Information-Based Complexity vs Computational Complexity
in Phaseless Polynomial Interpolation

Michat R. Przybytek! and Pawel Siedlecki?

'Polish-Japanese Academy of Information Technology; Warsaw, Poland
mrp@mimuw.edu.pl
2University of Warsaw; Warsaw, Poland
psiedlecki@mimuw.edu.pl

October 25, 2025

Abstract

The authors of [9] have shown that phaseless polynomial interpolation over Q is possible
with n 4+ 2 points, where n is the upper-bound on the degree of a polynomial. Nonetheless,
their reconstruction algorithm and the method of adaptively choosing evaluation points are
exponential time. On the other hand, they have also shown that given 2n + 1 points, the
polynomial can be reconstructed in a polynomial time. In [9] a conjecture have been put
forward, namely that the reconstruction problem from such n + 2 points is exponential time.
Moreover, a question about the number of points sufficient for polynomial time reconstruction
have been posed. In this paper, we answer these questions — we show that (1) reconstruction
problem from 2n — k for any constant k is polynomial time, (2) reconstruction problem from
(1 + ¢)n + 2 points for any constant ¢ € [0, 1) is NP-Complete, (3) evaluation points admitting
a unique solution can be chosen in polynomial time.

1 Introduction

The challenge of phase retrieval-the reconstruction of a signal, function, or vector from the
magnitude of its measurements—is a foundational problem in applied mathematics [5], physics,
and engineering. It appears in diverse fields such as X-ray crystallography, microscopy, optics,
and signal processing. In the algebraic context, this problem manifests as phaseless polynomial
interpolation: the reconstruction of a polynomial p(z) from a set of evaluation points x; and
their corresponding absolute values, |p(x;)|.

This problem immediately highlights a fundamental dichotomy, which is the central theme of
this work: the distinction between information-based complexity and computational complexity.
The first asks: how many sample points are informationally sufficient to uniquely determine
the polynomial (up to an unobservable global phase)? The second asks: given a sufficient
number of points, what is the computational tractability of an algorithm that performs this
reconstruction? A problem may be solvable in principle (i.e., have sufficient information) but
intractable in practice (i.e., require exponential time).

Recent work, notably [9], has precisely framed this gap. For polynomials of degree at most
n with rational coefficients (Q]z]), it has been shown that n + 2 phaseless evaluation points
are informationally sufficient and necessary for unique reconstruction. This establishes a low

information-theoretic bound. In contrast, the authors of that paper provided a polynomial-time
reconstruction algorithm when 2n + 1 points are given. The algorithm they provided for the
n + 2 point case, however, requires exponential time.

This disparity left two critical questions unanswered, which that paper posed as open prob-
lems:

1. Is the reconstruction problem from n+ 2 points inherently of exponential-time complexity?

2. What is the true computational threshold? What is the minimum number of points re-
quired for a polynomial-time reconstruction?

In this paper, we resolve both of these questions. We provide a complete characterization
of the computational complexity landscape for this problem, drawing a sharp, and perhaps
surprising, line between the tractable and the intractable.

Our first main result addresses the polynomial-time regime. We demonstrate that the 2n+ 1
point requirement is not optimal. We prove that reconstruction from m = 2n — k points, for
any fixed constant k, is solvable in polynomial time (in n and the bit-size of the input). Our
method relies on techniques from computational algebraic geometry. We first parameterize the
(k+1)-dimensional affine space of all degree < 2n polynomials p satisfying the 2n —k constraints
(where the constraints are p(z;) = |q(z;)|?). We then impose the algebraic condition that the
solution must be a perfect square. This results in a system of polynomial equations in k& + 1
variables. Since k is constant, this system can be solved in polynomial time using Grobner basis
methods augmented with LLL-reductions.

Our second main result answers the intractability conjecture. We prove that the reconstruc-
tion problem from (1 + ¢)n 4 2 points, for any constant ¢ € [0,1), is NP-complete. This includes
the n + 2 point case. We prove this by a reduction from the Partition Problem. We show that
finding the correct set of signs ¢; € {—1,1} for the evaluations p(x;) = c¢;|p(x;)| is equivalent
to solving an instance of the Partition Problem. This establishes that the exponential barrier
observed in prior work is not an algorithmic artifact but an inherent feature of the problem’s
complexity.

Finally, we also show that in case of less than 2n+1 evaluation points adaptation is necessary,
but it is sufficient to use only a single evaluation point adaptively and the choice can be done
in polynomial-time.

The paper is structured as follows. In Section 2 we provide necessary definitions and notions.
In Section 3 we present the polynomial-time algorithm for 2n — k points, detailing the parame-
terization and the algebraic-geometric solution. In Section 4, we present our NP-completeness
proof.

2 Setting

The phaseless polynomial interpolation problem over a field K, where K is a subfield of the
field C of complex numbers, can be described informally as follows. Given an upper bound n
on the degree of polynomials ¢ € K[z], choose numbers z; € K for 0 < ¢ < N such that given
nonnegative values y; € K there is a unique, up to an absolute value, polynomial ¢ € K, [z]
interpolating y; without a phase, i.e. we have |¢(z;)| = y; and if a polynomial ¢’ of degree at
most n satisfies |¢’(x;)| = i, then ¢ = aq for some o € K with |a| = 1. There are two versions
of performing the above choice: non-interactive and interactive. A non-interactive choice is
when the interpolation procedure has to choose all numbers z; € K for 0 < ¢ < N first and then
the corresponding values y; € K are revealed. An interactive choice is when the interpolation
procedure has to choose a single x; at a time, then the corresponding value y; is revealed and
the procedure decides whether or not it needs more values and if so it chooses x;4+1 based on
revealed values yi for 0 < k <.

Moreover, in this paper, we are interested not only in the choice of points x; (interactively or
not), but also in the effectiveness of the process of reconstruction of the interpolating polynomial
g € K, [z], which culminates in listing its coefficients a; € K for 0 < j < n.

Although the reconstruction problem for the non-interactive choice of interpolation points
can be formalized as a classical problem in computational complexity, that is: “given (x;, y;) for
the input find phaseless interpolating polynomial ¢ € K, [z]”, the formalisation of the interactive
choice is more challenging. It, clearly, cannot be formalised as a problem in computational
complexity, because there is no single well-defined input to the problem—the algorithm itself can
control (to some degree) what input will be provided to the algorithm next, or if it is satisfied
with the input given so far. This is less of a problem if we want to provide positive results—to
show that the problem can be solved in, say, polynomial time, it suffices to show an interactive
procedure that runs in polynomial time. Proving negative results is more challenging, especially
if we believe that the problem is related to complexity classes like “non-deterministic polynomial
time”. The reason is twofold: the classical machinery of stating that a problem is hard for a
given class cannot work, because the interactive choice as stated is not an algorithmic problem
in the classical sense; on the other hand, restricting the instances to the problems with unique
(up to a phase) solutions gives a theoretical barrier in proving that a problem is hard for “non-
deterministic polynomial time”’ class (i.e. it is a difficult open question whether or not there
are any NPH problems with unique solutions). For this reason, we can prove the hardness of
the problem for non-interactive choice only.

