
Information-Based Complexity vs Computational Complexity

in Phaseless Polynomial Interpolation

Micha l R. Przyby lek1 and Pawe l Siedlecki2

1Polish-Japanese Academy of Information Technology; Warsaw, Poland
mrp@mimuw.edu.pl

2University of Warsaw; Warsaw, Poland
psiedlecki@mimuw.edu.pl

October 25, 2025

Abstract

The authors of [9] have shown that phaseless polynomial interpolation over Q is possible
with n + 2 points, where n is the upper-bound on the degree of a polynomial. Nonetheless,
their reconstruction algorithm and the method of adaptively choosing evaluation points are
exponential time. On the other hand, they have also shown that given 2n + 1 points, the
polynomial can be reconstructed in a polynomial time. In [9] a conjecture have been put
forward, namely that the reconstruction problem from such n + 2 points is exponential time.
Moreover, a question about the number of points sufficient for polynomial time reconstruction
have been posed. In this paper, we answer these questions – we show that (1) reconstruction
problem from 2n − k for any constant k is polynomial time, (2) reconstruction problem from
(1 + c)n+ 2 points for any constant c ∈ [0, 1) is NP-Complete, (3) evaluation points admitting
a unique solution can be chosen in polynomial time.

1 Introduction

The challenge of phase retrieval–the reconstruction of a signal, function, or vector from the
magnitude of its measurements–is a foundational problem in applied mathematics [5], physics,
and engineering. It appears in diverse fields such as X-ray crystallography, microscopy, optics,
and signal processing. In the algebraic context, this problem manifests as phaseless polynomial
interpolation: the reconstruction of a polynomial p(x) from a set of evaluation points xi and
their corresponding absolute values, |p(xi)|.

This problem immediately highlights a fundamental dichotomy, which is the central theme of
this work: the distinction between information-based complexity and computational complexity.
The first asks: how many sample points are informationally sufficient to uniquely determine
the polynomial (up to an unobservable global phase)? The second asks: given a sufficient
number of points, what is the computational tractability of an algorithm that performs this
reconstruction? A problem may be solvable in principle (i.e., have sufficient information) but
intractable in practice (i.e., require exponential time).

Recent work, notably [9], has precisely framed this gap. For polynomials of degree at most
n with rational coefficients (Q[x]), it has been shown that n + 2 phaseless evaluation points
are informationally sufficient and necessary for unique reconstruction. This establishes a low

1



information-theoretic bound. In contrast, the authors of that paper provided a polynomial-time
reconstruction algorithm when 2n + 1 points are given. The algorithm they provided for the
n+ 2 point case, however, requires exponential time.

This disparity left two critical questions unanswered, which that paper posed as open prob-
lems:

1. Is the reconstruction problem from n+2 points inherently of exponential-time complexity?

2. What is the true computational threshold? What is the minimum number of points re-
quired for a polynomial-time reconstruction?

In this paper, we resolve both of these questions. We provide a complete characterization
of the computational complexity landscape for this problem, drawing a sharp, and perhaps
surprising, line between the tractable and the intractable.

Our first main result addresses the polynomial-time regime. We demonstrate that the 2n+1
point requirement is not optimal. We prove that reconstruction from m = 2n − k points, for
any fixed constant k, is solvable in polynomial time (in n and the bit-size of the input). Our
method relies on techniques from computational algebraic geometry. We first parameterize the
(k+1)-dimensional affine space of all degree ≤ 2n polynomials p satisfying the 2n−k constraints
(where the constraints are p(xi) = |q(xi)|2). We then impose the algebraic condition that the
solution must be a perfect square. This results in a system of polynomial equations in k + 1
variables. Since k is constant, this system can be solved in polynomial time using Gröbner basis
methods augmented with LLL-reductions.

Our second main result answers the intractability conjecture. We prove that the reconstruc-
tion problem from (1+ c)n+2 points, for any constant c ∈ [0, 1), is NP-complete. This includes
the n+ 2 point case. We prove this by a reduction from the Partition Problem. We show that
finding the correct set of signs ci ∈ {−1, 1} for the evaluations p(xi) = ci|p(xi)| is equivalent
to solving an instance of the Partition Problem. This establishes that the exponential barrier
observed in prior work is not an algorithmic artifact but an inherent feature of the problem’s
complexity.

Finally, we also show that in case of less than 2n+1 evaluation points adaptation is necessary,
but it is sufficient to use only a single evaluation point adaptively and the choice can be done
in polynomial-time.

The paper is structured as follows. In Section 2 we provide necessary definitions and notions.
In Section 3 we present the polynomial-time algorithm for 2n− k points, detailing the parame-
terization and the algebraic-geometric solution. In Section 4, we present our NP-completeness
proof.

2 Setting

The phaseless polynomial interpolation problem over a field K, where K is a subfield of the
field C of complex numbers, can be described informally as follows. Given an upper bound n
on the degree of polynomials q ∈ K[x], choose numbers xi ∈ K for 0 ≤ i ≤ N such that given
nonnegative values yi ∈ K there is a unique, up to an absolute value, polynomial q ∈ Kn[x]
interpolating yi without a phase, i.e. we have |q(xi)| = yi and if a polynomial q′ of degree at
most n satisfies |q′(xi)| = yi, then q′ = αq for some α ∈ K with |α| = 1. There are two versions
of performing the above choice: non-interactive and interactive. A non-interactive choice is
when the interpolation procedure has to choose all numbers xi ∈ K for 0 ≤ i ≤ N first and then
the corresponding values yi ∈ K are revealed. An interactive choice is when the interpolation
procedure has to choose a single xi at a time, then the corresponding value yi is revealed and
the procedure decides whether or not it needs more values and if so it chooses xi+1 based on
revealed values yk for 0 ≤ k ≤ i.

2



Moreover, in this paper, we are interested not only in the choice of points xi (interactively or
not), but also in the effectiveness of the process of reconstruction of the interpolating polynomial
q ∈ Kn[x], which culminates in listing its coefficients aj ∈ K for 0 ≤ j ≤ n.

Although the reconstruction problem for the non-interactive choice of interpolation points
can be formalized as a classical problem in computational complexity, that is: “given ⟨xi, yi⟩ for
the input find phaseless interpolating polynomial q ∈ Kn[x]”, the formalisation of the interactive
choice is more challenging. It, clearly, cannot be formalised as a problem in computational
complexity, because there is no single well-defined input to the problem–the algorithm itself can
control (to some degree) what input will be provided to the algorithm next, or if it is satisfied
with the input given so far. This is less of a problem if we want to provide positive results–to
show that the problem can be solved in, say, polynomial time, it suffices to show an interactive
procedure that runs in polynomial time. Proving negative results is more challenging, especially
if we believe that the problem is related to complexity classes like “non-deterministic polynomial
time”. The reason is twofold: the classical machinery of stating that a problem is hard for a
given class cannot work, because the interactive choice as stated is not an algorithmic problem
in the classical sense; on the other hand, restricting the instances to the problems with unique
(up to a phase) solutions gives a theoretical barrier in proving that a problem is hard for “non-
deterministic polynomial time”’ class (i.e. it is a difficult open question whether or not there
are any NPH problems with unique solutions). For this reason, we can prove the hardness of
the problem for non-interactive choice only.

The classical setting of the problem, as described in [9], is given by the framework of
Information-Based Complexity (IBC). According to this setting, a problem consists of a function

P : V → W

between a set V and (usually) a metric space W and a class Λ of basic information operations
(or basic measurements)

V → K

An approximate solution to a problem P,Λ consists of an information operator N : V → K∗

and an algorithm ϕ : K∗ → V (with K∗ denoting the set of all finite sequences of elements from
K) such that: ϕ ◦N ≈ P like on Figure 1.

