have ranks smaller thanm. What remains is to compute the type of the subtree rooted in the
node x basing on types of subtrees that are off π. The following formula is an intermediate
step in this construction.
I Fact 68. For nodes x, y1, y2 and a type v ∈ V there exists a WMSO formula γm(x, y1, y2)(v)
expressing the following facts:

ψm(x, y1) and ψm(x, y2) hold,
y1 � y2,
α(p) = v, where p is the context rooted in y1 with the hole in y2.

To achieve the last item of the list, the formula computes the types of subtrees rooted
in nodes off the path from y1 to y2 using inductive formulas ϕM (h) for M < m and h ∈ H.

Now we show how to compute a type of a tree with one main branch.

I Definition 69. Let x be a node and h ∈ H be a type. Let the formula δm(x)(h) express
the following facts:

there are infinitely many nodes y such that ψm(x, y),
there exists a pair of context types u, v ∈ V such that uv∞ = h,
there exists a node y0 such that ψm(x, y0) and γm(x, x, y0)(u) holds (the type of the
context between x and y0 is u) and
for every node y1 such that ψm(x, y1) there exists a pair of nodes y2, y3 such that y1 ≺
y2 ≺ y3, ψm(x, y2), and ψm(x, y3) hold and
the formulas γm(x, y0, y2)(v), γm(x, y0, y3)(v), and γm(x, y2, y3)(v) hold (the types of the
three contexts equal v).

The last two items of this formula are based on a construction from [23] that enables to
verify a type of a given infinite word in first-order logic using predicates of the form “the
type of an infix between positions y1 and y2 is v”.

I Lemma 70. Let t be a forest and x be a node such that there are infinitely many nodes y
satisfying ψm(x, y). Then α(t�x) = h if and only if δm(x)(h) holds on t.
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Proof. First assume that t |= δm(x)(h) for some x ∈ dom(t) and h ∈ H. Let π be the
branch defined by the predicate ψm(x, y) as in Lemma 67.

Let y1 � y2 be two nodes of the given tree t. In this proof, by [y1, y2) we denote the
context rooted in y1 with the hole instead of t�y2 .

We show that the formula γm(x)(h) gives rise to a sequence of nodes z0 ≺ z1 ≺ z2 . . . on
π such that for some types u, v satisfying uv∞ = h we have:

α ([x, z0)) = u, α ([zi, zi+1)) = v. (21)

Having done so, we conclude that the type of t�x is h.
Let us fix y0 as in the definition of δ. We will set y1 to various nodes along π obtaining

appropriate nodes y2, y3.
Let us start with y1 equal y0 and consider y2, y3 given by δm(x)(h). Let z1 = y2 and

u1 = y3. Our inductive invariant is that types of all three contexts [y0, zi), [y0, ui), and
[zi, ui) equal v. For i = 1 we get it by the definition of δm(x)(h). Assume that zi ≺ ui
are defined and put y1 = ui. Consider y2, y3 as in the definition of δm(x)(h). Let us put
zi+1 = y2 and ui+1 = y3. Similarly as in the base step we get the invariant by the definition.
Now consider the type of the context [zi, zi+1):

α ([zi, zi+1)) = α ([zi, ui)) · α ([ui, zi+1))
= v · α ([ui, zi+1))
= α ([y0, ui)) · α ([ui, zi+1))
= α ([y0, zi+1))
= v.

Therefore, the constructed sequence z1 ≺ z2 ≺ . . . satisfies (21).
For the other direction take a forest t with node x and a branch π as in Lemma 67.

Using a Ramsey argument along π we find a pair of types u, v and an infinite sequence of
nodes zi along π satisfying (21). Since α(t �x) = h, so uv∞ = h. Therefore, we can satisfy
the formula δm(x)(h) using successive nodes zi. J

Now we can rewrite the formula ϕm defined in the proof of Lemma 65 so that it addi-
tionally verifies the type of the given forest. Take M > 0 and define ϕM (h) that says:
1. there exists a finite prefix r ⊆ t,
2. and a number of leafs x1, . . . , xn of r,
3. and a sequence of types h1, . . . , hn such that
4. the type of r(h1, h2, . . . , hn) is h and
5. for every leaf xi,
6. there are infinitely many nodes y such that ψM (xi, y),
7. and δM (xi)(hi) hold for all i = 1, . . . , n.