The classical setting of the problem, as described in [9], is given by the framework of
Information-Based Complexity (IBC). According to this setting, a problem consists of a function

PV ->W

between a set V' and (usually) a metric space W and a class A of basic information operations
(or basic measurements)

VK
An approximate solution to a problem P, A consists of an information operator N: V — K*

and an algorithm ¢: K* — V (with K* denoting the set of all finite sequences of elements from
K) such that: ¢ o N ~ P like on Figure 1.

\%4

K*

Figure 1: Information-Based Complexity perspective: problem P, information operator N and
algorithm ¢ such that for every v € V' we have that: ¢(N(v)) ~ P(v).

Moreover, information operator N must be built from basic information operators A; € A in
a certain way. In case N = (\;)]_, for some fixed j, we say that the solution is non-adaptive,

which roughly corresponds to the non-adaptive choice from the informal statement of phaseless
interpolation problem. The other case is when the solution is adaptive—there is a procedure
¢: K* — AU {L} such that:

N(w), = {‘”E) IRV A
#(N(®)o, N(v)1,...,N(v);-1)(v) ifj>0

where the second branch is defined for ¢ < j where N;(v) = L, which indicates that no more
information will be used by the algorithm. This roughly corresponds to the interactive choice
of points from the informal statement of phaseless interpolation problem.

We usually measure the quality of approximation in terms of the distance

max(dw ($(N(v)), P(v)),

the information complexity in terms of maxyecv (|N(v)|), and computational complexity in terms
of the maximal number of steps performed by a machine realizing ¢ (in a chosen computational
model) on input v € V, plus the number of steps performed by a machine realizing N (again, in
some chosen computational model) in order to compute basic information operators ;. Often,
when it is important which basic information operations from A a given algorithm uses, instead of
providing number max,ev (|IV(v)|) we give an explicit characterisation of the basic information
operations used. More on information operators and their role in IBC in more general settings
can be found, e.g., in [10], [7] and [8]. The phaseless polynomial interpolation fits into this
framework as follows. We set V = K, [z], W = V/ ~ equipped with the discrete metric, where
g~ ¢ iff ¢ = aq’ for some o € K with |a] = 1, P(q) = |q| and A = {6,: = € K}, where
02(q) = |q(x)| are absolute-value evaluations. The solution must be exact, i.e., P(v) = ¢(N(v)).

We note in passing that for q,q' € K the relation ¢ ~ ¢’ holds if and only if |q| = |¢'| as
functions K — K.

Because we are interested in computational complexity in the traditional sense of Turing
Machines, we shall restrict our considerations to the field of rational numbers, i.e., to K = Q.
Moreover, we shall assume that all objects under considerations are encoded in an effective way.
This assumption provides another natural setting for the polynomial interpolation problem,
more familiar to the field of computer science, namely, Query Complexity or Decision Tree
Complexity [2].

In the Query Complexity framework, the role of basic information operators A is played by
a black-box oracle O that, if given some input v, can produce an output O(v). An algorithm for
a problem is an algorithm in the traditional sense relative to the given oracle O. We measure
the query complexity of the problem in terms of the number of queries performed to oracle O
and the computational complexity in the usual way: by the number of steps performed by the
algorithm. This setting explicitly deals with the computational complexity necessary for the
choice of the query points (e.g. interpolation points in our problem). The phaseless polynomial
interpolation naturally fits into this framework by using an oracle O that encodes absolute value
|p| of a given polynomial p — i.e. oracle O accepts as an input a rational number x and outputs
|p(z)|. The task is to identify what polynomial is represented by oracle O.

We use the following notational conventions throughout the paper. As indicated above, by

K,[z] ={ao + a1z + -+ anx™: ao,a1,...,a, € K}

we will denote the linear space of all polynomials of degree at most n (n € N) with coeffi-
cients from K. More generally, if (Z,7) = (xo,yo0), (x1,y1), (x2,Y2), ..., (Tk—1,Yk—1) are some
interpolation points in K2, then by K, (Z,9)[z] we will denote the set of polynomials of degree
at most n passing through points (z;,y;) for 0 < ¢ < k. Observe that if p,q € K, (T,7)[z],
then (p — q)(x:) = p(x:) — q(x:i) = ys — yi = 0, therefore p — ¢ vanishes on {zo,z1,...,Tk-1}.
Moreover, in the other direction, if z € K, [z] vanishes on {zo,z1,...,zx_1}, then p + z inter-
polates (zo, yo), {x1,y1), ..., {Tk—1,Yk—1), therefore p + z € K, (Z,7)[z]. Because the set of all

polynomials of degree at most n that vanish on {xo,x1,...,2r—1} forms an (n — k)-dimensional
vector space, the set K, (Z,7)[z] is an (n — k)-dimensional affine space.

Lemma 1. Let k € N be a fized constant. Given n > k and a sequence
<1‘0, y0>7 <I17y1>7 sy <mn*k7 yn*k>

where x; are pairwise distinct, the set of all polynomials p(x) € Ky[z] such that p(z;) = yi
for all i = 0,...,n — k forms a k-dimensional affine space K, (Z,y)[z]. The isomorphism
K* ~ K,.(Z,7)[z] is given as:

ce K" — p(z,c) = (ch >Hxxz)

where ¢ € K* are the coordinates and L(z) is the unique Lagrange interpolating polynomial of

degree at most n — k that interpolates (s, y:)"—F :

with Lagrange basis polynomials €;(x):

Proof. The argument given above shows that the set forms a k-dimensional affine space. Be-
cause p(z;c) is clearly a k-dimensional affine space, it suffices to show that for every vector

[co,c1y ..., ck—1] the polynomial L(z)+ (Zf;ol cjﬂcj) "5 (x — ;) interpolates (z;,y;)"_. But

this is obvious, because L(z) interpolates (x,:)7— by construction and

n—k
E c;x’ H (x — x5)
=0
vanishes on {zo,Z1,...,Tn_k}. O

We shall also write K[z] = |J,, Kn[z] for the linear space of all polynomials in variable x
and, similarly

K(z,9)[z] = UK:cy
n>k

for the affine space of polynomials in variable x interpolating
(@,9) = (w0, Yo), (T1, Y1), (T2, ¥2), - - -, (Th—1, Yr—1)

We denote by K2 [z] the set of polynomials of degree at most 2n that are squares of polyno-
mials in K, [z]. That is:

Ko [o] = {p(z) € Kanlz]: 3gwek, o) P(2) = q(x)’}

Note that every solution to the phaseless interpolation problem for a subfield K C R of the
real numbers uniquely lifts to the solution of the interpolation problem of the square of the
polynomial.

3 Polynomial-time phaseless interpolation

The problem of real phaseless polynomial interpolation of a polynomial of degree at most n from
2n + 1 evaluation points was investigated in [9]. Although their construction carries over to the
rational case in a straightforward way, it does not easily generalise to the number of evaluation
nodes less than 2n + 1 for the following two reasons. Firstly, their method is based on Lagrange
interpolation of the square of a polynomial. Because the square of a polynomial of degree n
has degree 2n, we need exactly 2n + 1 points for Lagrange interpolation procedure to work.
Secondly, if we have less than 2n 4 1 points, a polynomial might not be uniquely determined
(up to a global phase) from the absolute-value evaluations.