V W

K∗

v

N(v)

P (v)

ϕ(N(v))
P

N ϕ

Figure 1: Information-Based Complexity perspective: problem P , information operator N and
algorithm ϕ such that for every v ∈ V we have that: ϕ(N(v)) ∼ P (v).

Moreover, information operator N must be built from basic information operators λi ∈ Λ in
a certain way. In case N = ⟨λi⟩ji=0 for some fixed j, we say that the solution is non-adaptive,

3



which roughly corresponds to the non-adaptive choice from the informal statement of phaseless
interpolation problem. The other case is when the solution is adaptive–there is a procedure
ϕ : K∗ → Λ ⊔ {⊥} such that:

N(v)j =

{
ϕ(ϵ) if j = 0

ϕ
(
N(v)0, N(v)1, . . . , N(v)j−1

)
(v) if j > 0

where the second branch is defined for i < j where Nj(v) = ⊥, which indicates that no more
information will be used by the algorithm. This roughly corresponds to the interactive choice
of points from the informal statement of phaseless interpolation problem.

We usually measure the quality of approximation in terms of the distance

max
v∈V

(dW (ϕ(N(v)), P (v)),

the information complexity in terms of maxv∈V (|N(v)|), and computational complexity in terms
of the maximal number of steps performed by a machine realizing ϕ (in a chosen computational
model) on input v ∈ V , plus the number of steps performed by a machine realizing N (again, in
some chosen computational model) in order to compute basic information operators λi. Often,
when it is important which basic information operations from Λ a given algorithm uses, instead of
providing number maxv∈V (|N(v)|) we give an explicit characterisation of the basic information
operations used. More on information operators and their role in IBC in more general settings
can be found, e.g., in [10], [7] and [8]. The phaseless polynomial interpolation fits into this
framework as follows. We set V = Kn[x], W = V/ ∼ equipped with the discrete metric, where
q ∼ q′ iff q = αq′ for some α ∈ K with |α| = 1, P (q) = |q| and Λ = {δx : x ∈ K}, where
δx(q) = |q(x)| are absolute-value evaluations. The solution must be exact, i.e., P (v) = ϕ(N(v)).

We note in passing that for q, q′ ∈ K the relation q ∼ q′ holds if and only if |q| = |q′| as
functions K → K.

Because we are interested in computational complexity in the traditional sense of Turing
Machines, we shall restrict our considerations to the field of rational numbers, i.e., to K = Q.
Moreover, we shall assume that all objects under considerations are encoded in an effective way.
This assumption provides another natural setting for the polynomial interpolation problem,
more familiar to the field of computer science, namely, Query Complexity or Decision Tree
Complexity [2].

In the Query Complexity framework, the role of basic information operators Λ is played by
a black-box oracle O that, if given some input v, can produce an output O(v). An algorithm for
a problem is an algorithm in the traditional sense relative to the given oracle O. We measure
the query complexity of the problem in terms of the number of queries performed to oracle O
and the computational complexity in the usual way: by the number of steps performed by the
algorithm. This setting explicitly deals with the computational complexity necessary for the
choice of the query points (e.g. interpolation points in our problem). The phaseless polynomial
interpolation naturally fits into this framework by using an oracle O that encodes absolute value
|p| of a given polynomial p – i.e. oracle O accepts as an input a rational number x and outputs
|p(x)|. The task is to identify what polynomial is represented by oracle O.

We use the following notational conventions throughout the paper. As indicated above, by

Kn[x] = {a0 + a1x+ · · ·+ anx
n : a0, a1, . . . , an ∈ K}

we will denote the linear space of all polynomials of degree at most n (n ∈ N) with coeffi-
cients from K. More generally, if ⟨x, y⟩ = ⟨x0, y0⟩, ⟨x1, y1⟩, ⟨x2, y2⟩, . . . , ⟨xk−1, yk−1⟩ are some
interpolation points in K2, then by Kn(x, y)[x] we will denote the set of polynomials of degree
at most n passing through points ⟨xi, yi⟩ for 0 ≤ i < k. Observe that if p, q ∈ Kn(x, y)[x],
then (p − q)(xi) = p(xi) − q(xi) = yi − yi = 0, therefore p − q vanishes on {x0, x1, . . . , xk−1}.
Moreover, in the other direction, if z ∈ Kn[x] vanishes on {x0, x1, . . . , xk−1}, then p + z inter-
polates ⟨x0, y0⟩, ⟨x1, y1⟩, . . . , ⟨xk−1, yk−1⟩, therefore p + z ∈ Kn(x, y)[x]. Because the set of all

4



polynomials of degree at most n that vanish on {x0, x1, . . . , xk−1} forms an (n− k)-dimensional
vector space, the set Kn(x, y)[x] is an (n− k)-dimensional affine space.

Lemma 1. Let k ∈ N be a fixed constant. Given n ≥ k and a sequence

⟨x0, y0⟩, ⟨x1, y1⟩, . . . , ⟨xn−k, yn−k⟩

where xi are pairwise distinct, the set of all polynomials p(x) ∈ Kn[x] such that p(xi) = yi
for all i = 0, . . . , n − k forms a k-dimensional affine space Kn(x, y)[x]. The isomorphism
Kk ≈ Kn(x, y)[x] is given as:

c ∈ Kk 7→ p(x, c) = L(x) +

(
k−1∑
j=0

cjx
j

)
n−k∏
i=0

(x− xi)

where c ∈ Kk are the coordinates and L(x) is the unique Lagrange interpolating polynomial of
degree at most n− k that interpolates ⟨xi, yi⟩n−k

i=0 :

L(x) =

n−k∑
j=0

yjℓj(x)

with Lagrange basis polynomials ℓj(x):

ℓj(x) =

n−k∏
i=0
i ̸=j

x− xi

xj − xi

Proof. The argument given above shows that the set forms a k-dimensional affine space. Be-
cause p(x; c) is clearly a k-dimensional affine space, it suffices to show that for every vector

[c0, c1, . . . , ck−1] the polynomial L(x)+
(∑k−1

j=0 cjx
j
)∏n−k

i=0 (x−xi) interpolates ⟨xi, yi⟩n−k
i=0 . But

this is obvious, because L(x) interpolates ⟨xi, yi⟩n−k
i=0 by construction and(

k−1∑
j=0

cjx
j

)
n−k∏
i=0

(x− xi)

vanishes on {x0, x1, . . . , xn−k}.

We shall also write K[x] =
⋃

n Kn[x] for the linear space of all polynomials in variable x
and, similarly

K(x, y)[x] =
⋃
n≥k

K(x, y)n[x]

for the affine space of polynomials in variable x interpolating

⟨x, y⟩ = ⟨x0, y0⟩, ⟨x1, y1⟩, ⟨x2, y2⟩, . . . , ⟨xk−1, yk−1⟩

We denote by K2
n[x] the set of polynomials of degree at most 2n that are squares of polyno-

mials in Kn[x]. That is:

K2
n[x] = {p(x) ∈ K2n[x] : ∃q(x)∈Kn[x] p(x) = q(x)2}

Note that every solution to the phaseless interpolation problem for a subfield K ⊆ R of the
real numbers uniquely lifts to the solution of the interpolation problem of the square of the
polynomial.

