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Abstract
The authors of [22] showed that a constraint satisfaction

problem (CSP) defined over rational numbers with their nat-

ural ordering has a solution if and only if it has a definable

solution. Their proof uses advanced results from topology

and modern model theory. The aim of this paper is threefold.

(1) We give a simple purely-logical proof of their theorem

and show that the advanced results from topology and model

theory are not needed; (2) we introduce an intrinsic char-

acterisation of the statement “definable CSP has a solution

iff it has a definable solution” and investigate it in general

intuitionistic set theories (3) we show that the results from

modern model theory are indeed needed, but for the implica-

tion reversed: we prove that “definable CSP has a solution iff

it has a definable solution” holds over a countable structure

if and only if the automorphism group of the structure is

extremely amenable.

CCS Concepts • Theory of computation� Constraint
and logic programming;

Keywords set theory with atoms, intuitionistic set theory,

constraint satisfaction problem, Ramsey property, extremely

amenable group, Boolean prime ideal theorem

1 Introduction
In 1964 James D. Halpern [14] by using some combinato-

rial properties of the ordered Fraenkel-Mostowski model of

set theory with atoms solved a long-standing open prob-

lem about independence of the Axiom of Choice from the

Boolean Prime Ideal Theorem. In 2015 Bartek Klin, Eryk

Kopczynski, Joanna Ochremiak, and Szymon Torunczyk [22]

by using advanced results from topology and modern model

theory, proved that in the ordered Fraenkel-Mostowskimodel

of set theory with atoms an equivariant (constrained
1
) lo-

cally finite constraint satisfaction problem has a solution if

and only if it has an equivariant solution. In this paper we

prove that these two results are essentially the same, and, in

fact, equivalent to many other well-known axioms/theorems

of Boolean Set Theories. The assertion of Booleaness of the

Set Theory (i.e. that the law of excluded middle holds inside
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the theory) is crucial for our proof, as one can find coun-

terexamples to the claim in Intuitionistic Set Theories.

These highly-theoretical results are of a great practical

interest. Very many real-world decision problems of high

computational complexity can be abstractly specified as the

classical constraint satisfaction problems (CSP): hardware

verification and diagnosis: [9], [12], automated planning and

scheduling [10], [11], temporal and spatial reasoning [31],

[7], air traffic managment [1], to name a few. Such problems

are inherently finite. Although their computational cost is

high (i.e. the problems are usualy NP-hard), they can be

solved in a finite time by a machine
2
. This is in contrast with

problems concerning behaviours of autonomous systems,

where the classical variant of CSP is too restrictive. Such

problems can be naturally specified as CSP with infinite sets

of variables (corresponding to the states of a system) and

infinite sets of constraints (corresponding to the transitions

between the states of a system). These problems are, in gen-

eral, undecidable — no machine can solve them in a finite

time. In fact, depending on the choice of the specification lan-

guage, such problems may be very high in the undecidability

hierarchy. For example, if we consider problems definable

in the First-Order theory of natural numbers, then every

problem from the arithmetical hierarchy can be expressed as

a definable CSP. Up until recently, we had known very little

about methods that can be used to solve infinite CSP. The

first breakthought was at the begining of the century (see

[8] and also a survey article [6]), where researches applied

algebraic and model-theoretic tools to analyze CSP over, so

called, infinite templates. This research inspired the Warsaw

Logical Group to investigate locally finite CSP — i.e. infinite

CSP whose constraints are finite relations (see [22] and [27]).

They found that a locally finite CSP defined in the theory of

rational numbers with their natural ordering can be solved

effectively.

Example 1.1 (Finite memory machine). An important type
of autonomyous systems has been defined by Kaminski, Michael
and Francez [20]. The authors called these type of systems “fi-
nite memory machines”, or “register machines”. A finite mem-
ory machine is a finite automaton augmented with a finite
number of registers 𝑅𝑖 that can store natural numbers. The
movement of the machine can depend on the control state, on
the letter and on the content of the registers. The dependency on

2
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Figure 1. A non-deterministic machine with two registers

and a single control state 𝑆 .
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Figure 2.A finite counterexample to 3-colorability of infinite

Kneser graph.

the content of the registers is, however, limited — the machine
can only test for equality (no formulas involving successor,
addition, multiplication, etc. are allowed).
Figure 1 shows a 2-register machine with a single control

state 𝑆 . This machine starts with a given content of the registers
𝑅1 and 𝑅2 and then at every step non-deterministically chooses
a register 𝑅𝑖 and a natural number 𝑛 such that 𝑛 ≠ 𝑅𝑖 . Value 𝑛
is then stored in register 𝑅𝑖 , whilst register 𝑅1−𝑖 gets the value
previously stored in 𝑅𝑖 .
Observe that in contrast to finite automata, the graph of

possible configurations in the machine from Figure 1 is infinite.
If we run the machine with 𝑅𝑖 B 𝑖 , then its states𝑉 (i.e. single
control state 𝑆 together with the content of the registers) will
span an infinite graph G = ⟨𝑉 , 𝐸⟩ with edges 𝐸 induced by the
movements of the machine:

𝑉 = {(𝑆, 𝑛,𝑚) : 𝑛 ∈ 𝑅1,𝑚 ∈ 𝑅2}
𝐸 = {((𝑆, 𝑛,𝑚), (𝑆, 𝑛′,𝑚′)) ∈ 𝑉 ×𝑉 : (𝑛 =𝑚′ ∧𝑚 ≠ 𝑛′)

∨ (𝑛 ≠𝑚′ ∧𝑚 = 𝑛′)}

This graph is known as infinite Kneser graph [22]. An example
of a (constrained) locally finite CSP problem is the question
whether a graph like G is 3-colorable. By the compactness
of the first-order logic G is 3-colorable if and only if every
finite subgraph of G is 3-colorable. Figure 2 exhibits an ex-
ample of a finite subgraph of G which cannot be colored by
three colors {red, green, blue}. Theorem 19 in [22] implies that
3-colourability of any graph generated by finite memory ma-
chines can be solved effectively.
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Figure 3. A register machine that models access control to

some parts of the system.