Addressing the second issue, it was shown in [9] that the adaptation is necessary if we restrict
to n 4+ 2 rational information operations. Moreover, it is extremely difficult to hit rational n + 2
nodes such that the reconstruction problem is ambiguous (in the real case, we have to hit a set
of measure zero). Therefore, one may wonder if we can non-adaptively choose n + 3 nodes, such
that the phaseless interpolation is possible. Or more generally, what is the minimal number & of
non-adaptively chosen nodes (xi)f;()l, such that the phaseless interpolation from (:rl)fgol gives
a unique (up to a phase) polynomial. From [9], we know that n + 2 < k < 2n + 1. Contrary
to our initial intuition, the next theorem shows that the minimal number of nodes is, in fact,
2n + 1.

Theorem 1 (2n points are not sufficient). Let xo, 1, - ,Tan—1 be any 2n evaluation points.

There exist polynomials p,q € Qnlx] such that |p(z;)| = |q(xs)| for all 0 < i < 2n, but |p| # |q|.

Proof. Without loss of generality, let us assume that the nodes x; are pairwise distinct. Then
polynomials: p(x) =[]/ (x —) + [(& — ;) and: q(z) = [[12) (z — 2i) — [20 (2 — 2)

are of order n. Observe, that for 0 < ¢ < n we have that p(xz;) = —¢g(x;), because the first terms
in both of the polynomials are zero, and for n < i < 2n we have that p(z;) = ¢(x;), because
the second terms in both of the polynomials are zero. Therefore, |p(z;)| = |g(xs)| for every
0 < z < 2n. On the other hand, clearly, |p| # |g|, which completes the proof. O

Example 1 (Cubic polynomials on six nodes). Consider the following evaluation points: T =
[1,2,3,4,5,6]. Polynomials p,q € Qs[x] corresponding to these nodes are:

p(x) 2z° — 212% + 85z — 126
q(z) = 92° —63z+114

Figure 2 illustrates |p| and |g| and their intersections.

Intersections of |p(x)| and |g(x)|

— |px)|
B\ == lqkl
\ @ Intersections 4

80

60

40 1

20 A

Figure 2: Intersections of [p(z)| = [22% — 2122 + 85z — 126| and |q(z)| = |92 — 63z + 114].

The paper [9] demonstrated only an exponential-time procedure for the selection of a single
node from previously observed absolute values, such that the reconstruction problem is un-
ambiguous. Therefore, for a polynomial-time reconstruction algorithm from less than 2n + 1
evaluation points, we need to improve the procedure of node-selection to work in polynomial-
time. We shall address this issue below (Theorem 4), by showing that it is possible to select a
single node adaptively in a polynomial time.

Addressing the first issue, we show that for a fixed k < n there are at most polynomially-
many solutions to the reconstruction problem from 2n — k + 1 absolute values and all of them
can be found in a polynomial-time (Theorem 2).

So, let k € N be a fixed constant and consider a sequence (xo,Yo), {T1,Y1), - - -, (T2n—k, Y2n—k)
for n > k, where x; are pairwise distinct and y; > 0. Our task is to find all polynomials
q(z) € Qnlz] such that |g(z;)| = y; forall i =0,...,2n — k.

We observe that the condition |g(z:)| = y: is equivalent to g(z;)? = y?. Our first task is to

find all polynomials p € Qan[z] that interpolate given points (o, yo), (1, Y1), - - -, (Tan—k, Y2n—k)-
By Lemma 1 this set forms a k-dimensional affine space Qazn (T, 7)[z], which is parametrised via
p(z,c).

Our task can be now rephrased as follows: find all vectors ¢ = [co, c1,...,ck—1] € QF such

that p(z,c) € Q2 [x]. Observe, which will be crucial for the proof, that there cannot be to many
such vectors c.

Lemma 2 (On the zero-dimensionality of solution sets). If n > k then there are only finitely
many ¢ = [co, c1,. .., ch_1] € QF such that p(z,c) € Q2 [x].

Proof. If n > k, then we have at least n 4 1 interpolation points (o, yo), (T1,Y1),- - - (Tn,Yn)-
Note that |p(z;)| = y:; can be rephrased as: there exists b; € {—1,1} such that p(z;) = b;y;.
Moreover, for every such a vector b € {—1,1}""" there exists a unique polynomial of degree at
most n interpolating (xo, boyo), (x1,b1y1), . - ., (Tn, bnyn). Therefore, polynomials satisfying the
considered condition are defined by vectors b € {—1,1}"T'. Since there are exactly 2""' such
vectors, there are at most 2"*! such polynomials, and so the number of solutions is bounded
by 27T O

If p(z,c) € Q2[z] then it must be of the form p(z,c) = (ao + a1z + - - - + anz™)? for some
rational coefficients a;. On the other hand, expanding p(z, c¢) we get p(z,c) = Ao(c) + A1 (c)z +
-+ Az, (c)z®™, where the coefficients A;(c), when treated as functions of c, are affine functions.
Equating these two expansions, we get the following system of 2n + 1 polynomial equations in
variables co,c1,...,Ck—1,00,01,...,0n:

a? ifi=0
Al(c) o { 2(100,;‘ + 23;11 a;Q;—j if 1 S 7 S 2n
where, for convenience, we set an4+; = 0 for 1 < ¢ < n. Note, however, that the variables
ai,az,...,an, can be eliminated at the expense of moving to the rational system of equations.

We keep the equation Ag(c) = a3 and, assuming ao # 0, we use the equations for 1 <4 < n to
iteratively compute a; as follows:

i—1
Ai(e) = >0 ajai—;
2a0

a; =

Then each a; becomes a rational function of ¢ and ag. Nonetheless, we can improve this slightly.
Observe that without loss of generality we can assume that 0 is among our interpolation points.
For, let (z;,y;) be any phaseless interpolation point with y; # 0. There must be such a point,
because a polynomial of degree n cannot have more than n roots. Thus, we may shift our
affine space by x;, i.e. we consider the phaseless interpolation problem for (zo — i, yo), (z1 —
iy Y1)y -+, (Tan—k — Ti, Yan—k). Then the i-th point has its first coordinate zero and its second
coordinate non-zero: we can reconstruct the shifted space of polynomials first, and then shift it
back by ;. Therefore, let us assume that z; = 0 and y; # 0. Then p(0,c) = L(0) = y? = a.
Therefore, ag = +y; corresponding to two global phases. By choosing ap = y; (equivalently
ao = —y;), our coefficients a; become polynomials in ¢ of degree at most . Computed in the
above way a; are substituted into remaining n equations for n < i < 2n:

i—1
AI(C) = 2apa; + Zajai,j

j=1
Therefore, we are left with a system S of n polynomial equations of degree at most 2n in k
variables co,c1,- -, Cr—1.
Example 2 (Phaseless interpolation with k = 1). Consider the problem of phaseless recon-
struction of polynomial ¢ € Qsx] form the following evaluation nodes x; =i — 3 for 0 <i <5
with the corresponding absolute values: yo = 8,y1 = 2,y2 = 2,y3 = 2,ya = 4,y5s =2 and k = 1.
Then:
p(z,¢) =4+ (12c0 + 4)x + (4co + 8)2° + (—=15¢o + 3)x” + (=5co — 2)z* + (3¢ — 1)2° + cox®