5



3 Polynomial-time phaseless interpolation

The problem of real phaseless polynomial interpolation of a polynomial of degree at most n from
2n+1 evaluation points was investigated in [9]. Although their construction carries over to the
rational case in a straightforward way, it does not easily generalise to the number of evaluation
nodes less than 2n+1 for the following two reasons. Firstly, their method is based on Lagrange
interpolation of the square of a polynomial. Because the square of a polynomial of degree n
has degree 2n, we need exactly 2n + 1 points for Lagrange interpolation procedure to work.
Secondly, if we have less than 2n + 1 points, a polynomial might not be uniquely determined
(up to a global phase) from the absolute-value evaluations.

Addressing the second issue, it was shown in [9] that the adaptation is necessary if we restrict
to n+2 rational information operations. Moreover, it is extremely difficult to hit rational n+2
nodes such that the reconstruction problem is ambiguous (in the real case, we have to hit a set
of measure zero). Therefore, one may wonder if we can non-adaptively choose n+3 nodes, such
that the phaseless interpolation is possible. Or more generally, what is the minimal number k of
non-adaptively chosen nodes (xi)

k−1
i=0 , such that the phaseless interpolation from (xi)

k−1
i=0 gives

a unique (up to a phase) polynomial. From [9], we know that n + 2 < k ≤ 2n + 1. Contrary
to our initial intuition, the next theorem shows that the minimal number of nodes is, in fact,
2n+ 1.

Theorem 1 (2n points are not sufficient). Let x0, x1, · · · , x2n−1 be any 2n evaluation points.
There exist polynomials p, q ∈ Qn[x] such that |p(xi)| = |q(xi)| for all 0 ≤ i < 2n, but |p| ̸= |q|.

Proof. Without loss of generality, let us assume that the nodes xi are pairwise distinct. Then
polynomials: p(x) =

∏n−1
i=0 (x−xi)+

∏2n−1
i=n (x−xi) and: q(x) =

∏n−1
i=0 (x−xi)−

∏2n−1
i=n (x−xi)

are of order n. Observe, that for 0 ≤ i < n we have that p(xi) = −q(xi), because the first terms
in both of the polynomials are zero, and for n ≤ i < 2n we have that p(xi) = q(xi), because
the second terms in both of the polynomials are zero. Therefore, |p(xi)| = |q(xi)| for every
0 ≤ x < 2n. On the other hand, clearly, |p| ≠ |q|, which completes the proof.

Example 1 (Cubic polynomials on six nodes). Consider the following evaluation points: x =
[1, 2, 3, 4, 5, 6]. Polynomials p, q ∈ Q3[x] corresponding to these nodes are:

p(x) = 2x3 − 21x2 + 85x− 126

q(x) = 9x2 − 63x+ 114

Figure 2 illustrates |p| and |q| and their intersections.

6



Figure 2: Intersections of |p(x)| = |2x3 − 21x2 + 85x− 126| and |q(x)| = |9x2 − 63x+ 114|.

The paper [9] demonstrated only an exponential-time procedure for the selection of a single
node from previously observed absolute values, such that the reconstruction problem is un-
ambiguous. Therefore, for a polynomial-time reconstruction algorithm from less than 2n + 1
evaluation points, we need to improve the procedure of node-selection to work in polynomial-
time. We shall address this issue below (Theorem 4), by showing that it is possible to select a
single node adaptively in a polynomial time.

Addressing the first issue, we show that for a fixed k ≤ n there are at most polynomially-
many solutions to the reconstruction problem from 2n− k + 1 absolute values and all of them
can be found in a polynomial-time (Theorem 2).

So, let k ∈ N be a fixed constant and consider a sequence ⟨x0, y0⟩, ⟨x1, y1⟩, . . . , ⟨x2n−k, y2n−k⟩
for n ≥ k, where xi are pairwise distinct and yi ≥ 0. Our task is to find all polynomials
q(x) ∈ Qn[x] such that |q(xi)| = yi for all i = 0, . . . , 2n− k.

We observe that the condition |q(xi)| = yi is equivalent to q(xi)
2 = y2

i . Our first task is to
find all polynomials p ∈ Q2n[x] that interpolate given points ⟨x0, y0⟩, ⟨x1, y1⟩, . . . , ⟨x2n−k, y2n−k⟩.
By Lemma 1 this set forms a k-dimensional affine space Q2n(x, y)[x], which is parametrised via
p(x, c).

Our task can be now rephrased as follows: find all vectors c = [c0, c1, . . . , ck−1] ∈ Qk such
that p(x, c) ∈ Q2

n[x]. Observe, which will be crucial for the proof, that there cannot be to many
such vectors c.

Lemma 2 (On the zero-dimensionality of solution sets). If n ≥ k then there are only finitely
many c = [c0, c1, . . . , ck−1] ∈ Qk such that p(x, c) ∈ Q2

n[x].

Proof. If n ≥ k, then we have at least n + 1 interpolation points ⟨x0, y0⟩, ⟨x1, y1⟩, . . . , ⟨xn, yn⟩.
Note that |p(xi)| = yi can be rephrased as: there exists bi ∈ {−1, 1} such that p(xi) = biyi.
Moreover, for every such a vector b ∈ {−1, 1}n+1 there exists a unique polynomial of degree at
most n interpolating ⟨x0, b0y0⟩, ⟨x1, b1y1⟩, . . . , ⟨xn, bnyn⟩. Therefore, polynomials satisfying the
considered condition are defined by vectors b ∈ {−1, 1}n+1. Since there are exactly 2n+1 such
vectors, there are at most 2n+1 such polynomials, and so the number of solutions is bounded
by 2n+1.

7



If p(x, c) ∈ Q2
n[x] then it must be of the form p(x, c) = (a0 + a1x + · · · + anx

n)2 for some
rational coefficients ai. On the other hand, expanding p(x, c) we get p(x, c) = A0(c)+A1(c)x+
· · ·+A2n(c)x

2n, where the coefficients Ai(c), when treated as functions of c, are affine functions.
Equating these two expansions, we get the following system of 2n+ 1 polynomial equations in
variables c0, c1, . . . , ck−1, a0, a1, . . . , an:

Ai(c) =

{
a2
0 if i = 0

2a0ai +
∑i−1

j=1 ajai−j if 1 ≤ i ≤ 2n

where, for convenience, we set an+i = 0 for 1 ≤ i ≤ n. Note, however, that the variables
a1, a2, . . . , an can be eliminated at the expense of moving to the rational system of equations.
We keep the equation A0(c) = a2

0 and, assuming a0 ̸= 0, we use the equations for 1 ≤ i ≤ n to
iteratively compute ai as follows:

ai =
Ai(c)−

∑i−1
j=1 ajai−j

2a0

Then each ai becomes a rational function of c and a0. Nonetheless, we can improve this slightly.
Observe that without loss of generality we can assume that 0 is among our interpolation points.
For, let ⟨xi, yi⟩ be any phaseless interpolation point with yi ̸= 0. There must be such a point,
because a polynomial of degree n cannot have more than n roots. Thus, we may shift our
affine space by xi, i.e. we consider the phaseless interpolation problem for ⟨x0 − xi, y0⟩, ⟨x1 −
xi, y1⟩, . . . , ⟨x2n−k − xi, y2n−k⟩. Then the i-th point has its first coordinate zero and its second
coordinate non-zero: we can reconstruct the shifted space of polynomials first, and then shift it
back by xi. Therefore, let us assume that xi = 0 and yi ̸= 0. Then p(0, c) = L(0) = y2

i = a2
0.