Example 1.2 (Access-control register machine). Continuing
Example 1.1, Figure 3 presents an example of a finite memory
machine with one register 𝑅, whose task is to model access
control to the red part of the system. The machine starts in
control state “SET PASW”, where it awaits for the user to pro-
vide a password 𝑥 . This password is then stored in register 𝑅,
and the machine enters control state “START”. Inside the blue
rectangle the machine can perform actions that do not require
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authentication, whereas the actions that require authentication
are presented inside the red rectangle. The red rectangle can
be entered by the control state “GRANT AUTH”, which can be
accessed from one of three authentication states. In order to
authorise, the machine moves to control state “AUTH TRY 1”,
where it gets input 𝑥 from the user. If the input is the same
as the value previously stored in register 𝑅, then the machine
enters control state “GRANT AUTH”. Otherwise, it moves to
control state “AUTH TRY 2” and repeats the procedure. Upon
second unsuccessful authorisation, the machine moves to con-
trol state “AUTH TRY 3”. But if the user provides a wrong
password when the machine is in control state “AUTH TRY 3”,
the register 𝑅 is erased (replaced with a value that is outside of
the user’s alphabet) — preventing the machine to reach any of
the control states from the red rectangle. Inside the red rectan-
gle any action that requires authentication can be performed.
For example, the user may request the change of the password.
Example of problems that we may like to ask, which can be
solved effectively:

• is possible to change the password in the system without
exiting the blue zone?
• is it true that from every state from a blue zone we
can enter a state in a red zone and move back (without
changing the password)?
• is every control state in the system reachable with any
content of the register?

The main theoretical tool of the work on locally finite CSP

is Theorem 17 in [22], which says that a (constrained) locally

finite CSP defined in the theory of rational numbers with

their natural ordering has a solution if and only if it has a

definable solution. Because definable solutions over rational

numbers admit exhaustive search, these CSP problems can

be solved effectively. As the authors remarks (Remark 20

in [22]) their Theorem 17 can be generalised to any (decid-

able) relational structure with the following two properties

(see Section 2 for the explanation): (a) the structure is 𝜔-

categorical and (b) the automorphism group of the structure

is extremely amenable. It has been further observed in [23]

(an explicit reduction is given in Section 4) that definable

CSP (in a finite signature) can be effectively reduced to defin-

able CSP over finite domain. For this reason, without loss of

generality, we shall focus on CSP over finite domains. Note,

however, that the proofs of our Lemma 3.3 also works for a

slightly more general setting of locally finite CSP.

Example 1.3 (Rational numbers with ordering). Let Q =

⟨𝑄, ≤⟩ be the structure whose universe is interpreted as the set
of rational numbers𝑄 with a single binary relation ≤ ⊆ 𝑄 ×𝑄
interpreted as the natural ordering of rational numbers. Then
the first order theory of Q is 𝜔-categorical, i.e. there is exactly
one countable model of the theory up to an isomorphism. More-
over, the topological group of automorphism Aut (Q) (with

Tychonoff topology) is extremely amenable3 by the main theo-
rem in [28].

Example 1.4 (Rational numbers with finitely many con-

stants). Let Q ⊔𝑄0 be the structure from Example 1.3 over an
extended signature consisting of all constants 𝑞 ∈ 𝑄0 for some
finite 𝑄0 ⊆ 𝑄 . Like in the previous example, the first order
theory of Q ⊔𝑄0 is 𝜔-categorical and the topological group of
automorphisms Aut (Q ⊔𝑄0) is extremely amenable.

Example 1.5 (Ordered vector space). Let 𝐻𝐹 be the free ℵ0-
dimensional vector space over a finite field 𝐹 . By definition 𝐻
has a base that can be enumerated by any countable set. There-
fore, we can assume that there is a base ⟨𝛼𝑞⟩𝑞∈Q enumerated
by rational numbers4 𝑞 ∈ Q. In fact we can give an explicit
description of space 𝐻𝐹 with its standard base as follows. Let
us identify 𝐻𝐹 with a subspace of 𝐹𝑄 consisting of functions
that have finite support — i.e. functions 𝑣 : 𝑄 → 𝐹 with the
property that the set {𝑞 ∈ 𝑄 : 𝑣 (𝑞) ≠ 0} is finite. The standard
base ⟨𝛼𝑞⟩𝑞∈Q for 𝐻𝐹 consists of unit-mass functions:

𝛼𝑞 (𝑟 ) =
{
1 if 𝑞 = 𝑟

0 otherwise

Observe, that for any vector 𝑣 ∈ 𝐻𝐹 the evaluation 𝑣 (𝑞) ∈ 𝐹
is the 𝑞-th coordinate of 𝑣 according to the standard base. Let us
choose any linear ordering ≤𝐹 ⊆ 𝐹 × 𝐹 of the field 𝐹 such that
0 ∈ 𝐹 is the least element in this ordering – i.e. ∀𝑟 ∈𝐹 0 ≤𝐹 𝑟 .
The ordering of 𝐹 can be extended along the standard base to
a linear ordering of 𝐻𝐹 in the following way. Consider a pair
of distinct vectors 𝑣 ≠ 𝑤 ∈ 𝐻𝐹 define the set 𝐷 (𝑣,𝑤) = {𝑞 ∈
Q : 𝑤 (𝑞) ≠ 𝑣 (𝑞)} of distinct coordinates between 𝑣 and 𝑤 .
By the definition of the base, 𝐷 (𝑣,𝑤) is finite (because every
vector has only finitely many non-zero coordinates in any
base) and non-empty (because 𝑣 and 𝑤 are distinct), thus it
contains the largest element𝑚 ∈ 𝐷 (𝑣,𝑤). We shall set 𝑣 < 𝑤
if 𝑣 (𝑚) < 𝑤 (𝑚) and for general 𝑣,𝑤 ∈ 𝐻𝐹 define 𝑣 ≤ 𝑤 on
𝐻𝐹 as 𝑣 = 𝑤 ∨ 𝑣 < 𝑤 .

Consider the structureH𝐹 = ⟨𝐻𝐹 , +, (−)𝑟, ≤⟩, with universe
𝐻𝐹 , relation ≤ ⊆ 𝐻𝐹 × 𝐻𝐹 defined above, binary operation
+ : 𝐻𝐹 ×𝐻𝐹 → 𝐻𝐹 interpreted as the addition of vectors, and
for each scalar 𝑟 ∈ 𝐹 an unary operation (−)𝑟 : 𝐻𝐹 → 𝐻𝐹

interpreted as the multiplication 𝑣𝑟 of vectors 𝑣 ∈ 𝐻𝐹 with
scalar 𝑟 . We shall call this structure the ordered vector space
over field 𝐹 .
The first order theory Th(H𝐹 ) of H𝐹 is 𝜔-categorical and

the topological group of automorphisms Aut (H𝐹 ) is extremely
amenable (see [21]).