What remains is to observe that the forest r and leafs xi correspond to the final prefix
of a given forest, formulas ψm(xi, y) fix infinite branches passing through xi and δm(xi)(hi)
verifies the type of the subtree t�xi

. Therefore, ϕM (h) holds on t if and only if rankCB(t) =
M and α(t) = h.

E.2 (3)⇒ (4)
Assume contrary that there are types h, v, w, u in the syntactic algebra of a regular language
L such that (by symmetry) h = v(w+h)∞ and α−1(u ·h) ⊆ L. We show that L is Π1

1(AFor)-
hard. Let us fix a forest th of type h and contexts cv, cw, cu of types v, w, u respectively.
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I Definition 71. An ω-tree is a subset α ⊆ N∗ that is closed under prefixes. The space
of ω-trees is denoted as ωTr. The set of trees that does not contain any infinite branch is
denoted as WF ⊆ ωTr.

I Fact 72 (See [12, Chapter IV Section 33.A]). The space of ω-trees is a Polish topological
space. The set WF is Π1

1-complete.
First we define a continuous function mapping ω-trees T ∈ ωTr to forests t(T ) ∈ AFor.

If T = ∅ then let t(T ) = th. If T is non-empty let T0, T1, . . . be the sequence of consecutive
subtrees under the root of T . First let us put ci = cv(cw + t(Ti)) and define

t(T ) = cv(cw + th) · c0 · c0 · c1 · c1 · c2 · . . . . (22)

Note that in this definition, for every i ∈ N we put the context ci twice.
Observe that since every context ci is guarded (because w ∈ V+), so the function

t : ωTr → AFor defined above is continuous — given information about a consecutive child
of the root of T it produces further parts of the result t(T ).

Now we define f(T ) = cu · t(T ).

I Lemma 73. An ω-tree T ∈ ωTr does not contain an infinite branch (belongs to WF) if
and only if f(T ) ∈ L.

Proof. First assume that T ∈ WF. We inductively on the structure of T show that t(T )
is a thin forest and α(t(T )) = h. Having done so we will conclude that α(f(T )) = u · h,
therefore f(T ) ∈ L. Formally speaking the induction on the structure of T is based on the
standard rank on well-founded ω-trees, see [12, Chapter I Section 2.E].

If T = ∅ then it is trivial. Otherwise, T contains infinitely many subtrees of the root
(Ti)i∈N and by the inductive assumption we know that t(Ti) is thin and has type h. There-
fore, by the definition t(T ) is thin and by condition (2) and definition (22) we have

α (t(T )) = v(w + h)∞ = h.

Now take T /∈ WF. Assume that d ∈ Nω is an infinite branch of T . We show how to
embed a full binary tree into f(T ) thus showing that f(T ) is not thin. Since L ⊆ AThinFor

so f(T ) /∈ L.
For a node w ∈ T by T �w we denote the subtree of T rooted in w. For a number n we

denote by d�n the prefix of d of length n. Thus, T �d�n is the n-th subtree of T along d. For
n = 0 we have T �d�n

= T .
We take a sequence e ∈ {0, 1}ω and define an infinite branch be of f(T ). Intuitively we

want to find a sequence t0, t1, . . . of subforests of f(T ). During each step tn is a copy of the
t(T �d�n

) forest. We start by putting t0 as the subforest put in the hole of cu. From that
moment on we will traverse infinitely many copies of cv. In the n-th step we go to one of the
two copies of the forest t(T �d�n

) in the current subforest tn — either the first or the second
one, depending on the value of e(n) ∈ {0, 1}.