Unfolding coefficients a; and firing negative ao yields:

apg = -2
a1 = —360 -1

908 +2¢c0— 7
a2 = 74
0y — —27¢3 — 15¢2 + 49¢o + 1

8
0y — 405¢3 + 324¢3 — 6503 — 156¢0 + 77
64
0s — —1701¢} — 1755¢4 + 2826¢3 + 1542¢2 — 853¢o — 59
128

0o — 15309¢5 4 19278¢§ — 26325¢3 — 22924¢5 + 11707¢3 + 3374co — 419

512

Therefore, solutions to the reconstruction problem (with negative constant term) are tantamount
to solutions of the following system of polynomial equations:

405¢4 + 324¢f — 650c5 — 156c0 + 77

64 0
—1701c) — 1755¢4 + 2826¢) + 1542c5 — 853co — 59 0
128 B
15309¢5 + 19278¢) — 26325¢) — 22924¢) + 11707ch + 3374co — 419 0

512

The polynomials together with their roots are presented on Figure 3. Notice that there is a single
common root at co = 1, but at co =~ —1.6, the roots are distinct, one may compute the root of
the first polynomial around this point to be (yes, it is a real root):

3 13/632 n 8119151959 1792
co=—=— A/ — —
5 3VY375 6075 9025 ¢/ 632 4 89151959
375 6075
Roots of Polynomials in Coy
10 -
5 4
04
S
)
T]
104
— S e
1701c3 _ 1755¢; , 1413c; | 771ci _ 853¢, _ 59
T TTis T iz % TTer 128 T 128
—-15 4 15309¢f | 9639c; 26325¢; 5731cy , 11707¢} v
15 ot s~ et~ e ey Tt 43
* Rational Root
® Real Root
—1‘.5 —1‘.0 —6.5 0:0 0;5 le

Co

Figure 3: Rational and all real roots for polynomials a4, a5, ag from Example 2.

Therefore, we have a single solution (up to a phase) at co = 1:

ag = —2
a1 = —4
as =1
a3 =1

That is: q(z) = =2 — 4o + z° + x>,

Let us fix the order ¢y < ¢1 < --- < cx_1 on the variables and let B be the Grobner basis for
S for the lexicographical ordering. We need the following standard Lemma [1], [3], [4].

Lemma 3 (Univariate polynomial in Grobner basis). Let B be a zero-dimensional Grébner
basis for the lexicographical ordering and T = x1 < x2 < --- < xpn. Then B contains a univariate
polynomial in x1.

Proof. Let I = (B) be the ideal generated by B and denote by V = Q[z]/I the quotient of the
ring of polynomials in variables x1,z2,...,x, by ideal I. Observe that V treated as a vector
space over Q is finite dimensional. Two polynomials p,q € Q[Z] are equal in V if p — ¢ € I,
that is, if p(s) = g(s) for ever s such that I(s) = 0. Because B is zero-dimensional, there are
J# ﬁ
form a basis of V. They are linearly independent since for a given point s; only p;(s;) # 0.
Now, consider any p € Q[Z]. Then, by definition of V', polynomial p is equal to >, p(s:)\i in
V. Therefore \; span V', and so V is k-dimensional.

Consider the following univariate polynomial in variable z1: 1+ z1 4+ 27 + ... + ¥, which
is a sum of k 4+ 1 vectors. Because V' is k-dimensional, there are coefficients [ao, a1,...,ax] # 0
such that p(x1) = ao +a121 +asz?+...+apz¥ =0in V. Therefore p € I, hence I NQ[z1] # 0.
By the Elimination Theorem for Grobner basis, B N Q[z1] is the Grobner basis for I N Q[z],
therefore BN Q[z1] # 0. O

only finitely many such s, say s1,s2,...,85. We claim that polynomials \;(Z) = []

By Lemma 2 the basis B is zero-dimensional, and by Lemma 3 it contains an univariate
polynomial u(co). Because the degree of u(co) is bounded by 2n, it has at most 2n solutions cf.

Now we repeat the above process for every variable ¢; for ¢ > 0. For each solution ¢;_; from
the previous solution set (i.e. starting from c¢j) we substitute cj_; for its corresponding variable
¢; in B, compute the new basis B[cj_;/c;—1] for polynomial equations of one less variables and
find the roots of the univatiate polynomial in the variable c;.

Each sequence ¢§, ci, ..., ci_; found in the above process is tantamount to an interpolating
polynomial. Notice that there are at most (2n)* such sequences, thus for a fixed parameter
k there are only polynomially-many solutions to the phaseless interpolation problem. This
observation yields the following Lemma.

Lemma 4 (On the number of solutions to the phaseless interpolation problem). Let k € N be
a fized constant. For n > k and a sequence (xo,Yo), {(X1,Y1),- -, {Tan—k,Y2n—k), where x; are
pairwise distinct and y; > 0, the number of polynomials q(z) € Qnlz] such that |q(x;)| = yi is
O(n").

Example 3 (Phaseless interpolation with k = 2). Consider the polynomial from Ezample 2
with evaluation node xs = 3 removed. Then for k = 2 we get:

p(x,c) = 44 (4co 4 8)x + (4c1 + 8)z” + (5o — 2)2° + (=5e1 — 2)z* + coz® + c1a®

10

Unfolding coefficients a; and fixing negative ao gives us:
ap = —2

ll1=—Co—2

2
Co
112:Z+CO_CI_1

5co (co+2)(ch +4co—4cr —4) 1
az = — — + =
4 8 2
b5 5 e @ daa
64 ' 8 8 2 2
2
ci 361 3
toYtT T T a
- — Teg 35y | Beger 36cy | 15cicr
>T 7128 64 16 32 8
23c2 3eoct 5¢o 3c3
- R
+ 16 8 + coc1 + 5 1 1
" 21¢§ 63¢5 35cder 195ch
6 = -

512 ' 128 128 128
35cie1 e 15¢3¢? 105cke; 285c3

16 16 32 32 64
N 15¢coc? N 23cocr 2leo ot
8 8 16 8
2 2 16

Figure 4 shows roots of polynomials as(co,c1) =0, as(co,c1) =0 and as(co,c1) = 0. There is a
single common root at (co,c1) = (2,1), which yields:

ag = —2
a1 = —4
as =1
a3 =1

That is: q(z) = —2 — 4z + 2 + 2 again. To prove that (co,c1) = (2,1), we can compute the
Grébner basis for as(co,c1) =0, as(co,c1) =0 and ag(co,c1) = 0 and observe that it consists of
two polynomial equations:

Cco — 2=0

Cc1 — 1=0

11

Zero Sets and Roots of Polynomial System

20 Polynomials
—— aslco, 1) =0
~— as(co, 1) =0
= as(Co, 1) =0

15 A

104

Root Types
@ Rational Roots (Exact)
1)
]
o /. i

-10 1

o

v

C1

~15

-10 —I8 —‘6 —I4 —I2 0 é All

Figure 4: Real roots of polynomials a4, a5, ag from Example 3. There is a single common root at
(co,c1) = (2,1).