Therefore, a0 = ±yi corresponding to two global phases. By choosing a0 = yi (equivalently
a0 = −yi), our coefficients ai become polynomials in c of degree at most i. Computed in the
above way ai are substituted into remaining n equations for n < i ≤ 2n:

Ai(c) = 2a0ai +

i−1∑
j=1

ajai−j

Therefore, we are left with a system S of n polynomial equations of degree at most 2n in k
variables c0, c1, · · · , ck−1.

Example 2 (Phaseless interpolation with k = 1). Consider the problem of phaseless recon-
struction of polynomial q ∈ Q3[x] form the following evaluation nodes xi = i − 3 for 0 ≤ i ≤ 5
with the corresponding absolute values: y0 = 8, y1 = 2, y2 = 2, y3 = 2, y4 = 4, y5 = 2 and k = 1.
Then:

p(x, c) = 4 + (12c0 + 4)x+ (4c0 + 8)x2 + (−15c0 + 3)x3 + (−5c0 − 2)x4 + (3c0 − 1)x5 + c0x
6

Unfolding coefficients ai and fixing negative a0 yields:

a0 = −2

a1 = −3c0 − 1

a2 =
9c20 + 2c0 − 7

4

a3 =
−27c30 − 15c20 + 49c0 + 1

8

a4 =
405c40 + 324c30 − 650c20 − 156c0 + 77

64

a5 =
−1701c50 − 1755c40 + 2826c30 + 1542c20 − 853c0 − 59

128

a6 =
15309c60 + 19278c50 − 26325c40 − 22924c30 + 11707c20 + 3374c0 − 419

512

8



Therefore, solutions to the reconstruction problem (with negative constant term) are tantamount
to solutions of the following system of polynomial equations:

405c40 + 324c30 − 650c20 − 156c0 + 77

64
= 0

−1701c50 − 1755c40 + 2826c30 + 1542c20 − 853c0 − 59

128
= 0

15309c60 + 19278c50 − 26325c40 − 22924c30 + 11707c20 + 3374c0 − 419

512
= 0

The polynomials together with their roots are presented on Figure 3. Notice that there is a single
common root at c0 = 1, but at c0 ≈ −1.6, the roots are distinct, one may compute the root of
the first polynomial around this point to be (yes, it is a real root):

c0 = −3

5
− 1

3

3

√
632

375
+

8i
√
9151959

6075
− 1792

2025 3

√
632
375

+ 8i
√
9151959
6075

Figure 3: Rational and all real roots for polynomials a4, a5, a6 from Example 2.

Therefore, we have a single solution (up to a phase) at c0 = 1:

a0 = −2

a1 = −4

a2 = 1

a3 = 1

That is: q(x) = −2− 4x+ x2 + x3.

9



Let us fix the order c0 < c1 < · · · < ck−1 on the variables and let B be the Gröbner basis for
S for the lexicographical ordering. We need the following standard Lemma [1], [3], [4].

Lemma 3 (Univariate polynomial in Gröbner basis). Let B be a zero-dimensional Gröbner
basis for the lexicographical ordering and x = x1 < x2 < · · · < xn. Then B contains a univariate
polynomial in x1.

Proof. Let I = ⟨B⟩ be the ideal generated by B and denote by V = Q[x]/I the quotient of the
ring of polynomials in variables x1, x2, . . . , xn by ideal I. Observe that V treated as a vector
space over Q is finite dimensional. Two polynomials p, q ∈ Q[x] are equal in V if p − q ∈ I,
that is, if p(s) = q(s) for ever s such that I(s) = 0. Because B is zero-dimensional, there are

only finitely many such s, say s1, s2, . . . , sk. We claim that polynomials λi(x) =
∏

j ̸=i

x−sj
si−sj

form a basis of V . They are linearly independent since for a given point si only pi(si) ̸= 0.
Now, consider any p ∈ Q[x]. Then, by definition of V , polynomial p is equal to

∑
i p(si)λi in

V . Therefore λi span V , and so V is k-dimensional.
Consider the following univariate polynomial in variable x1: 1 + x1 + x2

1 + . . . + xk
1 , which

is a sum of k + 1 vectors. Because V is k-dimensional, there are coefficients [a0, a1, . . . , ak] ̸= 0
such that p(x1) = a0 + a1x1 + a2x

2
1 + . . .+ akx

k
1 = 0 in V . Therefore p ∈ I, hence I ∩Q[x1] ̸= ∅.

By the Elimination Theorem for Gröbner basis, B ∩ Q[x1] is the Gröbner basis for I ∩ Q[x1],
therefore B ∩Q[x1] ̸= ∅.

By Lemma 2 the basis B is zero-dimensional, and by Lemma 3 it contains an univariate
polynomial u(c0). Because the degree of u(c0) is bounded by 2n, it has at most 2n solutions c∗0.

Now we repeat the above process for every variable ci for i > 0. For each solution c∗i−1 from
the previous solution set (i.e. starting from c∗0) we substitute c∗i−1 for its corresponding variable
ci in B, compute the new basis B[c∗i−1/ci−1] for polynomial equations of one less variables and
find the roots of the univatiate polynomial in the variable ci.

Each sequence c∗0, c
∗
1, . . . , c

∗
k−1 found in the above process is tantamount to an interpolating

polynomial. Notice that there are at most (2n)k such sequences, thus for a fixed parameter
k there are only polynomially-many solutions to the phaseless interpolation problem. This
observation yields the following Lemma.

Lemma 4 (On the number of solutions to the phaseless interpolation problem). Let k ∈ N be
a fixed constant. For n ≥ k and a sequence ⟨x0, y0⟩, ⟨x1, y1⟩, . . . , ⟨x2n−k, y2n−k⟩, where xi are
pairwise distinct and yi ≥ 0, the number of polynomials q(x) ∈ Qn[x] such that |q(xi)| = yi is
O(nk).

Example 3 (Phaseless interpolation with k = 2). Consider the polynomial from Example 2
with evaluation node x5 = 3 removed. Then for k = 2 we get:

p(x, c) = 4 + (4c0 + 8)x+ (4c1 + 8)x2 + (−5c0 − 2)x3 + (−5c1 − 2)x4 + c0x
5 + c1x

6

10



Unfolding coefficients ai and fixing negative a0 gives us:

a0 = −2

a1 = −c0 − 2

a2 =
c20
4

+ c0 − c1 − 1

a3 =
5c0
4

− (c0 + 2)(c20 + 4c0 − 4c1 − 4)

8
+

1

2

a4 =
5c40
64

+
5c30
8

− 3c20c1
8

+
c20
2

− 3c0c1
2

− 2c0

+
c21
4

+
3c1
4

− 3

4

a5 = − 7c50
128

− 35c40
64

+
5c30c1
16

− 35c30
32

+
15c20c1

8

+
23c20
16

− 3c0c
2
1

8
+ c0c1 +

5c0
2

− 3c21
4

− 2c1

a6 =
21c60
512

+
63c50
128

− 35c40c1
128

+
195c40
128

− 35c30c1
16

− 5c30
16

+
15c20c

2
1

32
− 105c20c1

32
− 285c20

64

+
15c0c

2
1

8
+

23c0c1
8

− 21c0
16

− c31
8

+
c21
2

+
5c1
2

+
15

16

Figure 4 shows roots of polynomials a4(c0, c1) = 0, a5(c0, c1) = 0 and a6(c0, c1) = 0. There is a
single common root at (c0, c1) = (2, 1), which yields:

a0 = −2

a1 = −4

a2 = 1

a3 = 1

That is: q(x) = −2 − 4x + x2 + x3 again. To prove that (c0, c1) = (2, 1), we can compute the
Gröbner basis for a4(c0, c1) = 0, a5(c0, c1) = 0 and a6(c0, c1) = 0 and observe that it consists of
two polynomial equations:

c0 − 2 = 0

c1 − 1 = 0

11



Figure 4: Real roots of polynomials a4, a5, a6 from Example 3. There is a single common root at
(c0, c1) = (2, 1).