To be more precise, we additionally define a sequence of contexts pn. Our aim is that
for every n:

tn = t (T �d�n) ,
f(T ) = pn · tn,
pn+1 = pn · sn for a guarded context sn. (23)

Note that if a sequence pn satisfies these properties then the holes of contexts pn do indicate
an infinite branch be of f(T ).
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We start with p0 = cu and note that by the definition of f the invariants (23) are satisfied.
Assume that pn is defined. Let d(n) = k — the branch d goes through k’th child of the
current subtree T �d�n

. Let us recall the definition (22) for the subtree T �d�n
and let

rP = cv(cw + th) · c0 · c0 · . . . · ck−1 · ck−1,

r0 = �,
r1 = ck,

tF = ck+1 · ck+1 · ck+2 · ck+2 · . . . ,
sn = rP · re(n) · cv ·

(
cw · r1−e(n) · tF +�

)
.

Note that by the definition f(T ) = pn · sn · tn+1, and sn is guarded, so the context pn+1
defined as pn · sn satisfies the invariant (23).

Observe that the possible two values of e(n) ∈ {0, 1} induce two different contexts pn+1
with two incomparable holes (we use either r0 or r1 on the path to the hole of sn). Therefore,
for any e′ 6= e we have be′ 6= be. So indeed the forest f(T ) is not thin — it contains a full
binary subtree.

J

E.3 (4)⇒ (1)
First we extend the definition of the CB-rank to thin contexts:

rankCB(p) = max{rankCB(p�x) : x is off the path to the hole of p}.

It is easy to see that the rank can be calculated inductively on the structure of a term
describing a given thin forest:

rankCB(s+ t) = max(rankCB(s), rankCB(t)),
rankCB(p · q) = max(rankCB(p), rankCB(q)),

rankCB(p · t) =
{

max(rankCB(p), rankCB(t)) if p is non-guarded,
max(rankCB(p), rankCB(t), 1) if p is guarded,

rankCB(p∞) = 1 + rankCB(p),
rankCB(inl(t)) = rankCB(inr(t)) = rankCB(t),

rankCB(0) = rankCB(�) = rankCB(a�) = 0,

for thin contexts p, q, thin forests s, t, and letter a ∈ A.
In fact, for regular thin forests and contexts, CB-rank is closely related to the maximal

nesting depth of the loop operation. It is stated more formally in the two following lemmas.

I Lemma 74. Every regular thin context p of CB-rank equal n can be written as either

p1(p2 + t) or p1(t+ p2)

where t is a thin forest of CB-rank n.

Proof. We do a proof by induction on the structure of the term which generates p.
If p = � or p = a� we put t = 0.
If p = inl(t) for some forest t, then we put p1 = p2 = �.
Otherwise p = qr for some contexts q, r. If r has CB-rank equal n, then by induction

assumption w.l.o.g. r = r1(r2 + s) and p = qr1(r2 + s). If q has CB-rank equal n, then
q = q1(q2 + s) and p = q1(q2 + s)r = q1(q2r + s). J
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I Lemma 75. Every regular thin forest t of CB-rank equal n > 0 can be written as either

p(q + t′)∞ or p(t′ + q)∞

where t′ is a thin forest of CB-rank n− 1.

Proof. We do a proof by induction on the structure of the term which generates t.
Assume that t = s1 + s2 and w.l.o.g. let s1 be of CB-rank equal n. Then by induction

assumption w.l.o.g. s1 = p(q + t′)∞ and t′ is of CB-rank equal n− 1. Thus

t = p(q + t′)∞ + s2 = (p+ s2)(q + t′)∞.

Assume then t = ps. If s is of CB-rank equal n we do similarly. If p is of CB-rank equal
n, then from Lemma 74 p = p1(p2 + s′) and s′ is of rankCB equal n. Thus

t = p1(p2 + s′)s = p1(p2s+�)s′,

and again we use induction assumption.
Finally if t = p∞, then p is of CB-rank equal n− 1 and from Lemma 74 p = p1(p2 + s′)

and s′ is of CB-rank equal n− 1. Therefore

t = (p1(p2 + s′))∞ = p1((p2 + s′)p1)∞ = p1(p2p1 + s′)∞. J

I Lemma 76. If a regular language L contains a forest of CB-rank equal n, it contains also
a regular forest of CB-rank equal n.