Example 4 (Phaseless interpolation with k = 3). In case k = 3 we need n > 3, otherwise there
will be a unique interpolating polynomial for every choice of signs in the evaluation values. Let
us consider the following polynomial q € Qa4[z]:

q(z) = 2* +2® — 102> — 4" +9
with evaluation nodes r; =1 — 2 for 0 <i <5 and k = 3. Then:

p(z,c) =81

(
+ (4co — 12¢1 — 108)z”

+ (15¢o + 4¢1 — 12¢2 + 75)a”
+ (=5co + 15¢1 + 4ey + 36)z*
+ (=3¢ — 5¢1 + 15¢2 — 15)2°
+(

8
+ cox

The solution to the polynomial system as = 0,a¢ = 0,a7 = 0,as = 0 with ap = 9 is presented on

12

Figure 5. The Grébner basis of the system consists of the following polynomials:

16 o 788 o 92 . 2945
73710 T 24570 T 630 T 2T 1053
64 5 1571, 725 1T
24570 7 24570 T 189 T T 351
67 5 5649 5 8257 22715
Co+?o+ 16 cp + 3 co — T

The roots of the polynomials that form the Grébner basis are presented on Figure 6. Notice,
there are four unique solutions (up to a phase), which are rational. The solutions yield the
following polynomials:

59 9 81
PR TANTH,
(-11,1,1) —

35 25 25
T 16 16
(1,5,1) = z* +2* —102° — 4z + 9

— 2.25z% — 3.52% — 11.252% + 6.52 + 9
2t —2® 1022 + 42+ 9

— 1.252% — 2.52° — 7.252% + 2.52 + 9

13

Intersection of Polynomial Surfaces

— as(co, €1,€2) =0

as(co, €1,€2) =0
— ay(co,c1,¢2) =0
— as(co, €1,¢2) =0
* Rational Root

Figure 5: Real roots of polynomials as, ag, az, ag from Example 4. There are four common roots at

(_%a_%a%)’ (_117151)? (_37455_%’ %) and (155»]-)

Figure 7 shows 2D slices of Figure 5 at four different values of co corresponding to four
different common roots of polynomials as,as, a7 and ag. Note, however, that if we change the
evaluation point from xs = 3 to x5 = 4, then the system will have a unique solution.

Theorem 2 (Polynomial-time reconstruction). Let k € N be a fized constant. The following
problem has polynomial-time complexity. Given n > k and a sequence

<w07 y0>7 <£II1, y1>> B <$2n7k7 y2n7k>7

where x; are pairwise distinct and y; > 0, find all polynomials q(z) € Qn[x] such that |q(z:)| = yi
foralli=0,...,2n — k.

Proof. The process of computing the coefficients A;(c) of p(z, ¢) consists of the computation of
the coefficients of the interpolating polynomial L(z) and the coefficients of ;’;Ok(:c —x;), which
are of bit-size polynomial in the bit-size of (xo,yo0), (z1,¥1),-- -, (Tan—k, Y2n—k). Therefore, it
is polynomial-time. Since each a; has degree bounded by 2i — 1, the process of computing
coefficients of a; is polynomial in bit-size of coefficients of A;(c). Therefore, it is in polynomial-
time. The number of basic operations needed to compute the Grobner basis is bounded by

14

(2n)2k, hence, for a fixed parameter k, its time-complexity is polynomial. By the classical result
of A.K. Lenstra, H-W. Lenstra and L. Lovész [6], finding rational roots of a rational polynomial
is polynomial-time of the bit-size of the coefficients. Therefore, the whole process is polynomial
in the bit-size of (xo, Yo, (T1,Y1);- -, (T2n—k, Y2n—k)-

Intersection of Polynomial Surfaces

116c}
731
64c 1571c _ 725¢, 175 _
2457 ~ 2457 1e5 tC1 7351 =0

788c | 92¢o 2945 _
257 T 65 T2 1053 = 0

67c; | 5649c; | 8257co _ 22715 _
Z & T8 =0

Rational Root

cg+

* |

WV

Figure 6: Real roots of Grébner basis for as, ag, a7, ag from Example 4. There are four common
roots at (_%a _%7 51;_(13)7 (_117 1, 1)7 (_37457 _%7 %) and (15 9,]-)
O

Remark 1. Although Lemma 8 is sufficient to prove that the phaseless interpolation problem
form 2n — k points is in polynomial-time, it can be strengthened a bit to show that after substi-
tution for the first variable, the Grobner basis does not need to be recomputed.

An educational implementation of the algorithm is presented on Listing 1 in the Appendix.
Theorem 3 (Phaseless Interpolation as an IBC problem). For a fized parameter k, the Phaseless
Interpolation Problem for polynomials of degree at most n has a solution (N, @) such that N
uses n — k basic information operations with a single adaptation (i.e., N selects a single point
adaptively) whose computational complexity is bounded by O(n®*) for some constant ay that
depends only on k but does not depend on n.

15

Zero Sets and Roots of Polynomial System

Zero Sets and Roots of Polynomial System N
Polynomials Polynomials
— aslanc: y
— adlcr.c .
— alcc ¥
— alauc y
2
n
o
Root Types Root Types
5.1 @ Rational Roots (Exact) @ Rational Roots (Exact)
&
-2
-4
-6
-20 15 1o 5 o 8 6 -a -2 2 4
o a

1

(a) Polynomials with ¢g = 1 (b) Polynomials with ¢ = —11

Zero Sets and Roots of Polynomial System

=]

=]

-20

Zero Sets and Roots of Polynomial System
Polynomials Polynomials
— aslce) =0 — aslerc) =0
3 15 3
— aslcc)= — aslcc)=
10
e
5
Root Types Root Types
@ Rational Roots (Exact) T2ie) @ Rational Roots (Exact)
o
-5 -5
-10 -10
T -15
-20
0 -1s 10 5 0
a

~10.0 -15 =50 -25 0.0 25 5.0 75 u
59 (d) Polynomials with ¢ = —23

(c) Polynomials with co = —2

Figure 7: 2D slices of real roots of polynomials a5, ag, az, ag from Example 4.

16

Proof. By Theorem 2 and Theorem 4 below. O

Remark 2. By a more careful analysis of the problem, one may show that in Theorem 8 one
may set ax = k. Nonetheless, in our analysis we are primarily interested in the gap between
polynomial-time and NP-complete computational classes.

Theorem 4 (Single adaptation in polynomial-time). Let zo,z1,...,Zn be n+ 1 distinct eval-
uation points and let yo,y1,...,yn be the corresponding absolute values of the evaluations of a
polynomial p of degree at most n. There exists a point Tn11 such that yn41 = |p(Tnt1)| uniquely
determines |p|.

Moreover, if the polynomial and evaluation points are rational, the point xn+1 can be com-
puted from {(z:,y:) }imo n time polynomial in the bit-size of the input.

Proof. The existence of such a point z,41 was established in [9], but the constructive method
provided therein required exponential time. We present a construction that operates in polyno-
mial time.

Let S be the set of all polynomials interpolating points {{x;, b;yi) }i—q for every possible sign
vector b € {—1,1}"T!. The absolute value |p| is uniquely determined if and only if no two
distinct polynomials in S intersect at T,41.