Example 4 (Phaseless interpolation with k = 3). In case k = 3 we need n > 3, otherwise there
will be a unique interpolating polynomial for every choice of signs in the evaluation values. Let
us consider the following polynomial q ∈ Q4[x]:

q(x) = x4 + x3 − 10x2 − 4x + 9

with evaluation nodes xi = i− 2 for 0 ≤ i ≤ 5 and k = 3. Then:

p(x, c) = 81

+ (−12c0 − 60)x

+ (4c0 − 12c1 − 108)x2

+ (15c0 + 4c1 − 12c2 + 75)x3

+ (−5c0 + 15c1 + 4c2 + 36)x4

+ (−3c0 − 5c1 + 15c2 − 15)x5

+ (c0 − 3c1 − 5c2)x
6

+ (c1 − 3c2)x
7

+ c2x
8

The solution to the polynomial system a5 = 0, a6 = 0, a7 = 0, a8 = 0 with a0 = 9 is presented on

12



Figure 5. The Gröbner basis of the system consists of the following polynomials:

116

7371
c30 +

788

2457
c20 +

92

63
c0 + c2 −

2945

1053

− 64

2457
c30 −

1571

2457
c20 −

725

189
c0 + c1 −

175

351

c40 +
67

2
c30 +

5649

16
c20 +

8257

8
c0 −

22715

16
.

The roots of the polynomials that form the Gröbner basis are presented on Figure 6. Notice,
there are four unique solutions (up to a phase), which are rational. The solutions yield the
following polynomials:

(−59

4
,− 9

16
,
81

16
) 7→ 2.25x4 − 3.5x3 − 11.25x2 + 6.5x+ 9

(−11, 1, 1) 7→ x4 − x3 − 10x2 + 4x+ 9

(−35

4
,−25

16
,
25

16
) 7→ 1.25x4 − 2.5x3 − 7.25x2 + 2.5x+ 9

(1, 5, 1) 7→ x4 + x3 − 10x2 − 4x+ 9

13



Figure 5: Real roots of polynomials a5, a6, a7, a8 from Example 4. There are four common roots at
(− 59

4 ,− 9
16 ,

81
16 ), (−11, 1, 1), (− 35

4 ,− 25
16 ,

25
16 ) and (1, 5, 1).

Figure 7 shows 2D slices of Figure 5 at four different values of c0 corresponding to four
different common roots of polynomials a5, a6, a7 and a8. Note, however, that if we change the
evaluation point from x5 = 3 to x5 = 4, then the system will have a unique solution.

Theorem 2 (Polynomial-time reconstruction). Let k ∈ N be a fixed constant. The following
problem has polynomial-time complexity. Given n ≥ k and a sequence

⟨x0, y0⟩, ⟨x1, y1⟩, . . . , ⟨x2n−k, y2n−k⟩,

where xi are pairwise distinct and yi ≥ 0, find all polynomials q(x) ∈ Qn[x] such that |q(xi)| = yi
for all i = 0, . . . , 2n− k.

Proof. The process of computing the coefficients Ai(c) of p(x, c) consists of the computation of
the coefficients of the interpolating polynomial L(x) and the coefficients of

∏n−k
i=0 (x−xi), which

are of bit-size polynomial in the bit-size of ⟨x0, y0⟩, ⟨x1, y1⟩, . . . , ⟨x2n−k, y2n−k⟩. Therefore, it
is polynomial-time. Since each ai has degree bounded by 2i − 1, the process of computing
coefficients of ai is polynomial in bit-size of coefficients of Ai(c). Therefore, it is in polynomial-
time. The number of basic operations needed to compute the Gröbner basis is bounded by

14



(2n)2
k

, hence, for a fixed parameter k, its time-complexity is polynomial. By the classical result
of A.K. Lenstra, H.W. Lenstra and L. Lovász [6], finding rational roots of a rational polynomial
is polynomial-time of the bit-size of the coefficients. Therefore, the whole process is polynomial
in the bit-size of ⟨x0, y0⟩, ⟨x1, y1⟩, . . . , ⟨x2n−k, y2n−k⟩.

Figure 6: Real roots of Gröbner basis for a5, a6, a7, a8 from Example 4. There are four common
roots at (− 59

4 ,− 9
16 ,

81
16 ), (−11, 1, 1), (− 35

4 ,− 25
16 ,

25
16 ) and (1, 5, 1).

Remark 1. Although Lemma 3 is sufficient to prove that the phaseless interpolation problem
form 2n− k points is in polynomial-time, it can be strengthened a bit to show that after substi-
tution for the first variable, the Gröbner basis does not need to be recomputed.

An educational implementation of the algorithm is presented on Listing 1 in the Appendix.

Theorem 3 (Phaseless Interpolation as an IBC problem). For a fixed parameter k, the Phaseless
Interpolation Problem for polynomials of degree at most n has a solution (N,ϕ) such that N
uses n − k basic information operations with a single adaptation (i.e., N selects a single point
adaptively) whose computational complexity is bounded by O(nαk ) for some constant αk that
depends only on k but does not depend on n.

15



(a) Polynomials with c0 = 1 (b) Polynomials with c0 = −11

(c) Polynomials with c0 = − 59
4

(d) Polynomials with c0 = − 35
4

Figure 7: 2D slices of real roots of polynomials a5, a6, a7, a8 from Example 4.

16



Proof. By Theorem 2 and Theorem 4 below.

Remark 2. By a more careful analysis of the problem, one may show that in Theorem 3 one
may set αk = k. Nonetheless, in our analysis we are primarily interested in the gap between
polynomial-time and NP-complete computational classes.

Theorem 4 (Single adaptation in polynomial-time). Let x0, x1, . . . , xn be n + 1 distinct eval-
uation points and let y0, y1, . . . , yn be the corresponding absolute values of the evaluations of a
polynomial p of degree at most n. There exists a point xn+1 such that yn+1 = |p(xn+1)| uniquely
determines |p|.

Moreover, if the polynomial and evaluation points are rational, the point xn+1 can be com-
puted from {⟨xi, yi⟩}ni=0 in time polynomial in the bit-size of the input.

Proof. The existence of such a point xn+1 was established in [9], but the constructive method
provided therein required exponential time. We present a construction that operates in polyno-
mial time.

Let S be the set of all polynomials interpolating points {⟨xi, biyi⟩}ni=0 for every possible sign
vector b ∈ {−1, 1}n+1. The absolute value |p| is uniquely determined if and only if no two
distinct polynomials in S intersect at xn+1.

Consider any two distinct sign vectors b, b′ ∈ {−1, 1}n+1. The intersection of the correspond-
ing polynomials Lb and Lb′ occurs as a root of their difference:

Db,b′(x) = Lb(x)− Lb′(x) =

n∑
j=0

(bj − b′j)yjℓj(x),

where ℓj(x) are the Lagrange basis polynomials. We seek an integer xn+1 that is not a root of
Db,b′(x) for any pair b, b′.

Since the inputs xi, yi are rational, we can clean denominators to work with integers. Let
M be a common multiple of the denominators of all coefficients in the expansions of yjℓj(x).
Define the integer polynomial Pb,b′(x) = M ·Db,b′(x).