Proof. From Lemma 65 we get that the language

L ∩ (AThinFor≤n −AThinFor≤n−1)

of all thin forests from L of CB-rank equal n is regular. The lemma follows from the fact
that every regular language of thin forests contains a regular thin forest. J

We introduce a directed graph G, whose set of vertices is a horizontal monoid H of the
syntactic thin-forest algebra of L. For h, g ∈ H a directed edge h→ g belongs to G if there
exist elements v, w ∈ V such that g = v(w + h)∞ or g = v(h + w)∞. Graph G is closed
under transitivity:

I Lemma 77. If for h, g, f ∈ H edges h→ g and g → f belong to G, then and edge h→ f

also belongs to G.

Proof. Let g = v(w + h)∞ and f = v′(w′ + g)∞ for some v, w, v′, w′ ∈ V . Symmetric cases
are done analogously. We have

f = v′(w′ + g)∞ =
= v′(w′ + g)(w′ + g)∞ =
= v′(w′(w′ + g)∞ + g) =
= v′(w′(w′ + g)∞ + v(w + h)∞) =
= v′(w′(w′ + g)∞ + v)(w + h)∞.

Thus f = v′′(w + h)∞ for v′′ = v′(w′(w′ + g)∞ + v). J
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Now we show that if a language L satisfies (2) then there is a bound on CB-ranks of
forests in L. We do a proof by contradiction – we assume that the language L satisfies (2),
but it has undounded CB-rank.

From Lemma 76 and Lemma 75 for any sufficiently large n we have a family of forests
t0, t1, . . . , tn such that:
(a) rankCB(ti) = i,
(b) there is an edge α(ti−1)→ α(ti) in G,
(c) tn ∈ L.

Therefore for n ≥ |H| there exist two indices i, j such that j < i ≤ n and α(tj) = α(ti) =
h?. Condition (b) ensures that there is a path from h? to itself in G, thus from Lemma 77
there is a loop-edge h? in G, hence h? = v(w+h?)∞ or h? = v(h? +w)∞ for some v, w ∈ V .
Therefore from (2) h? is the bottom element for L.

Since there is a path from h? to α(tn) in G, then we get that α(tn) is equal to either
v(w + h?)∞ or v(h? + w)∞ for some v, w ∈ V . Observe that

v(w + h?)∞ = v(w + h?)(w + h?)∞ = v(w(w + h?)∞ +�)h? = h?,

where the last equality comes from the definition of the bottom element. Therefore we get
that α(tn) = h?. This contradicts with condition (c).

F Embeddings

In this section we introduce objects used in Appendix G to estimate the topological com-
plexity of regular languages of thin trees.

F.1 Embeddings
I Proposition 78. There exists an analytic (Σ1

1) relation RE ⊆ AFor × AFor such that for
every two forests t1, t2 such that t2 is thin:(

t1 is thin and rankCB(t1) ≤ rankCB(t2)
)
if and only if (t1, t2) ∈ RE .

Intuitively the relation RE is defined by the expression of the form: (t1, t2) ∈ RE if
there exists an embedding of t1 to t2. However, to avoid technical difficulties, we do not
introduce exact definition what is an embedding. Instead, we recall some standard methods
from descriptive set theory, see [12, Chapter IV Section 34].

Our aim is to present DvCB as a Borel derivative and show that the CB-rank is a Π1
1-rank

using Theorem 34.10 from [12]:

I Theorem 79 (Theorem 34.10 from [12, Chapter IV Section 34]). Let X be a Polish space and
either D = K(X), or X is also Kσ and D = F (X). Let D : D → D be a Borel derivative.
Put

ΩD = {F ∈ D : D∞(F ) = ∅}.

Then ΩD is Π1
1 and the map F 7→ |F |D is a Π1

1-rank on ΩD.