Consider any two distinct sign vectors b,b" € {—1,1 . The intersection of the correspond-
ing polynomials L; and L,/ occurs as a root of their difference:

}n+1

n

Dy () = Ly(x) — Ly (z) = Y (b — b})yst;(x),

=0

where £;(z) are the Lagrange basis polynomials. We seek an integer z,41 that is not a root of
Dy (z) for any pair b, b’

Since the inputs z;,y; are rational, we can clean denominators to work with integers. Let
M be a common multiple of the denominators of all coefficients in the expansions of y;¢;(x).
Define the integer polynomial Py (z) = M - Dy ().

We derive an easily computable bound B on the magnitude of integer roots of P, /() that
is independent of the specific signs b, . Let P, (z) = > p_, Ar(b,b')2". By the Rational Root
Theorem, any non-zero integer root of P, ;s (x) must divide the lowest-degree non-zero coefficient
As(b, V). Therefore, any such root is bounded by |As(b,b")| < maxy, |Ak(b,b’)|. We can bound
the coefficients uniformly using the triangle inequality. Since |b; — b}| < 2, we have:

[Ak(b,6")] < by — by - |coeff of &* in My, €; ()] <2 |ejnl
=0 7=0

where ¢; 1, is the coefficient of z* in the polynomial My,¢;(x). Let B = maxy (2 E;L:o |cjk\)
Such a bound B depends only on the inputs z;, y;.

Choosing an integer x,4+1 = B + 1 ensures that z,4+1 is strictly larger than every possible
integer root of any difference polynomial. Thus, no two polynomials in S intersect at x,1. Since
B is computed via basic arithmetic operations on the rational inputs, its bit-size is polynomial
in the input size. O

4 The case of (1 + ¢)n points for 0 < c < 1

In this section we show that the phaseless polynomial retrieval from (1 + ¢)n evaluation points
is hard for any fixed 0 < ¢ < 1. In fact, it remains hard in case k = |cn] evaluations are exact
(i.e. with phase). However, one must be very careful when formulating the claim. The theorem
stated below says that the retrieval problem is NP-hard. Nonetheless, there are two ways to

17

state the theorem—a weak one: “for every mn,k we can choose evaluation nodes, such that the
problem is hard”, and a strong one: “for every m, k no matter how we choose evaluation nodes,
the problem is hard”. In the sequel we prove the stronger version. Note that in the strong
version we have to be prudent with specifying what is the input to our problem. We clearly
cannot take the evaluation nodes as inputs, because we want to restrict to one particular choice
for every n. But then, if the bit-size of the nth evaluation node is super-polynomial in n, then
we cannot perform any arithmetic in polynomial time. One way to make sense of the above
is as follows: we prove the theorem for any infinite sequence of evaluation nodes o, x1,x2,. ..
such that the bit-size of x; is polynomial in 4.

Theorem 5 (Phaseless polynomial retrieval over (7,v) is NPC). Letro,r1,72,... andvo,v1, V2, ...
be two infinite sequences of nodes, where r; are pairwise distinct, and the bit-size of r; and
v; s polynomial in i. The problem of identifying a polynomial p € Qn, ((ri)fz_ol, ('Ui)fz_ol) [z]
up to its phase from non-adaptive n — k + 2 phaseless evaluations at points xo = rg,r1 =
Thalys - s Tnokt+1 = Fnt1 8 NP-complete for k = |en], where 0 < ¢ < 1.

Proof. Recall from Lemma 1 the parametrisation of the affine space of interpolating polynomials:

n—k k-1
€@ ptae) =10+ (') Tt
j=0 §=0
Let distinct points zo, z1,...,Tn—k+1 € Q be given as above, together with the absolute values

Yo, Y1y -« s Yn—k+1 € Q. Let p € p(z,), then for some b; € {—1,1} we have that:

n—

k k—1
biyi = bi|p(x:)| = p(w:) = L) + (Z Cﬂf) H(xi —15)

j=0
Therefore:

n—=k
i biyi — L(zi)
Z G% = Hr—1
§=0 Hj:o (zi —75)
If we assume that b; are fixed, then the above is the interpolation problem for a polynomial
of degree at most n — k from n — k + 2 interpolation points, i.e.: ¢; are the solutions to the

over-constrained system of equations V[co, Cly.en,s cn,k] = v, where:
2 n—k
1 To o T
2 —k
1 z1 x] e af
v=|1 Z2 z3 cee gk
2 n—k
L @nkdr Tpoppr 0 Tl
boyo—L(zo)
k—1
Hj:() (930_7"3')
biyi—L(x1)
k—1
HJ':O (zlf"‘j)
boya—L(x2)
= k—1
v [1; 20 (m2—rj)

brn—k+1Yn—k+1—L(Tp_k41)
F—1
;20 @n—kt1—75)

System V¢ = v has solutions if and only if v is in the image Im(V) of V.. If we denote by Im(V)*
the vector space orthogonal to Im(V), then v € Im(V) if and only if v L Im(V)*. Moreover,
since V is of full column rank, the space [m(V)J‘ is 1-dimensional and can be represented by

18

a single basis vector w € Im(V)%. Then, v € Im(V) if and only if (v,w) = 0. Unfolding the
expression, we get:

n—k+1
Z bz‘yi — L(:Ez) Wi = O
k—1 [
i=0 Hj:o (zi —15)
or
n—k+1
Z biyia; — B =0
i=0
where: a; = —p—%+—— and §3; = ,CL,({T# are non-zero and do not depend on values y;.
H]’:g (zi_"‘j) H]’:O (zi_Tj)

Furthermore, if S = ?;Okﬂ (i, then the above equation can be rewritten as:

n—k+1

(073 o
; biyig =1

Remark 3 (On non-zero coordinates). We have to ensure that all w; # 0. But this is, indeed,
the case and we can even find an explicit formula for w;. The condition wLlV is equivalent to

n—k+1)
> wal=0, V¥ji=0,1,....,n—k
=0

This means that Z?:_Okﬂ wip(x;) = 0 for all polynomials p of degree at most n — k. Define w
in the following way:

, 1=0,1,...,n—k+1
- Ty — X5
7=0

J#i
These are the barycentric weights associated with Lagrange interpolation at the points (x;). That
is, the Lagrange basis for (x;) consists of polynomials:

n—k+1

Tr—x;
l; = 7], i =0,1,...,n—k+1
H eR—— 7 n +
j=0
J#i
with:
n—k+1
px)= Y plali(@)
i=0

Since the degree of p(x) is n — k, it must be the case that in the above expression the coefficient
at 2" 7F*Y equals zero, which translates to:

n—k+1ln—k+1

3 pl:) _,
o j—o TiT %
J#i

and so (w,v) = 0, which completes the proof.
Now, we are ready to show the reduction from the Partition Problem. Let

n—k

19

1
2
3
4

6

be an instance of the Partition Problem with integers t;. Let us set t,_r+1 = % For fixed (7,7)

and z;, define y; = 3|t1§| Then the solution to the interpolation problem has the following
form: /
n—k
3 Z biti +bp—py1 =1
i=0

We claim that solutions to the above problem are tantamount to solutions of the Partition
Problem. Indeed, if b; are the solution to the above interpolation problem, then it must be that
bn—k+1 = 1 and then:

n—k n—=k
3Zbiti+1:1<ﬁ>2biti:0
=0 i=0

Otherwise, i.e. if b,_r+1 = —1, we have:

n—k n—=k 2
32%4:1@2%: 3
i=0 i=0

which is impossible, because t;, for 0 < ¢ < n — k, are integers. Since k = cn with 0 < c < 1,
we have that n — k =n —cn = (1 — ¢)n = O(n). Therefore, our transformation is polynomial
in bit-size.