We derive an easily computable bound B on the magnitude of integer roots of Pb,b′(x) that
is independent of the specific signs b, b′. Let Pb,b′(x) =

∑n
k=0 Ak(b, b

′)xk. By the Rational Root
Theorem, any non-zero integer root of Pb,b′(x) must divide the lowest-degree non-zero coefficient
As(b, b

′). Therefore, any such root is bounded by |As(b, b
′)| ≤ maxk |Ak(b, b

′)|. We can bound
the coefficients uniformly using the triangle inequality. Since |bj − b′j | ≤ 2, we have:

|Ak(b, b
′)| ≤

n∑
j=0

|bj − b′j | · |coeff of xk in Myjℓj(x)| ≤ 2

n∑
j=0

|cj,k|

where cj,k is the coefficient of xk in the polynomial Myjℓj(x). Let B = maxk

(
2
∑n

j=0 |cj,k|
)
.

Such a bound B depends only on the inputs xi, yi.
Choosing an integer xn+1 = B + 1 ensures that xn+1 is strictly larger than every possible

integer root of any difference polynomial. Thus, no two polynomials in S intersect at xn+1. Since
B is computed via basic arithmetic operations on the rational inputs, its bit-size is polynomial
in the input size.

4 The case of (1 + c)n points for 0 ≤ c < 1

In this section we show that the phaseless polynomial retrieval from (1 + c)n evaluation points
is hard for any fixed 0 ≤ c < 1. In fact, it remains hard in case k = ⌊cn⌋ evaluations are exact
(i.e. with phase). However, one must be very careful when formulating the claim. The theorem
stated below says that the retrieval problem is NP-hard. Nonetheless, there are two ways to

17



state the theorem–a weak one: “for every n, k we can choose evaluation nodes, such that the
problem is hard”, and a strong one: “for every n, k no matter how we choose evaluation nodes,
the problem is hard”. In the sequel we prove the stronger version. Note that in the strong
version we have to be prudent with specifying what is the input to our problem. We clearly
cannot take the evaluation nodes as inputs, because we want to restrict to one particular choice
for every n. But then, if the bit-size of the nth evaluation node is super-polynomial in n, then
we cannot perform any arithmetic in polynomial time. One way to make sense of the above
is as follows: we prove the theorem for any infinite sequence of evaluation nodes x0, x1, x2, . . .
such that the bit-size of xi is polynomial in i.

Theorem 5 (Phaseless polynomial retrieval over ⟨r, v⟩ is NPC). Let r0, r1, r2, . . . and v0, v1, v2, . . .
be two infinite sequences of nodes, where ri are pairwise distinct, and the bit-size of ri and
vi is polynomial in i. The problem of identifying a polynomial p ∈ Qn

(
(ri)

k−1
i=0 , (vi)

k−1
i=0

)
[x]

up to its phase from non-adaptive n − k + 2 phaseless evaluations at points x0 = rk, x1 =
rk+1, . . . , xn−k+1 = rn+1 is NP-complete for k = ⌊cn⌋, where 0 ≤ c < 1.

Proof. Recall from Lemma 1 the parametrisation of the affine space of interpolating polynomials:

c ∈ Qn−k+2 7→ p(x, c) = L(x) +

(
n−k∑
j=0

cjx
j

)
k−1∏
j=0

(x− rj)

Let distinct points x0, x1, . . . , xn−k+1 ∈ Q be given as above, together with the absolute values
y0, y1, . . . , yn−k+1 ∈ Q. Let p ∈ p(x, c), then for some bi ∈ {−1, 1} we have that:

biyi = bi|p(xi)| = p(xi) = L(xi) +

(
n−k∑
j=0

cjx
j
i

)
k−1∏
j=0

(xi − rj)

Therefore:
n−k∑
j=0

cjx
j
i =

biyi − L(xi)∏k−1
j=0 (xi − rj)

If we assume that bi are fixed, then the above is the interpolation problem for a polynomial
of degree at most n − k from n − k + 2 interpolation points, i.e.: cj are the solutions to the
over-constrained system of equations V [c0, c1, . . . , cn−k] = v, where:

V =


1 x0 x2

0 · · · xn−k
0

1 x1 x2
1 · · · xn−k

1

1 x2 x2
2 · · · xn−k

2

...
...

...
. . .

...

1 xn−k+1 x2
n−k+1 · · · xn−k

n−k+1



v =



b0y0−L(x0)∏k−1
j=0 (x0−rj)

b1y1−L(x1)∏k−1
j=0 (x1−rj)

b2y2−L(x2)∏k−1
j=0 (x2−rj)

...
bn−k+1yn−k+1−L(xn−k+1)∏k−1

j=0 (xn−k+1−rj)


System V c = v has solutions if and only if v is in the image Im(V ) of V . If we denote by Im(V )⊥

the vector space orthogonal to Im(V ), then v ∈ Im(V ) if and only if v⊥Im(V )⊥. Moreover,
since V is of full column rank, the space Im(V )⊥ is 1-dimensional and can be represented by

18



a single basis vector w ∈ Im(V )⊥. Then, v ∈ Im(V ) if and only if ⟨v, w⟩ = 0. Unfolding the
expression, we get:

n−k+1∑
i=0

biyi − L(xi)∏k−1
j=0 (xi − rj)

wi = 0

or
n−k+1∑
i=0

biyiαi − βi = 0

where: αi = wi∏k−1
j=0 (xi−rj)

and βi = L(xi)wi∏k−1
j=0 (xi−rj)

are non-zero and do not depend on values yi.

Furthermore, if S =
∑n−k+1

i=0 βi, then the above equation can be rewritten as:

n−k+1∑
i=0

biyi
αi

S
= 1

Remark 3 (On non-zero coordinates). We have to ensure that all wi ̸= 0. But this is, indeed,
the case and we can even find an explicit formula for wi. The condition w⊥V is equivalent to

n−k+1∑
i=0

wix
j
i = 0, ∀j = 0, 1, . . . , n− k

This means that
∑n−k+1

i=0 wip(xi) = 0 for all polynomials p of degree at most n − k. Define w
in the following way:

wi =

n−k+1∏
j=0
j ̸=i

1

xi − xj
, i = 0, 1, . . . , n− k + 1

These are the barycentric weights associated with Lagrange interpolation at the points (xi). That
is, the Lagrange basis for (xi) consists of polynomials:

li =

n−k+1∏
j=0
j ̸=i

x− xj

xi − xj
, i = 0, 1, . . . , n− k + 1

with:

p(x) =

n−k+1∑
i=0

p(xi)li(x)

Since the degree of p(x) is n− k, it must be the case that in the above expression the coefficient
at xn−k+1 equals zero, which translates to:

n−k+1∑
i=0

n−k+1∏
j=0
j ̸=i

p(xi)

xi − xj
= 0

and so ⟨w, v⟩ = 0, which completes the proof.

Now, we are ready to show the reduction from the Partition Problem. Let

n−k∑
i=0

biti = 0

19



be an instance of the Partition Problem with integers ti. Let us set tn−k+1 = 1
3
. For fixed ⟨r, v⟩

and xi, define yi = 3|ti S
αi

|. Then the solution to the interpolation problem has the following
form:

3

n−k∑
i=0

biti + bn−k+1 = 1

We claim that solutions to the above problem are tantamount to solutions of the Partition
Problem. Indeed, if bi are the solution to the above interpolation problem, then it must be that
bn−k+1 = 1 and then:

3

n−k∑
i=0

biti + 1 = 1 ⇔
n−k∑
i=0

biti = 0

Otherwise, i.e. if bn−k+1 = −1, we have:

3

n−k∑
i=0

biti − 1 = 1 ⇔
n−k∑
i=0

biti =
2

3

which is impossible, because ti, for 0 ≤ i ≤ n − k, are integers. Since k = cn with 0 ≤ c < 1,
we have that n − k = n − cn = (1 − c)n = Θ(n). Therefore, our transformation is polynomial
in bit-size.