Then, by the definition of Π1
1-rank (see 34.B) the relation

RE(x, y)⇔ x �Γ̄
rankCB y ⇔ y /∈ AThinFor ∨ (x, y ∈ AThinFor ∧ rankCB(x) ≤ rankCB(y))

is a Σ1
1 relation.
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Since the rank of a forest depends only on its domain, and not on the particular letters,
we assume that A = {a}. Let X = N∗ and D = 2X . Then X is a Kσ Polish topological
space and D = F (X). Note that in that case AFor ⊆ D. Let us extend the derivative DvCB
to a function D : D → D by putting D(F ) = F whenever F /∈ AFor. The function D defined
this way is Borel: the set of forests is Borel in D and the property that x ∈ dom (DvCB(t)) is
a Borel property of a forest t: x ∈ dom(t) and t�x does not have a finite number of branches.
By applying Theorem 34.10 we obtain that the rank induced by D (that is CB-rank) is a
Π1

1-rank.

F.2 Quasi skeletons
The second construction is intended to witness the existence of a particular skeleton σ̃ of
a given thin forest t. The trick is that σ̃ witnesses a skeleton of t given that t is thin.
Otherwise σ̃ does not witness anything interesting. Such a (conditional) skeleton is denoted
as a quasi skeleton.

I Theorem 80. There exists a Σ1
1 relation RQ on AFor × {0, 1}For such that:

for every thin forest t there exists a forest σ̃ such that (t, σ̃) ∈ RQ,
for every pair (t, σ̃) ∈ RQ we have dom(t) = dom(σ̃), and σ̃ contains (treated as a set of
nodes of t) exactly one node from each set of siblings in t,
if t is a thin forest and (t, σ̃) ∈ RQ then σ̃ encodes a skeleton of t.

A forest σ̃ such that (t, σ̃) ∈ RQ is called a quasi skeleton of t.

Note that RQ may contain some pairs (t, σ̃) with a non-thin forest t. In that case σ̃
encodes some set of nodes of t but not a skeleton.

To prove the above theorem we define RQ ⊆ AFor × {0, 1}For, such that RQ(t, σ̃) if
dom(σ̃) = dom(t) and σ̃ encodes a set of nodes S ⊆ dom(t) such that:

for every set of siblings in t exactly one of them is in S,
for every x ∈ dom(t) and y that is the unique sibling of x in S we have (t�x, t�y) ∈ RE .

I Fact 81. Since RE is analytic, so is the relation RQ.
The following two lemmas express crucial properties of the relation RQ.

I Lemma 82. Let t be a thin forest. There exists a quasi skeleton σ̃ for t.

Proof. We define a set B of nodes of the given forest t. Take any set of siblings y0, y1, . . . , yn.
Let us define ti as the tree t�yi

. Without loss of generality we can assume that t0 has maximal
rankCB among those trees. We put the node y0 to B and all other nodes yi for i > 0 do not
belong to B.

Let σ̃ be the characteristic function of B on dom(t). J

The following lemma expresses the motivation for quasi skeletons.

I Lemma 83. If t is a thin forest and σ̃ is a quasi skeleton for t then σ̃ (treated as a set of
nodes of t) is a skeleton of t.

Proof. Let B ⊆ dom(t) be the set of nodes represented by σ̃. Take any infinite branch
π of t. We need to show that almost all nodes on π belong to B. Assume contrary. Let
y0 ≺ y1 ≺ . . . ≺ π be the sequence of nodes on b that do not belong to B. By the definition
of σ̃ for every node yi there exists a sibling y′i of yi such that y′i 6= yi and (t�yi , t�y′i) ∈ RE .
Since t is thin this property implies that

rankCB(yi, t) ≤ rankCB(y′i, t).
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Since ordinal numbers are well-founded, we can assume without loss of generality that
all ranks rankCB(yi, t) are equal some ordinal η < ω1. Since yi ≺ y′i+1 so we can also assume
that for every i we have rankCB(y′i) = η. Let s be the final prefix of t �y0 . Note that
rankCB(t �y0) = η so by the definition s contains all nodes of rank η in t. In particular s
contains all nodes yi and y′i. But this is a contradiction, since s has rank 1 by Fact 31 so
cannot contain infinitely many branching nodes. J

I Remark. Assume that t is a thin forest, σ̃ is a quasi skeleton of t and x ∈ dom(t) is a
node of t. The main branch of σ̃ from x can be defined in the same way as in the case of
skeletons. The only difference is that if σ̃ is not a skeleton, then not every infinite branch
of t is main.