O

Theorem 6 (Phaseless retrieval from (1 + ¢)n + 2 points with 0 > ¢ < 1 is NPC). Let
T0,T1,T2,... be an infinite sequences of pairwise-distinct rational numbers (the evaluation nodes),
such that the bit-size of r; is polynomial in i. The problem of identifying a polynomial of degree
n up to its phase from mon-adaptive n + 2 phaseless evaluations and cn exact evaluations in
nodes 10,71, ..., ny|cn) 18 NP-complete for any fized 0 < c < 1.

Proof. Let us evaluate our polynomial at nodes 70,71, ..., 7|cn) exactly. This yields non-negative
rational points vo,v1,, ...,V cn). The reduction from phaseless polynomial retrieval over (7,) is
trivial, because solutions p € Q. [z] to the above problem with fixed nodes T of exact evaluations
are tantamount to solutions for phaseless polynomial retrieval for fixed (7,v), where T are
corresponding evaluation values. O

Remark 4. The above can be generalised for any k such that n — k = O(nP) for any p > 0.
Therefore, setting k = cn for any ¢ < 1 gives the result mentioned in the introduction, because
we have: n —cn = (1 —c)n = O(n). Nonetheless, we can also get a stronger result. Let
k=n—nP for some0 <p <1, then: n—k =n—n+nP =nP =0O(n?). Therefore, the problem
of identifying a polynomial of degree n from 2n — n® evaluations is NP-complete for any fixed
0<p<l.

Appendix

Listing 1: Phaseless Interpolation over Q with 2n + 1 — k points

import sympy as sp
from sympy.abc import x

Part 1: Triangular System Solver

20

def _simplify_polys(polys, partial_solution):
"""Substitutes partial solutions and expands polynomials.
current_polys = [sp.expand(p.subs(partial_solution)) for p in polys]
return [p for p in current_polys if p != 0]

nwnn

def _check_inconsistency(active_polys):
"""Returns True if any polynomial simplifies to a non-zero number."""
return any(p.is_Number and p != 0 for p in active_polys)

def _find_target_poly(active_polys, target_var):
"""Identifies a univariate polynomial for the target variable."""
for p in active_polys:
syms = p.free_symbols
if not syms: continue
if syms == {target_var} or syms.issubset({target_var}):
return p
return None

def _find_rational_roots(poly, target_var):

"""Solves a univariate polynomial and returns strictly rational roots.
nn

roots = sp.solve(poly, target_var, dict=True)
valid_roots = []
for root in roots:

val = root[target_var]

if val.is_number and val.is_rational:
valid_roots.append(val)
return valid_roots

def solve_triangular_system(polys, variables, partial_solution=None):
"""Recursively solves a triangular system of polynomials."""
if partial_solution is None: partial_solution = {}
if not variables: return [partial_solution]

target_var, remaining = variables[-1], variables[:-1]
active_polys = _simplify_polys(polys, partial_solution)

if _check_inconsistency(active_polys): return []

uni_poly = _find_target_poly(active_polys, target_var)
if uni_poly is None: return []

full_solutions = []

for val in _find_rational_roots(uni_poly, target_var):
new_partial = partial_solution.copy ()
new_partial [target_var] = val

full_solutions.extend(solve_triangular_system(polys, remaining,
new_partial))

return full_solutions

Part 2: Core Logic (_solve_core)

21

def

def

def

def

def

_setup_shifted_points(points, k, shift_val):
"""Applies coordinate shift and calculates degrees.
shifted = [(p[0] + shift_val, p[1]) for p in points]
m = len(shifted)

d=(m+k -1) // 2

return shifted, m, d

_compute_p_coeffs(x_vals, y_vals, k, m, c_vars):
"""Computes coefficients of P(x; c) via interpolation."""

L_expr = sp.interpolating_poly(m, x, x_vals, y_vals)
R_expr = sp.prod([(x - xi) for xi in x_vals])
S_expr = sum(c_vars[j] * x *x j for j in range(k))

p_poly = sp.Poly(sp.expand(L_expr + S_expr * R_expr), x)
max_deg = m + k - 1

return {i: p_poly.coeff_monomial(x #** i) for i in range(max_deg + 1)}

_compute_convolution_numerator (range_indices, a_terms, a0):

"""Computes the sum of a_j * a_{r-j} with manual exponent handling.

sum_num, sum_max_exp = 0, O

term_exps = [a_terms[j][1] + a_terms[range_indices.stop - 1 - j +

range_indices.start] [1]
for j in range_indices]

if term_exps: sum_max_exp = max(term_exps)

for idx, j in enumerate(range_indices):

r_idx = range_indices.stop - 1 - j + range_indices.start
num = a_terms[j]I[0] * a_terms[r_idx][0]
diff = sum_max_exp - term_exps[idx]

if diff > 0: num *= (2 * a0) ** diff
sum_num += num

return sum_num, sum_max_exp

_compute_a_terms_recursive(d, p_coeffs, a0):
"""Generates a_r terms where a_r = numerator / (2%a0) exp."""
a_terms = {0: (a0, 0)}
for r in range(1l, d + 1):

sum_num, max_exp = _compute_convolution_numerator (range (1,
a_terms, a0)

Formula: a_r = (P_r * (2a0) " max_exp - sum_num) / (2a0) " (max_exp +

1)
P_r = p_coeffs.get(r, 0)
new_num = P_r * (2 % a0) ** maxXx_exXxp - sum_num
a_terms[r] = (sp.expand(new_num), max_exp + 1)
return a_terms

_build_gb_equations(d, m, k, p_coeffs, a_terms, al):
"""Builds the system of equations for the Grobner basis.
Initial equation: a_0"2 - P_O0O = 0

eqs = [sp.expand(a0 **x 2 - p_coeffs.get (0, 0))]

nwnn

max_deg = m + k - 1
for r in range(d + 1, max_deg + 1):

22

128
129
130
131
132
133
134
135
136
137
138
139
140
141

166
167
168
169
170
171
172
173
174
175
176
177
178
179

180

def

def

end_j + 1), a_terms, a0)

retu

_reconstruct_poly_from_sol(sol,

start_j, end_j = max(0, r - d),

if start_j > end_j:

continue

min(r, 4)

q2_num, q2_exp = _compute_convolution_numerator (range(start_j,

Eq: 9q"2_coeff - P_r = 0 =>
P_r = p_coeffs.get(r, 0)
eqs.append (sp.expand(g2_num - P_r * (2 * a0) ** q2_exp))

rn eqs

gq2_num - P_r * (2a0) " exp

a_terms, d, shift_val, a0)

0

"""Reconstructs a single valid polynomial from a numeric solution."""
sol[a0] == 0: return None