3
See Section 2 Definition 2.3.

4
A careful reader may wonder why we have indexed the base with rational

numbers instead of, say, natural numbers. The reason is that we need a dense

ordering on base vectors, and this can be canonically induced by the ordering

of the rational numbers. If we used the ordering of the natural numbers, we

would get a non-dense ordering on base vectors, and the resulting structure

would not have been 𝜔-categorical, nor its automorphism group would be

extremely amenable.
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Algorithm 1 K-colorability

procedure is-k-colorable?(⟨𝑉 , 𝐸⟩, 𝑘)
𝐾 ← {1, 2, . . . , 𝑘}
𝐶 ← 𝑉 × 𝐾
for 𝐹 ⊆ 𝐶 do

if isValid(𝐹, 𝐸) then return ⊤
return ⊥

procedure isValid(𝐹, 𝐸)
for 𝑥 ∈ 𝑉 do

if 𝐹 [𝑥] = ∅ then return ⊥
for 𝑦 ∈ 𝐸 [𝑥] do

if 𝐹 [𝑥] ∩ 𝐹 [𝑦] ≠ ∅ then return ⊥
return ⊤

Example 1.6 (Pure sets). Let N = {0, 1, 2, . . . } be a count-
ably infinite set over empty signature Ξ. Then the first order
theory ofN is 𝜔-categorical, i.e. there is exactly one countable
model of the theory up to an isomorphism. This theory is called
the theory of “pure sets”. Although the automorphism group
S∞ = Aut (N) of N is not extremely amenable, N is a reduct
of Q = ⟨𝑄, ≤⟩ (just drop the comparison relation). Therefore
every specification in the theory of pure sets can be treated as a
specification in the theory of rational numbers with inequality.

In the language of set theory with atoms, definable sets

correspond to equivariant sets of finitary type (i.e. equivari-

ant sets that are hereditarily of a finite support, a concept

that will be explained in Section 2). Moreover, a careful in-

spection of Theorem 17 reveals that the assumption that

the sets are of a finitary type is not needed for the proof

(it is needed in Theorem 19). Therefore, Theorem 17 can

be restated as follows: “in the ordered Fraenkel-Mostowski

model of set theory with atoms a (constrained, locally finite)

equivariant constraint satisfaction problem has a solution if

and only if it has an equivariant solution”.

Algorithm 1 gives a method to solve the 3-colouring prob-

lem over 𝜔-categorical structures whose group of automor-

phism is extremely amenable. The algorithm takes for its

input an equivariant definable graph consisting of nodes

𝑉 and edges 𝐸, and a number of 𝑘 colors. Then for every

equivariant definable relation 𝐶 : 𝑉 −↦−→ 𝐾 the algorithm tests

if𝐶 is functional and satisfy the colouring constraints. Upon

a positive test the algorithm returns ⊤. If no relation tests

positively, the algorithm returns ⊥. The assumption of 𝜔-

categoricity of the structure is crucial for the effectiveness

of the for loops — because𝑉 is definable and 𝑘 is finite, there

are only finitely many equivariant definable subsets of𝑉 ×𝐾 .
On the other hand, the assumption that the automorphism

group is extremely amenable allows us to restrict to definable

colourings only.

The above considerations beget question about necessity

of properties (a) and (b) for the effectiveness of the algo-

rithms. The case of 𝜔-categoricity has been studied in the

detail in [29]. Theorem 2.5 in [29] shows that we cannot drop

the assumption of 𝜔-categoricity without sacrificing effec-

tiveness of computations. Moreover, for non-𝜔-categorical

structures we lose the correspondence between definable sets

in set theories with atoms and sets definable in the structures

(also see [29]). The case of extremal amenability is studied

in this paper. Although we will not show that effectiveness

of algorithms to CSP is equivalent to extremal amenability

of the group of automorphism of the structure (what is, ob-

viously, not true), it will turn out that it is equivalent to the

effectiveness of the natural algorithms like Algorithm 1.

One may also wonder, what would happen if we did not

restrict specification languages to complete first-order theo-

ries (i.e. to theories of algebraic structures). In the context

of effectiveness of the algorithms, non-complete first-order

theories (and, generally, they positiv-existential fragments)

are studied in [29]. Such theories either have finitely many

completions, in which case working inside the theory is

equivalent to working in finitely many completions of the

theory, or are classified by Intuitionistic Set Theories. As we

shall see later, CSP problems in Intuitionistic Set Theories

are very subtle and require different tools to analyse.

The structure of the paper is as follows. In the next sec-

tion we recall some notations and results from set theory

and model theory, which are necessary to understand our

theorems from Section 3. In Section 3 we reformulate the

property “symmetric CSP over finite domain has a solution

iff it has a symmetric solution” as an intrinsic property of a

topos and call it Axiom CSP. Then, we show that in Boolean

toposes Axiom CSP is actually equivalent to BPIT. In particu-

lar, for every set of atoms A we have that ZFA(A) satisfies
Axiom CSP if and only if it satisfies BPIT (Theorem 3.4). We

also show that “symmetric CSP over finite domain has a

solution iff it has an symmetric solution” is equivalent to

a weaker axiom: “definable CSP over finite domain has a

solution iff it has a definable solution”. There is, however,

one caveat: for the effectivenes of computations we need a

slightly stronger property: “𝐴0-equivariant definable CSP

over finite domain has a solution iff it has an 𝐴0-equivariant

definable solution”. Because equivariance is not an intrinsic

property of ZFA(A), therefore we have to assert Axiom CSP

in every Cont(Aut (A ⊔ A0)), and then by the transfer prin-

ciple (see [30]) recover the desired property in ZFA(A)
(Theorem 3.8). In Section 4 we investigate Axiom CSP in

non-Boolean toposes pointing out many obstacles to the

equivalence between Boolean prime ideal theorem and pos-

sible formulations of Axiom CSP. We conclude the paper in

Section 5.