G Topology

This appendix contains proofs of theorems from Section 5.3. Additionally, for the sake of
completeness, we show the following fact.

I Fact 84. The set of thin forests AThinFor is Π1
1(AFor)-complete.

Proof. A forest is thin if and only if it does not contain a full binary subtree as a minor.
This definition is a co-analytic definition of AThinFor among all forests.

For the sake of hardness we can use the implication (3) ⇒ (4) in Theorem 15 — the
language of all thin forests violates condition (2) so is Π1

1-hard. It can also be proved directly
by repeating the construction of reduction f from Section E.2. J

G.1 Every regular language of thin forests is co-analytic
In this section we show the following theorem.

I Theorem 18. Every regular language of thin forests L is co-analytic as a set of forests.

Assume that L is a regular language of thin forests. Let L′ = AFor \L be its complement
relatively to all forests. L′ is a regular language of forests. Let A be a forest automaton
recognizing L′. We will write L′ as the sum

L′ =
(
AFor \AThinFor) ∪K.

The language K will be defined this way to be analytic and to satisfy the following
condition:

K ∩AThinFor = L′ ∩AThinFor.

Let K contain those forests t such that there exists a quasi skeleton σ̃ and a run ρ of the
automaton A such that for every node x ∈ dom(t) the limes superior of ranks of ρ is even
along the main branch of σ̃ from x.

Observe that K is defined by existential quantification over forests σ̃ ∈ {0, 1}For and runs
ρ. The inner properties:

σ̃ is a quasi skeleton for t,
ρ is a run of A,
for every node x ∈ dom(t) the main branch from x along σ̃ is accepting,
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are analytic (the later two are in fact Borel). Therefore, K is analytic. Note that we do not
express explicitly that ρ is an accepting run.

Observe that if t ∈ L′ ∩ AThinFor then t ∈ K: there is some quasi skeleton σ̃ for t and
there is an accepting run ρ of A. Since ρ is accepting so it is accepting on all main branches
of σ̃.

What remains is to show that if t ∈ K ∩ AThinFor then t ∈ L′. Take a thin tree t ∈ K.
Assume that σ̃, ρ are a quasi skeleton and a run given by the definition of K. Since t is a thin
tree, so σ̃ actually encodes a skeleton σ ⊆ dom(t). We take any infinite branch π of t and
show that ρ is accepting along π. By Lemma 33 we know that there is a node x ∈ dom(t)
such that π is the main branch of σ from x. Therefore, by the definition of K, the run ρ is
accepting on π. We use here the fact that the acceptance condition is prefix independent,
it is enough to satisfy it from some point on.

G.2 There are no harder than Borel regular languages of thin forests
Let us recall the theorem we prove.

I Theorem 19. Let X be a Polish topological space, f : X → AThinFor be continuous and L
be a regular language of thin forests. Then f−1(L) is Borel in X.

Assume that X, f and L are given as in the statement of the theorem. Observe that
f(X) is an analytic set of AFor and is contained in AThinFor.

I Lemma 85. There exists η < ω1 such that f(X) ⊆ AThinFor≤η.

Proof. Assume contrary. In that case we give an analytic definition of AThinFor among all
forests. It contradicts the fact that AThinFor is co-analytic-complete. The key tool is the
relation RE defined in Appendix F.

Let us define a set T of forests by the following property: a forest t1 belongs to T if there
exists a forest t2 in f(X) such that (t1, t2) ∈ RE . The above definition is obviously analytic.
We claim that T = AThinFor.

Take a thin forest t1 ∈ AThinFor. If there were no forest t2 in f(X) of CB-rank greater
then rankCB(t1), then η = rankCB(t1) would be a bound on CB-ranks of forests in f(X).
But we assumed that there is no such bound, so there must exist such t2 ∈ f(X). Since
rankCB(t1) ≤ rankCB(t2) so (t1, t2) ∈ RE , so t1 ∈ T .