Theorem 6 (Phaseless retrieval from (1 + c)n + 2 points with 0 ≥ c < 1 is NPC). Let
r0, r1, r2, . . . be an infinite sequences of pairwise-distinct rational numbers (the evaluation nodes),
such that the bit-size of ri is polynomial in i. The problem of identifying a polynomial of degree
n up to its phase from non-adaptive n + 2 phaseless evaluations and cn exact evaluations in
nodes r0, r1, . . . , rn+⌊cn⌋ is NP-complete for any fixed 0 ≤ c < 1.

Proof. Let us evaluate our polynomial at nodes r0, r1, . . . , r⌊cn⌋ exactly. This yields non-negative
rational points v0, v1, , . . . , v⌊cn⌋. The reduction from phaseless polynomial retrieval over ⟨r, v⟩ is
trivial, because solutions p ∈ Qn[x] to the above problem with fixed nodes r of exact evaluations
are tantamount to solutions for phaseless polynomial retrieval for fixed ⟨r, v⟩, where v are
corresponding evaluation values.

Remark 4. The above can be generalised for any k such that n − k = O(np) for any p > 0.
Therefore, setting k = cn for any c < 1 gives the result mentioned in the introduction, because
we have: n − cn = (1 − c)n = Θ(n). Nonetheless, we can also get a stronger result. Let
k = n−np for some 0 < p < 1, then: n− k = n−n+np = np = Θ(np). Therefore, the problem
of identifying a polynomial of degree n from 2n − np evaluations is NP-complete for any fixed
0 < p < 1.

Appendix

Listing 1: Phaseless Interpolation over Q with 2n+ 1− k points

1 import sympy as sp

2 from sympy.abc import x

3

4

5 # ==========================================

6 # Part 1: Triangular System Solver

7 # ==========================================

8

20



9 def _simplify_polys(polys , partial_solution):

10 """Substitutes partial solutions and expands polynomials."""

11 current_polys = [sp.expand(p.subs(partial_solution)) for p in polys]

12 return [p for p in current_polys if p != 0]

13

14

15 def _check_inconsistency(active_polys):

16 """Returns True if any polynomial simplifies to a non -zero number."""

17 return any(p.is_Number and p != 0 for p in active_polys)

18

19

20 def _find_target_poly(active_polys , target_var):

21 """Identifies a univariate polynomial for the target variable."""

22 for p in active_polys:

23 syms = p.free_symbols

24 if not syms: continue

25 if syms == {target_var} or syms.issubset ({ target_var }):

26 return p

27 return None

28

29

30 def _find_rational_roots(poly , target_var):

31 """Solves a univariate polynomial and returns strictly rational roots."

""

32 roots = sp.solve(poly , target_var , dict=True)

33 valid_roots = []

34 for root in roots:

35 val = root[target_var]

36 if val.is_number and val.is_rational:

37 valid_roots.append(val)

38 return valid_roots

39

40

41 def solve_triangular_system(polys , variables , partial_solution=None):

42 """Recursively solves a triangular system of polynomials."""

43 if partial_solution is None: partial_solution = {}

44 if not variables: return [partial_solution]

45

46 target_var , remaining = variables [-1], variables [:-1]

47 active_polys = _simplify_polys(polys , partial_solution)

48

49 if _check_inconsistency(active_polys): return []

50

51 uni_poly = _find_target_poly(active_polys , target_var)

52 if uni_poly is None: return []

53

54 full_solutions = []

55 for val in _find_rational_roots(uni_poly , target_var):

56 new_partial = partial_solution.copy()

57 new_partial[target_var] = val

58 full_solutions.extend(solve_triangular_system(polys , remaining ,

new_partial))

59

60 return full_solutions

61

62

63 # ==========================================

64 # Part 2: Core Logic (_solve_core)

65 # ==========================================

66

21



67 def _setup_shifted_points(points , k, shift_val):

68 """Applies coordinate shift and calculates degrees."""

69 shifted = [(p[0] + shift_val , p[1]) for p in points]

70 m = len(shifted)

71 d = (m + k - 1) // 2

72 return shifted , m, d

73

74

75 def _compute_p_coeffs(x_vals , y_vals , k, m, c_vars):

76 """Computes coefficients of P(x; c) via interpolation."""

77 L_expr = sp.interpolating_poly(m, x, x_vals , y_vals)

78 R_expr = sp.prod ([(x - xi) for xi in x_vals ])

79 S_expr = sum(c_vars[j] * x ** j for j in range(k))

80

81 p_poly = sp.Poly(sp.expand(L_expr + S_expr * R_expr), x)

82 max_deg = m + k - 1

83 return {i: p_poly.coeff_monomial(x ** i) for i in range(max_deg + 1)}

84

85

86 def _compute_convolution_numerator(range_indices , a_terms , a0):

87 """Computes the sum of a_j * a_{r-j} with manual exponent handling."""

88 sum_num , sum_max_exp = 0, 0

89 term_exps = [a_terms[j][1] + a_terms[range_indices.stop - 1 - j +

range_indices.start ][1]

90 for j in range_indices]

91

92 if term_exps: sum_max_exp = max(term_exps)

93

94 for idx , j in enumerate(range_indices):

95 r_idx = range_indices.stop - 1 - j + range_indices.start

96 num = a_terms[j][0] * a_terms[r_idx ][0]

97 diff = sum_max_exp - term_exps[idx]

98 if diff > 0: num *= (2 * a0) ** diff

99 sum_num += num

100

101 return sum_num , sum_max_exp

102

103

104 def _compute_a_terms_recursive(d, p_coeffs , a0):

105 """Generates a_r terms where a_r = numerator / (2*a0)^exp."""

106 a_terms = {0: (a0 , 0)}

107 for r in range(1, d + 1):

108 sum_num , max_exp = _compute_convolution_numerator(range(1, r),

a_terms , a0)

109

110 # Formula: a_r = (P_r * (2a0)^max_exp - sum_num) / (2a0)^( max_exp +

1)

111 P_r = p_coeffs.get(r, 0)

112 new_num = P_r * (2 * a0) ** max_exp - sum_num

113 a_terms[r] = (sp.expand(new_num), max_exp + 1)

114 return a_terms

115

116

117 def _build_gb_equations(d, m, k, p_coeffs , a_terms , a0):

118 """Builds the system of equations for the Grobner basis."""

119 # Initial equation: a_0^2 - P_0 = 0

120 eqs = [sp.expand(a0 ** 2 - p_coeffs.get(0, 0))]

121

122 max_deg = m + k - 1

123 for r in range(d + 1, max_deg + 1):

22



124 start_j , end_j = max(0, r - d), min(r, d)

125 if start_j > end_j: continue

126

127 q2_num , q2_exp = _compute_convolution_numerator(range(start_j ,

end_j + 1), a_terms , a0)

128 # Eq: q^2 _coeff - P_r = 0 => q2_num - P_r * (2a0)^exp = 0

129 P_r = p_coeffs.get(r, 0)

130 eqs.append(sp.expand(q2_num - P_r * (2 * a0) ** q2_exp))

131 return eqs

132

133

134 def _reconstruct_poly_from_sol(sol , a_terms , d, shift_val , a0):

135 """Reconstructs a single valid polynomial from a numeric solution."""