#if

print (£"Sol = {soll}")

coef
for

Q_t

return Q_t.subs (x,

_sol

fs = {}

r in range(d + 1):
num_poly, exp_val =
try:

#val = num_poly.subs(sol) / ((2 * sol[a0])

a_terms.get(xr, (0, 0))

val = num_poly.subs(sol) / ((2 * a0) ** exp_val)

if not (val.is_number and val.is_rational):

coeffs[r] = val

except ZeroDivisionError:

return None

= sum(coeffs[i] * x ** i for i in range(d + 1))

ve_core (points, k,

x + shift_val)

shift):

"""Orchestrator for the core algebraic solving logic."""

pts,

Se

shifted polynomial has a0~"2 = y_i,

a0 =

gb_vars = c_vars
Compute P coeffs and recursive a_terms
p_coeffs = _compute_p_coeffs([p[0] for p in pts],
k, m, c_vars)
a_terms = _compute_a_terms_recursive(d, p_coeffs, a0l)
valid_polys = []
if k > 0:
Build and solve system
sys_eqs = _build_gb_equations(d, m, k, p_coeffs, a_terms,
try:
print (sys_eqs)
gb = sp.groebner(sys_eqs, gb_vars, order=’lex’,
except:

a0)

m, d = _setup_shifted_points(points, k,

tup variables

sp.sqrt(shift [1]) # or a0 =
c_vars = [sp.Symbol(f’c_{k - i - 1}’) for i in range (k)]

return []

print(f’gb = {gb}’)
if list(gb) == [1]:

solutions = solve_triangular_system(list(gb),
= [_reconstruct_poly_from_sol(s,

valid_polys
for s in solutions]

return []

shift [0])

-sp.sqrt (shift [1])

23

No solution

**% exp_val)

return None

where i is the shift value

[p[1] for p in pts],

gb_vars)
a_terms,

d,

a0)

domain=’QQ’)

shift [0],

else:

valid_polys = [_reconstruct_poly_from_sol({}, a_terms, d,
a0)]
return [p for p in valid_polys if p is not None]

Part 3: Phaseless Interpolation

def

def

def

def

_calculate_shift (points):
for x, y in points:

if y '= 0: return -x, y
return None

_deduplicate_solutions(candidates):

"""Simplifies polynomials and filters out duplicates."""
unique_polys = []

seen_exprs = set ()

for p in candidates:
simp_p = sp.simplify(p)
if simp_p not in seen_exprs:
unique_polys.append(simp_p)
seen_exprs.add(simp_p)

return unique_polys

_log_final_results(solutions):
"""Prints the formatted final solutions to the console."""
print (f"--- Results ---")
for i, poly in enumerate(solutions):
print (£"Solution {i + 1}: q(x) = {polyl}")

_solve_affine_square_roots(points, k):

nnn

Main driver: Orchestrates the search for affine square roots.
1. Configures shift limits.

2. searches for candidates.

3. Deduplicates and logs results.

print (f"--- Configuration: Points={len(points)}, k={k} ---")
shift = _calculate_shift(points)
if shift is None:

solutions = [0]

print (£"No shift: it is the zero polynomial")
else:
solutions = _solve_core(points, k, shift=shift)
print (£"Shift {shiftl}: Found {len(solutions)} solutions")

unique_solutions = _deduplicate_solutions(solutions)
_log_final_results(unique_solutions)

return unique_solutions

24

shift [0],

242 def phaseless_interpolation(points, k):

243 squared_points = [(x, y**2) for x, y in points]
244 return _solve_affine_square_roots (squared_points, k)
245

246

247 if __name__ == "__main__":

248 # Test Case 1: y = x

249 print ("Test Case 1: y = x")

250 pointsl = [(0, 0), (1, -1), (2, 2)]

251 resl = phaseless_interpolation(pointsl, k=0)
252 print ("\n")

254 # Test Case 2: y = (x+1)

255 print ("Test Case 2: y = (x+1)")

256 points2 = [(0, 1), (1, -2), (2, 3)]

257 res2 = phaseless_interpolation(points2, k=0)

258 print ("\n")

260 # Test Case 3: y = (x+1)°2

261 print ("Test Case 3: y = (x+1)°2, k=1, but wrong evaluation at x=-2")
262 points3 = [(-2, 9), (0, 1), (1, 4), (2, 9]
263 res3 = phaseless_interpolation(points3, k=1)

264 print ("\n")

266 # Test Case 4: Higher degree
267 print ("Test Case 4: y = x5 - 6x"4 + 5x°3 + 4x72 - 3x + 2 from 10

points")

268 points4 = [(1, 3), (2, 12), (3, 79), (4, 138), (5, 87), (6, 1208), (-1,
3), (-2, 144), (-3, 817), (0, 2)]

269 res4 = phaseless_interpolation(points4, k=1)

270

271 # Test Case 5: Higher degree, higher degree of freedom

272 print ("Test Case 5: y = x°5 - 6x"4 + 5x°3 + 4x”2 - 3x + 2 from 9 points
II)

273 pointss = [(1, 3), (2, 12), (3, 79), (4, 138), (5, 87), (6, 1208), (-1,
3), (-2, 144), (-3, 817)1]
4 resb = phaseless_interpolation(points5, k=2)

76 # Test Case 6: Higher degree, higher degree of freedom
77 print ("Test Case 5: y = x°56 - 6x"4 + 5x°3 + 4x"2 - 3x + 2 from 8 points

ll)
278 points6é = [(1, 3), (2, 12), (3, 79), (4, 138), (5, 87), (-1, 3), (-2,
144), (0, 2)1]
279 res6 = phaseless_interpolation(points6, k=3)
References

[1] BECKER, T., AND WEISPFENNING, V. Grobner bases. In Grobner Bases: A Computational
Approach to Commutative Algebra. Springer, 1993, pp. 187—242.

[2] BurrMAN, H., AND DE WoLF, R. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science 288, 1 (2002), 21-43.

[3] Cox, D., LITTLE, J., O’SHEA, D., AND SWEEDLER, M. Ideals, varieties, and algorithms.
Springer, 1997.

[4] Cox, D. A., LITTLE, J., AND O’SHEA, D. Using algebraic geometry. Springer, 1998.

25

[5]
[6]
[7]
8]
[9]

(10]

JAGANATHAN, K., ELDAR, Y. C.; AND HAssiBI, B. Phase retrieval: An overview of recent
developments. Optical compressive imaging (2016), 279-312.

LENSTRA, A., LENSTRA, H., AND LoVAsz, L. Factoring polynomials with rational coeffi-
cients. Math. ann 261, 4 (1982), 515-534.

PraskorA, L. Noisy information and computational complexity. Cambridge University
Press, 1996.

PLASKOTA, L., SIEDLECKI, P., AND WOZNIAKOWSKI, H. Absolute value information for
IBC problems. Journal of Complexity, submitted for publication (2019).

PRzYBYLEK, M. R., AND SIEDLECKI, P. A note on the complexity of a phaseless polynomial
interpolation. Journal of Complexity 58 (2020), 101456.

TRAUB, J. F., WASILKOWSKI, G. W., AND WOZNIAKOWSKI, H. Information-based Com-
plexity. Academic Press Professional, Inc., San Diego, CA, USA, 1988.

26