2 Set Theories with Atoms
Let A be an algebraic structure (both operations and re-

lations are allowed) with universum 𝐴. We shall think of

elements of A as “atoms”. A von Neumann-like hierarchy

4
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𝑉𝛼 (A) of sets with atoms A can be defined by transfinite

induction [26], [13]:

• 𝑉0 (A) = 𝐴
• 𝑉𝛼+1 (A) = P(𝑉𝛼 (A)) ∪𝑉𝛼 (A)
• 𝑉_ (A) =

⋃
𝛼<_𝑉𝛼 (A) if _ is a limit ordinal

Then the cumulative hierarchy of sets with atoms A is just

𝑉 (A) = ⋃
𝛼 : Ord 𝑉𝛼 (A). Observe, that the universe 𝑉 (A)

carries a natural action (•) : Aut (A) × 𝑉 (A) → 𝑉 (A) of
the automorphism group Aut (A) of structure A — it is just

applied pointwise to the atoms of a set. If 𝑋 ∈ 𝑉 (A) is a set
with atoms then by its set-wise stabiliser we shall mean the

set: Aut (A)𝑋 = {𝜋 ∈ Aut (A) : 𝜋 •𝑋 = 𝑋 }; and by its point-
wise stabiliser the set: Aut (A) (𝑋 ) = {𝜋 ∈ Aut (A) : ∀𝑥 ∈𝑋𝜋 •
𝑥 = 𝑥}. Moreover, for every 𝑋 , these sets inherit a group

structure from Aut (A).
There is an important sub-hierarchy of the cumulative hi-

erarchy of sets with atoms A, which consists of “symmetric

sets” only. To define this hierarchy, we have to equipAut (A)
with the structure of a topological group. A set 𝑋 ∈ 𝑉 (A) is
symmetric if the set-wise stabilisers of all of its descendants
𝑌 is an open set (an open subgroup of Aut (A)), i.e. for every
𝑌 ∈∗ 𝑋 we have that: Aut (A)𝑌 is open in Aut (A), where ∈∗
is the reflexive-transitive closure of the membership relation

∈. A function between symmetric sets is called symmetric

if its graph is a symmetric set. Of a special interest is the

topology on Aut (A) inherited from the product topology on∏
𝐴𝐴 = 𝐴𝐴

(i.e. the Tychonoff topology). We shall call this

topology the canonical topology onAut (A). In this topology,
a subgroup H of Aut (A) is open if there is a finite 𝐴0 ⊆ 𝐴
such that: Aut (A) (𝐴0) ⊆ H, i.e.: group H contains a point-

wise stabiliser of some finite set of atoms. The sub-hierarchy

of 𝑉 (A) that consists of symmetric sets according to the

canonical topology on Aut (A) will be denoted by ZFA(A)
(it is a model of Zermelo-Fraenkel set theory with atoms).

Remark 2.1. The above definition of hierarchy of symmetric
sets is equivalent to another one used in model theory. By a
normal filter of subgroups of a group G we shall understand a
filter F on the poset of subgroups ofG closet under conjugation,
i.e. if𝑔 ∈ G andH ∈ F then𝑔H𝑔−1 = {𝑔•ℎ•𝑔−1 : ℎ ∈ H} ∈ F .
Let F be a normal filter of subgroups of Aut (A). We say that
a set 𝑋 ∈ 𝑉 (A) is F -symmetric if the set-wise stabilisers of
all of its descendants 𝑌 belong to F — i.e. 𝑌 ∈∗ F . To see
that the definitions of symmetric sets and F -symmetric sets
are equivalent, observe first that if G is a topological group,
then the set F of all open subgroups of G is a normal filter
of subgroups. In the other direction, if F is a normal filter of
subgroups of a group G, then we may define a topology on G
by declaring sets𝑈 ⊆ G to be open if they satisfy the following
property: for every𝑔 ∈ 𝑈 there existsH ∈ F such that𝑔H ⊆ 𝑈 .
According to this topology a group U is open iff U ∈ F — just
observe that for every group U and for every 𝑔 ∈ U we have
that 𝑔U = U; and if H ∈ F such that H = 1H ⊆ U then by
the property of the filter, U ∈ F .

Example 2.1 (The basic Fraenkel-Mostowski model). LetN
be the structure from Example 1.6. We call ZFA(N) the basic
Fraenkel-Mostowski model of set theory with atoms. Observe
that Aut (N) is the group of all bijections (permutations) on
𝑁 . The following are examples of sets in ZFA(N):
• all sets without atoms, e.g. ∅, {∅}, {∅, {∅}, . . . }, . . .
• all finite subsets of 𝑁 , e.g. {0}, {0, 1, 2, 3}, . . .
• all cofinite subsets of𝑁 , e.g. {1, 2, 3, . . . }, {4, 5, 6, . . . }, . . .
• 𝑁 × 𝑁
• {⟨𝑎, 𝑏⟩ ∈ 𝑁 2

: 𝑎 ≠ 𝑏}
• 𝑁 ∗ = ⋃

𝑘∈𝑁 𝑁
𝑘

• K(𝑁 ) = {𝑁0 : 𝑁0 ⊆ 𝑁, 𝑁0 is finite}
• P𝑠 (𝑁 ) = {𝑁0 : 𝑁0 ⊆ 𝑁, 𝑁0 is symmetric}

Here are examples of sets in 𝑉 (N) which are not symmetric:
• {0, 2, 4, 6, . . . }
• {⟨𝑛,𝑚⟩ ∈ 𝑁 2

: 𝑛 ≤ 𝑚}
• the set of all functions from 𝑁 to 𝑁
• P(𝑁 ) = {𝑁0 : 𝑁0 ⊆ 𝑁 }

Example 2.2 (The ordered Fraenkel-Mostowski model). Let
Q be the structure from Example 1.3. We call ZFA(Q) the
ordered Fraenkel-Mostowski model of set theory with atoms.
Observe that Aut (Q) is the group of all order-preserving bijec-
tions on𝑄 . All symmetric sets from Example 2.1 are symmetric
sets in ZFA(Q) when𝑁 is replaced by𝑄 . Here are some further
symmetric sets:
• {⟨𝑝, 𝑞⟩ ∈ 𝑄2

: 𝑝 ≤ 𝑞}
• {⟨𝑝, 𝑞⟩ ∈ 𝑄2

: 0 ≤ 𝑝 ≤ 𝑞 ≤ 1}

Example 2.3 (The second Fraenkel-Mostowski model). Let
S = ⟨𝑍 ∗,−, ( |−|𝑛)𝑛∈𝑁 ⟩ be the structure of non-zero integer
numbers, with unary “minus” operation (−) : 𝑍 ∗ → 𝑍 ∗ and
with unary relations |−|𝑛 ⊆ 𝑍 ∗ defined in the following way:
|𝑧 |𝑛 ⇔ |𝑧 | = 𝑛. We callZFA(𝑍 ∗) the second Fraenkel-Mostowski
model of set theory with atoms. Observe that Aut (Z∗) ≈ Z𝑁

2
,

therefore the following sets are symmetric in ZFA(𝑍 ∗):
• {. . . ,−6,−4,−2, 2, 4, 6, . . . }
• {⟨𝑥,𝑦⟩ ∈ 𝑍 ∗ × 𝑍 ∗ : 𝑥 = 3𝑦}