Now consider any forest t1 ∈ T . Let t2 be the witness from the definition of T . Since
t2 ∈ f(X) so t2 is a thin forest, so by applying Proposition 78 we obtain that t1 is also a
thin forest. J

What remains is to show the following lemma.

I Lemma 86. For every η < ω1 the language L ∩AThinFor≤η is Borel.

Proof. The construction mimics the formulas ϕm, ψm, and ϕM (h) defined in Appendix E.
The difference is that instead of writing WMSO formulas, we inductively prove that cor-
responding languages are Borel. The induction goes by ordinal numbers η. The successor
step is done exactly as in Appendix E. The limit step is obtained via a countable union of
languages of rank smaller then η. J

By the above observations

f−1(L) = f−1 (f(X) ∩ L) = f−1 (AThinFor≤η ∩ L
)
,

and the set AThinFor≤η ∩ L is Borel, so is its preimage.
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G.3 There exists a Borel-hard regular language of thin forests
In this section we define the language LW introduced in Theorem 20 and entail Corollary 21.

I Theorem 20. There exists a regular language of thin forests LW over an alphabet AW
that is Borel-hard: for every Polish topological space X and every Borel set B ⊆ X there
exists a continuous function f : X → AW

ThinFor such that f−1(LW ) = B.

Let AW = {∨,∧,⊥,>}. A forest t ∈ AW
For induces a parity game: a position of the

game is a node x ∈ dom(t). Nodes labelled by > (resp. ⊥) are final positions of the game,
winning for Eve (resp. Adam). Nodes labelled by ∨ (resp. ∧) belong to Eve (resp. Adam).
In each round the player possessing the current node selects one of its children and the token
is moved to the selected node. If a player cannot perform a move (the current node is a leaf)
then she looses. The priority of nodes labelled ∨ (resp. ∧) is 1 (resp. 2).

For technical reasons we restrict ourselves to trees — if t is a tree then the initial position
of the game is the unique root of t.

I Definition 87. Let LW be the language of thin trees over the alphabet AW such that Eve
has a strategy in the induced parity game.

Observe that, since a strategy can be encoded as a set of nodes of a given forest, the
language LW is regular.

I Lemma 88. If X is a Polish topological space and B ⊆ X is Borel then there exists a
continuous function f : X → AW

ThinFor such that f−1(LW ) = B.

Proof. The proof is inductive on the level of the Borel hierarchy the given set B occupies.
Without loss of generality we can assume that X is a Cantor space {0, 1}ω. If B is a basic
clopen subset of X then the function mapping elements of B to > · 0 and elements of X \B
to ⊥ · 0 is continuous.

Let B be a countable union (resp. intersection) of simpler sets B1, B2, . . .. Let fi be a
reduction of Bi to LW . Let a = ∨ (resp. a = ∧). Take any element x ∈ X and define

pi = a(�+ fi(x)), and f(x) = p1 · p2 · . . .

Consider the possible two cases:
(a = ∨) A strategy for Eve in the game on f(x) boils down to selecting one of the subtrees

fi(x) and proceeding in this subtree.
(a = ∧) A strategy for Eve in the game on f(x) consists of a sequence of strategies for each

subtree fi(x) selected by Adam.

Therefore, Eve can win the game on f(x) if and only if she can win on some fi(x) (resp.
on every fi(x)). Therefore, f(x) ∈ LW if and only if ∃i fi(x) ∈ LW (resp. ∀i fi(x) ∈ LW ).
So f(x) ∈ LW if and only if x ∈ B. J

For Corollary 21 assume that LW would be WMSO-definable among thin forests. In
that case LW would be of the form L∩AW ThinFor for a WMSO-definable language of forests
L. By a standard estimation L ∈ Σ0

n(AW For) for some n. But, by Lemma 88 we can reduce
some Π0

n-complete language to L — a contradiction.
Now observe that trees constructed by reductions f from the proof of Lemma 88 have

simple canonical skeletons: σ(f(x)) contains the leftmost node from each set of siblings.
Therefore, the canonical skeletons are WMSO-definable on trees generated by f , so it does
not change anything if we supply them with the given forests.
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