136 #if sol[a0] == 0: return None

137

138 print(f"Sol = {sol}")

139 coeffs = {}

140 for r in range(d + 1):

141 num_poly , exp_val = a_terms.get(r, (0, 0))

142 try:

143 #val = num_poly.subs(sol) / ((2 * sol[a0]) ** exp_val)

144 val = num_poly.subs(sol) / ((2 * a0) ** exp_val)

145 if not (val.is_number and val.is_rational): return None

146 coeffs[r] = val

147 except ZeroDivisionError:

148 return None

149

150 Q_t = sum(coeffs[i] * x ** i for i in range(d + 1))

151 return Q_t.subs(x, x + shift_val)

152

153

154 def _solve_core(points , k, shift):

155 """Orchestrator for the core algebraic solving logic."""

156 pts , m, d = _setup_shifted_points(points , k, shift [0])

157

158 # Setup variables

159 # shifted polynomial has a0^2 = y_i , where i is the shift value

160 a0 = sp.sqrt(shift [1]) # or a0 = -sp.sqrt(shift [1])

161 c_vars = [sp.Symbol(f’c_{k - i - 1}’) for i in range(k)]

162 gb_vars = c_vars

163

164 # Compute P coeffs and recursive a_terms

165 p_coeffs = _compute_p_coeffs ([p[0] for p in pts], [p[1] for p in pts],

k, m, c_vars)

166 a_terms = _compute_a_terms_recursive(d, p_coeffs , a0)

167 valid_polys = []

168 if k > 0:

169 # Build and solve system

170 sys_eqs = _build_gb_equations(d, m, k, p_coeffs , a_terms , a0)

171 try:

172 print(sys_eqs)

173 gb = sp.groebner(sys_eqs , gb_vars , order=’lex’, domain=’QQ’)

174 except:

175 return []

176

177 print(f’gb = {gb}’)

178 if list(gb) == [1]: return [] # No solution

179 solutions = solve_triangular_system(list(gb), gb_vars)

180 valid_polys = [_reconstruct_poly_from_sol(s, a_terms , d, shift[0],

a0) for s in solutions]

23



181 else:

182 valid_polys = [_reconstruct_poly_from_sol ({}, a_terms , d, shift[0],

a0)]

183 return [p for p in valid_polys if p is not None]

184

185

186

187 # ==========================================

188 # Part 3: Phaseless Interpolation

189 # ==========================================

190

191

192 def _calculate_shift(points):

193 for x, y in points:

194 if y != 0: return -x, y

195 return None

196

197

198 def _deduplicate_solutions(candidates):

199 """Simplifies polynomials and filters out duplicates."""

200 unique_polys = []

201 seen_exprs = set()

202

203 for p in candidates:

204 simp_p = sp.simplify(p)

205 if simp_p not in seen_exprs:

206 unique_polys.append(simp_p)

207 seen_exprs.add(simp_p)

208

209 return unique_polys

210

211

212 def _log_final_results(solutions):

213 """Prints the formatted final solutions to the console."""

214 print(f"--- Results ---")

215 for i, poly in enumerate(solutions):

216 print(f"Solution {i + 1}: q(x) = {poly}")

217

218

219 def _solve_affine_square_roots(points , k):

220 """

221 Main driver: Orchestrates the search for affine square roots.

222 1. Configures shift limits.

223 2. searches for candidates.

224 3. Deduplicates and logs results.

225 """

226 print(f"--- Configuration: Points ={len(points)}, k={k} ---")

227

228 shift = _calculate_shift(points)

229 if shift is None:

230 solutions = [0]

231 print(f"No shift: it is the zero polynomial")

232 else:

233 solutions = _solve_core(points , k, shift=shift)

234 print(f"Shift {shift }: Found {len(solutions)} solutions")

235

236 unique_solutions = _deduplicate_solutions(solutions)

237 _log_final_results(unique_solutions)

238

239 return unique_solutions

24



240

241

242 def phaseless_interpolation(points , k):

243 squared_points = [(x, y**2) for x, y in points]

244 return _solve_affine_square_roots(squared_points , k)

245

246

247 if __name__ == "__main__":

248 # Test Case 1: y = x

249 print("Test Case 1: y = x")

250 points1 = [(0, 0), (1, -1), (2, 2)]

251 res1 = phaseless_interpolation(points1 , k=0)

252 print("\n")

253

254 # Test Case 2: y = (x+1)

255 print("Test Case 2: y = (x+1)")

256 points2 = [(0, 1), (1, -2), (2, 3)]

257 res2 = phaseless_interpolation(points2 , k=0)

258 print("\n")

259

260 # Test Case 3: y = (x+1)^2

261 print("Test Case 3: y = (x+1)^2, k=1, but wrong evaluation at x=-2")

262 points3 = [(-2, 9), (0, 1), (1, 4), (2, 9)]

263 res3 = phaseless_interpolation(points3 , k=1)

264 print("\n")

265

266 # Test Case 4: Higher degree

267 print("Test Case 4: y = x^5 - 6x^4 + 5x^3 + 4x^2 - 3x + 2 from 10

points")

268 points4 = [(1, 3), (2, 12), (3, 79), (4, 138), (5, 87), (6, 1208) , (-1,

3), (-2, 144), (-3, 817), (0, 2)]

269 res4 = phaseless_interpolation(points4 , k=1)

270

271 # Test Case 5: Higher degree , higher degree of freedom

272 print("Test Case 5: y = x^5 - 6x^4 + 5x^3 + 4x^2 - 3x + 2 from 9 points

")

273 points5 = [(1, 3), (2, 12), (3, 79), (4, 138), (5, 87), (6, 1208) , (-1,

3), (-2, 144), (-3, 817)]

274 res5 = phaseless_interpolation(points5 , k=2)

275

276 # Test Case 6: Higher degree , higher degree of freedom

277 print("Test Case 5: y = x^5 - 6x^4 + 5x^3 + 4x^2 - 3x + 2 from 8 points

")

278 points6 = [(1, 3), (2, 12), (3, 79), (4, 138), (5, 87), (-1, 3), (-2,

144), (0, 2)]

279 res6 = phaseless_interpolation(points6 , k=3)

References

[1] Becker, T., and Weispfenning, V. Gröbner bases. In Gröbner Bases: A Computational
Approach to Commutative Algebra. Springer, 1993, pp. 187–242.

[2] Buhrman, H., and De Wolf, R. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science 288, 1 (2002), 21–43.

[3] Cox, D., Little, J., O’shea, D., and Sweedler, M. Ideals, varieties, and algorithms.
Springer, 1997.

[4] Cox, D. A., Little, J., and O’shea, D. Using algebraic geometry. Springer, 1998.

25



[5] Jaganathan, K., Eldar, Y. C., and Hassibi, B. Phase retrieval: An overview of recent
developments. Optical compressive imaging (2016), 279–312.

[6] Lenstra, A., Lenstra, H., and Lovász, L. Factoring polynomials with rational coeffi-
cients. Math. ann 261, 4 (1982), 515–534.

[7] Plaskota, L. Noisy information and computational complexity. Cambridge University
Press, 1996.

[8] Plaskota, L., Siedlecki, P., and Woźniakowski, H. Absolute value information for
IBC problems. Journal of Complexity, submitted for publication (2019).

[9] Przyby lek, M. R., and Siedlecki, P. A note on the complexity of a phaseless polynomial
interpolation. Journal of Complexity 58 (2020), 101456.

[10] Traub, J. F., Wasilkowski, G. W., and Woźniakowski, H. Information-based Com-
plexity. Academic Press Professional, Inc., San Diego, CA, USA, 1988.

26