Observe that the group Aut (A) (𝐴0) is actually the group

of automorphism of structure A extended with constants

𝐴0, i.e.: Aut (A) (𝐴0) = Aut (A ⊔ 𝐴0). Then a set 𝑋 ∈ 𝑉 (A)
is symmetric if and only if there is a finite 𝐴0 ∈ 𝐴 such that

Aut (A ⊔𝐴0) ⊆ Aut (A)𝑋 and the canonical action of topo-

logical group Aut (A⊔𝐴0) on discrete set𝑋 is continuous. A

symmetric set is called𝐴0-equivariant (or equivariant in case

𝐴0 = ∅) if Aut (A ⊔ 𝐴0) ⊆ Aut (A)𝑋 . Therefore, the (non-
full) subcategory of ZFA(A) on 𝐴0-equivariant sets and 𝐴0-

equivariant functions (i.e. functions whose graphs are 𝐴0-

equivariant) is equivalent to the categoryCont(Aut (A ⊔ A0)) ⊆
SetAut (A⊔A0)

of continuous actions of the topological group

Aut (A ⊔𝐴0) on discrete sets.

Example 2.4 (Equivariant sets). In the basic Fraenkel-Mostowski
model:

5
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• all sets without atoms are equivariant
• all finite subsets 𝑁0 ⊆ 𝑁 are 𝑁0-equivariant
• all finite subsets 𝑁0 ⊆ 𝑁 are (𝑁 \ 𝑁0)-equivariant
• 𝑁 × 𝑁, 𝑁 (2) ,K(𝑁 ),P𝑆 (𝑁 ) are equivariant

Definition 2.1 (Definable set). We shall say that an 𝐴0-
equivariant set 𝑋 ∈ ZFA(A) is definable if its canonical ac-
tion has only finitely many orbits, i.e. if the relation 𝑥 ≡ 𝑦 ⇔
∃𝜋 ∈Aut (A⊔A0) 𝑥 = 𝜋 •𝑦 has finitely many equivalence classes.

For an open subgroupH ofAut (A) let us denote byAut (A)/H
the quotient set {𝜋H : 𝜋 ∈ Aut (A)}. This set carries a nat-
ural continuous action of Aut (A), i.e. for 𝜎, 𝜋 ∈ Aut (A),
we have 𝜎 • 𝜋H = (𝜎 ◦ 𝜋)H. All transitive (i.e. single or-

bit) actions of Aut (A) on discrete sets are essentialy of this

form (see for example Chapter III, Section 9 of [24]). There-

fore, equivariant definable sets are essentially finite unions

of sets of the form Aut (A)/H. Moreover, if structure A is

𝜔-categorical (Example 2.1, Example 2.2, but not 2.3), then

equivariant definable sets are the same as sets definable in

the first order theory of A extended with elimination of

imaginaries [30].

The Boolean Prime Ideal Theorem (BPIT) states that every

ideal in a Boolean algebra can be extended to a prime ideal

(we shall recall the definitions in Section 3). It is a routine

to check that BPIT follows from the Axiom of Choice [18],

[17]. On the other hand, it was a long-standing open problem

whether the reverse implication holds as well. In 1964 James

D. Halpern [14] used the model of ZFA over the rational

numbers with the canonical ordering (nowadays called or-

dered Fraenkel-Mostowski model ZFA(Q)) to prove that the
Axiom of Choice is not a consequence of BPIT in a set the-

ory with atoms — i.e, he showd that in ZFA(Q) the Axiom
of Choice fails badly, but BPIT holds. This result was later

amplified in [15] to give the first proof that the Axiom of

Choice is not a consequence of BPIT in ZF (without atoms).

A literal formulation of the abovementioned result is as

follows. Let B be a Boolean algebra such that 𝐵 is symmetric

and all Boolean algebra operations are symmetric inZFA(Q),
then B has a symmetric ideal in ZFA(Q). However, the main

Theorem in Section 4 from [14] says much more.

Theorem 2.1 (BPIT in ZFA(Q) (1964, James D. Halpern

[14])). LetB be a Boolean algebra such that𝐵 is𝑄0-equivariant
and all Boolean algebra operations are𝑄0-equivariant inZFA(Q)
for some finite 𝑄0 ⊂ 𝑄 . Then B has an 𝑄0-equivariant prime
ideal.

In other words, James D. Halpern showed that for every fi-

nite𝑄0 ⊂ 𝑄 , BPIT holds in the Boolean toposCont(Aut (Q ⊔ Q0))
of continuous actions of the topological group Aut (Q ⊔𝑄0)
on discrete sets.

The key tool used in James D. Halpern’s proof is a com-

binatorial lemma about partitions of sets. It was later ob-

served that this lemma can be distilled to carry over James

D. Halpern’s proof from ZFA(Q) to ZFA(A) for any struc-

ture 𝐴 satisfying so-called Ramsey property [19], [4].

Definition 2.2 (Ramsey property). A structureA has a Ram-
sey property if for every open subgroup H of Aut (A), every
function 𝑓 : Aut (A)/H → {1, 2, . . . , 𝑘} and every finite set
𝐶 ⊆ Aut (A)/H there is 𝜋 ∈ Aut (A) such that 𝑓 is constant
on 𝑔 •𝐶 , i.e. there exists 0 ≤ 𝑖 ≤ 𝑘 such that for all 𝑐 ∈ 𝐶 we
have 𝑓 (𝜋 • 𝑐) = 𝑖 .

In 1984 Peter Johnstone [19] introduced a (seemingly)

stronger axiom than BPIT (but strictly weaker than AC) and

showed that it holds in ZFA(Q). He called the axiom Almost

Maximal Ideal Theorem (AMIT) and raised the question if

AMIT is strictly stronger than BPIT. This question was an-

swered negatively by Andreas Blass in 1986 — Theorem 1

of [4] states that BPIT implies (therefore, is equivalent to)

AMIT in ZF. In that paper Andreas Blass included a prelimi-

nary version of the theorem for set theories with atoms. As

a part of the theorem (i.e. Theorem 2 in [4]), he obtained the

following.

Theorem 2.2 (BPIT in ZFA(A) (1986, Andreas Blass [4])).
Let 𝐴 be an algebraic structure. Then 𝐴 has Ramsey property
if and only if for every finite 𝐴0 ⊂ 𝐴 every 𝐴0-equivariant
Boolean algebra has an𝐴0-equivariant prime ideal inZFA(A).

In 1970 Theodore Mitchell defined a certain fixed-point

property of a topological group (i.e. extremal amenability)

and asked if there exists a non-trivial example of such a

group [25].

Definition 2.3 (Extremely amenable group). A topologi-
cal group G is called extremely amenable if its every action
(•) : G × 𝑋 → 𝑋 on a non-empty compact Hausdorff space 𝑋
has a fixed point.

In 1975 Wojchiech Herer and Jens P. R. Christensen [16]

showed that there exists a non-trivial extremely amenable

group. Their construction was quite artificial raising a ques-

tion if there is any “natural” example of an extremely amenable

group. One answer to this question was provided in 1998 by

Vladimir Pestov [28].

Theorem2.3 (Extremal amenability (1998, Vladimir G. Pestov

[21])). The topological group of automorphisms Aut (Q) (with
Tychonoff topology) of the rational numbers with their natural
ordering 𝑄 is extremely amenable.

Perhaps the most celebrated result in topological dynamic

of recent years, was the theorem of Alexander S. Kechris,

Vladimir G. Pestov, and Stevo Todorcevic linking Ramsey

property with extremal amenability of automorphism groups

(Proposition 4.2 in [21]).

Theorem2.4 (Ramsey vs. extremal amenability (2005, Alexan-

der S. Kechris, Vladimir G. Pestov, and Stevo Todorcevic

[21])). Let 𝐴 be a single-sorted countable algebraic structure.
6
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Then 𝐴 has Ramsey property if and only if the topological
group of automorphisms Aut (A) (with Tychonoff topology) of
𝐴 is extremely amenable.

The importance of this characterisation theorem relies on

the fact that it is relatively easy to prove that a structure sat-

isfies Ramsey property (and we had known many examples

of structures satisfying Ramsey property), but the property

of extremal amenability is usually much harder and difficult

to prove (in fact, we had known very few examples of ex-

tremely amenable groups). Moreover, extremal amenability

is seemingly much more powerful than the Ramsey property.

For instance, in presence of Theorem 2.3 the groundbreaking

result of James D. Halpern becomes trivial: just observe that

the set of all homomorphism from a 𝑄0-equivariant Boolean

algebra the two-valued Boolean algebra 2 carries a compact

topology (the Tychonoff topology) and the natural action of

Aut (Q ⊔𝑄0) is continuous. It was first observed by Andreas

Blass in 2011 in [5] that Theorem 2.2 together with Theo-

rem 2.4 give another characterisation of set theories with

atoms that satisfy BPIT.

In 2015 Bartek Klin, Eryk Kopczynski, Joanna Ochremiak,

and Szymon Torunczyk (Theorem 17 in [22]) proved that in

the ordered Fraenkel-Mostowski model of set theory with

atoms a (constrained) definable equivariant locally finite

constraint satisfaction problem has a solution if and only if

it has an equivariant solution. To understand this result we

need to recall some definitions first.

Definition 2.4 (Constraint satisfaction problem). A con-
straint satisfaction problem (CSP) consists of a triple ⟨𝐷,𝑉 ,𝐶⟩,
where:
• 𝐷 is a set called the domain of the problem
• 𝑉 is the set of variables
• 𝐶 is a set of constraints of the form ⟨⟨𝑥1, 𝑥2, · · · , 𝑥𝑘⟩, 𝑅⟩,
where 𝑥𝑖 ∈ 𝑉 and 𝑅 ⊆ 𝐷𝑘

A solution to this problem is an assignment 𝑆 : 𝑉 → 𝐷 that sat-
isfies all constraints in 𝐶 , i.e.: for every ⟨⟨𝑥1, 𝑥2, · · · , 𝑥𝑘⟩, 𝑅⟩ ∈
𝐶 we have that 𝑅(𝑆 (𝑥1), 𝑆 (𝑥2), · · · , 𝑆 (𝑥𝑘 )) holds.
Remark 2.2. Every constraint satisfaction problem can be pre-
sented as a pair of relational structuresV ,D over a single rela-
tional signature Σ. This signature Σ consists of a pair ⟨𝑅, 𝑘⟩ for
every relation 𝑅 ⊆ 𝐷𝑘 from a constraint ⟨⟨𝑥1, 𝑥2, . . . , 𝑥𝑘⟩, 𝑅⟩ ∈
𝐶 . The interpretation of symbol 𝑅/𝑘 ∈ Σ inV is:

𝑅𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑘 ) ⇔ ⟨⟨𝑥1, 𝑥2, . . . , 𝑥𝑘⟩, 𝑅⟩ ∈ 𝐶
and the interpretation in D is the relation 𝑅 itself. Moreover,
a solution 𝑆 : 𝑉 → 𝐷 to the CSP becomes a homomorphism
fromV to D.

Definition 2.5 (Locally finite constraint satisfaction prob-

lem). A constraint satisfaction problem ⟨𝐷,𝑉 ,𝐶⟩ is locally
finite in ZFA(A) if:
• the domain 𝐷 of the problem is definable
• every relation 𝑅 in any constraint of 𝐶 is finite

• the set of variables 𝑉 is a definable set in ZFA(A)
• the set 𝐶 of constraints is a definable set in ZFA(A)

Furthermore, if 𝑉 , 𝐶 and 𝐷 are 𝐴0-equivariant, then we say
that the CSP is 𝐴0-equivariant.

For the validity of the next theorem, we need a simple

normalisation condition on locally finite CSP. Let us call a

CSP constrained if every element of𝑉 appears in at least one

constraint in 𝐶 .

Theorem 2.5 (Locally finite CSP over rational numbers

(2015, Bartek Klin, Eryk Kopczynski, Joanna Ochremiak, and

Szymon Torunczyk [22])). An equivariant constrained locally
finite CSP in ZFA(Q) has a solution if and only if it has an
equivariant definable solution in ZFA(Q).

Remark 20 of [22] allows us to extend this theorem in the

following way.

Theorem 2.6 (Locally finite CSP (2015, Bartek Klin, Eryk

Kopczynski, JoannaOchremiak, and SzymonTorunczyk [22])).
LetA be an algebraic structure whose group of automorphism
is extremely amenable. Then an 𝐴0-equivariant constrained
locally finite CSP in ZFA(A) has a solution if and only if it
has an 𝐴0-equivariant definable solution in ZFA(A).

As we mentioned in the introduction, we shall slightly re-

strict the setting to CSP over finite domains. This restriction

is rather technical, as it simplifies some part of the reasoning.

Note, however, that our Lemma 3.2 works for locally finite

CSP without any change to the proof. We use this sightly

restricted conclusion of Theorem 2.6 for our axiom.

Axiom 1 (defCSP). For every finite 𝑋 , an 𝑋 -equivariant de-
finable CSP over finite domain has a solution if and only if it
has an 𝑋 -equivariant definable solution.

We shall write ZFA(A) ⊨ defCSP to indicate that Ax-

iom defCSP holds in ZFA(A). Notice, however, that we can-
not compare the strength of Axiom defCSP to other axioms

in general set theories, because Axiom defCSP is not de-

scribed in the language of the set theory (without atoms).

The main result of this paper is to find an intrinsic char-

acterisation of this axiom suitable for the language of set

theory (Axiom CSP) and prove that over Boolean set theo-

ries it is equivalent to BPIT. To do this, we will first sharpen

Axiom defCSP by removing the definability requirement

(Axiom zfaCSP) and prove that over set theories with atoms

these two axioms are equivalent (Theorem 3.7).

Axiom 2 (zfaCSP). For every finite 𝑋 , an 𝑋 -equivariant CSP
over finite domain has a solution if and only if it has an 𝑋 -
equivariant solution.

Figure 4 summarizes all of the abovementioned results. On

the bottom side of the figure we have logical equivalences

proved in this paper (Theorem 3.4 and Theorem 3.7). In the

center (from the left) we have Theorem 2.5 and Theorem 2.1,

7
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which are special cases of Theorem 2.6 and Theorem 2.2

respectively. In the middle of the top of the diagram we have

Theorem 2.4. Finally, on the top-left part of the figure follows

from the instantiation of Axiom CSP in a topos of continu-

ous actions of a topological group (Example 3.1). Thanks to

this equivalences we can close the loop in the diagram (all

statements in the top part of the diagram are equivalent).

3 The axiom in Boolean toposes
In this section we will work in the internal language of a

Boolean topos. A reader who is not familiar with the notion

of the internal language of a topos may read the proofs

as taking place in any reasonable set theory
5
. We shall be

extra careful when defining set-theoretic concepts, such as

finiteness, or a prime ideal. Although, in Boolean toposes

many different definitions of such concepts coincide, this

would not be the case for non-Boolean toposes studied in

Section 4.

Definition 3.1 (Kuratowski finiteness). Let 𝐴 be a set. By
𝐾 (𝐴) we shall mean the sub-join-semilatice of the powerset
𝑃 (𝐴) generated by singletons and the empty set. A set 𝐴 is
Kuratowski-finite if it is the top element in 𝐾 (𝐴).

For the rest of this section we will just write “finite set”

for “Kuratowski-finite set”. The chief idea behind the above

definition is that since a non-empty finite set 𝐴 can be con-

structed from singletons by taking binary unions, we have a

certain induction principle. Let us assume that: (base of the

induction) 𝜙 holds for singletons, and (step of the induction)

whenever 𝜙 holds for 𝐴0 ⊆ 𝐴 and 𝐴1 ⊆ 𝐴 then 𝜙 holds for

𝐴0 ∪ 𝐴1, then (conclusion) 𝜙 holds for 𝐴. For example, we

can show that the Axiom of Choice internally holds for finite

sets.

Lemma 3.1 (Finite Axiom of Choice). In any Boolean topos
the Axiom of Choice holds for finite objects, i.e.: every surjection
𝑒 : 𝑋 → 𝑌 onto a finite set 𝑌 has a section 𝑠 : 𝑌 → 𝑋 , i.e.:
𝑒 ◦ 𝑠 = id𝑌 .

Proof. Let us assume that 𝑒 : 𝑋 → 𝑌 is a surjection. Then for

every finite 𝐷 , the function 𝑒𝐷 : 𝑋𝐷 → 𝑌𝐷
, where 𝑒𝐷 (ℎ) =

𝑒 ◦ ℎ, is also a surjection. This can be proven by induc-

tion over 𝐷 . If 𝐷 is the empty set, or a singleton, then the

claim clearly holds. Therefore, let us assume the claim holds

for finite 𝐷0, 𝐷1 and show that it also holds for 𝐷0 ∪ 𝐷1.

Since the topos is Boolean, without loss of generality, we

may assume that 𝐷0 and 𝐷1 are disjoint. By definition, the

function 𝑒𝐷0∪𝐷1
: 𝑋𝐷0∪𝐷1 → 𝑌𝐷0∪𝐷1

decomposes on dis-

joint 𝑒𝐷0
: 𝑋𝐷0 → 𝑌𝐷0

and 𝑒𝐷1
: 𝑋𝐷1 → 𝑌𝐷1

with 𝑒𝐷0∪𝐷1 =

𝑒𝐷0 × 𝑒𝐷1
. Because the Cartesian product of two surjec-

tions is a surjection, we may infer that 𝑒𝐷0∪𝐷1
is a surjec-

tion, what completes the step of the induction. Therefore,

5
This should be understood covariantly — our reasoning must be valid in

any reasonable set theory.

if 𝑒 : 𝑋 → 𝑌 is a surjection then for every finite 𝐷 we have

that 𝑒𝐷 : 𝑋𝐷 → 𝑌𝐷
is a surjection. By setting 𝐷 = 𝑌 , we

obtain that 𝑒𝑌 : 𝑋𝑌 → 𝑌𝑌
is a surjection, and so for every

𝑖 ∈ 𝑌𝑌
there exists ℎ ∈ 𝑋𝑌

such that 𝑒𝑌 (ℎ) = 𝑖 . In particular,

for id𝑌 ∈ 𝑌𝑌
there exists 𝑠 ∈ 𝑋𝑌

such that 𝑒𝑌 (𝑠) = id𝑌 . But,
𝑒𝑌 (𝑠) = 𝑒 ◦ 𝑠 , what completes the proof. □

Definition 3.2 (Finitary relation). For sets 𝐴, 𝐵 we shall call
𝐾 (𝐴 × 𝐵) ⊆ 𝑃 (𝐴 × 𝐵) the set of finitary relations from 𝐴 to 𝐵.
A finitary relation 𝑅 is a partial function if it is single-valued,
i.e. the following holds: 𝑅(𝑎, 𝑏) ∧ 𝑅(𝑎, 𝑏 ′) ⊢ 𝑏 = 𝑏 ′. We will
denote the set of finitary partial functions from 𝐴 to 𝐵 by 𝐵𝐴.

In a Boolean topos a subset of a finite set is finite, therefore

if 𝐴 and 𝐵 are finite, then a finitary relation from 𝐴 to 𝐵 is

just a relation from𝐴 to 𝐵. In particular, there is a morphism

𝛾0 : 𝐾 (𝐴 × 𝐵) → 𝐾 (𝐴) that assigns to a finitary relation

𝑟 ∈ 𝐾 (𝐴 × 𝐵) its domain 𝛾0 (𝑟 ) ∈ 𝐾 (𝐴) ⊆ 𝑃 (𝐴).

Definition 3.3 (Jointly-total relations). For sets𝐴, 𝐵, we shall
say that a subset 𝑆 ⊆ 𝐾 (𝐴 × 𝐵) of finitary relations from 𝐴 to
𝐵 is jointly total if every finite 𝐴0 ∈ 𝐾 (𝐴) is a subdomain of a
finitary relation from 𝑆 , i.e.: ∃ℎ∈𝑆𝐴0 ⊆ 𝛾0 (ℎ)

Definition 3.4 (Jointly total family of homomorphisms). Let
A and B be two relational structures over a common signature
Σ. A finitary relation from A to B preserves relation 𝑅/𝑘 ∈ Σ
if the following holds:

𝑓 (𝑎1, 𝑏1) ∧ 𝑓 (𝑎2, 𝑏2) ∧ . . . ∧ 𝑓 (𝑎𝑘 , 𝑏𝑘 ) ∧ 𝑅(𝑎1, 𝑎2, · · · , 𝑎𝑘 )
⊢ 𝑅(𝑏1, 𝑏2, · · · , 𝑏𝑘 )

We shall say that a set of finitary partial functions 𝐻 ⊆ 𝐵𝐴
is a jointly-total family of homomorphisms if for every finite
set of relational symbols Σ0 ⊆ Σ every finite 𝐴0 ∈ 𝐾 (𝐴) is a
subdomain of a finitary partial function from 𝐻 that preserves
all relations from Σ0.

Now, we are ready to state Axiom CSP in Boolean toposes.

Axiom 3 (CSP). For every relational signature Σ and a pair
of structuresV and D over Σ such that 𝐷 is a finite cardinal,
the following are equivalent:
• there exists a homomorphism fromV to D
• the set of partial functions 𝐷𝑉 is a jointly total family
of homomorphisms

By hom(V,D) we shall denote the set of all finitary par-

tial functions from 𝐴 to 𝐵 that preserve all relations from Σ.
Observe that if Axiom CSP holds then the set hom(V,D) is
jointly total if and only if the set of of partial functions 𝐷𝑉

is a jointly total family of homomorphisms.

Example 3.1 (AxiomCSP inCont(Aut (A ⊔ A0))). Let ⟨Σ,V,D⟩
be an𝐴0-equivariant CSP in ZFA(A). Such CSP is an internal
object of Cont(Aut (A ⊔ A0)). The object 𝐾 (𝑉 × 𝐷) of Kura-
towski finite subobjects of 𝑉 × 𝐷 consists of finitely supported
finite relations from 𝑉 to 𝐷 . Because every finite set is finitely
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Aut (A) is extr. ame.⇔ A is Ramsey⇔ Cont(Aut (A ⊔ A0)) ⊨ BPIT

Q is Ramsey⇒ Cont(Aut (Q ⊔ Q0)) ⊨ BPITAut (Q) is extr. ame.

ZFA(A) ⊨ defCSP

ZFA(Q) ⊨ defCSP ks

ksCont(Aut (A ⊔ A0)) ⊨ CSP ks +3

ZF ⊨ CSP↔ BPIT ZFA ⊨ defCSP↔ zfaCSP

Figure 4. Equivalences between Ramsey property, extremal amenability, BPIT and Axiom CSP.

supported (by the union of supports of its elements), 𝐾 (𝑉 ×𝐷)
consists of all finite relations from 𝐴 to 𝐵. This means that the
internal object of finitary homomorphisms hom(V,D) con-
sists of the set of all finitary homomorphisms fromV toD. By
Axiom CSP in the real world6 this set is jointly total if and only
if ⟨Σ,V,D⟩ has a solution (in Set). Therefore, Axiom CSP in
Cont(Aut (A ⊔ A0)) states that an 𝐴0-equivariant CSP over
a finite domain has an 𝐴0-equivariant solution if and only if
it has a solution (in Set).

To state our main results, we have to recall more set-

theoretic terminology.

Definition 3.5 (Boolean algebra). An algebraB is a structure
⟨𝐵, 1,∧,¬⟩, where 1 is a constant, ∧ : 𝐵 × 𝐵 → 𝐵 is a binary
operation, and ¬ : 𝐵 → 𝐵 is an unary operation. Consider
relation ≤ ⊆ 𝐵 × 𝐵 defined as: 𝑎 ≤ 𝑏 ⇔ 𝑎 = 𝑎 ∧ 𝑏. We say
that B is a Boolean algebra if the following holds:
• ≤ is a partial order on 𝐵 with finite joins given by ∧ and
the greatest element 1
• for every 𝑏 ∈ 𝐵 we have that: ¬¬𝑏 = 𝑏

If B is a Boolean algebra, then 1 is its internal true value,

and operation∧ is the internal conjunction. Other operations
in a Boolean algebra can be defined in the usual way:

• 0 = ¬1 for the false value
• 𝑎 ∨ 𝑏 = ¬(¬𝑎 ∧ ¬𝑏) for the internal disjunction
• 𝑎 ⊕ 𝑏 = (𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏)

Definition 3.6 (Ideal). LetB be a Boolean algebra. An ideal in
B is a proper subset 𝐼 ⊂ 𝐵 satisfying the following conditions:
• if 𝑎, 𝑏 ∈ 𝐼 then 𝑎 ∨ 𝑏 ∈ 𝐼
• if 𝑎 ∈ 𝐼 then for every 𝑏 ∈ 𝐵 such that 𝑏 ≤ 𝑎 we have
that 𝑏 ∈ 𝐼

Definition 3.7 (Prime ideal). Let 𝐼 be an ideal in B. We say
that 𝐼 is prime if for every 𝑏 ∈ 𝐵 either 𝑏 ∈ 𝐼 or ¬𝑏 ∈ 𝐼 .

Axiom 4 (BPIT). Every ideal in a Boolean algebra can be
extended to a prime ideal

Remark 3.1. An ideal 𝐼 in B can be represented by a homo-
morphismℎ𝐼 : B → B ′ to a Boolean algebraB ′, i.e. 𝐼 = ℎ−1𝐼 (0).
A prime ideal is an ideal that can be represented by a homomor-
phism to 2 equipped with the usual Boolean algebra structure.
6
We may assume Axiom CSP holds in Set by Theorem 3.4.

Therefore, an ideal 𝐼 in B can be extended to a prime ideal
𝑃 iff B ′ has a prime ideal 𝐽 . In this case, ℎ𝑃 = ℎ 𝐽 ◦ ℎ𝐼 . This
means, that BPIT is equivalent to the statement that every
non-trivial Boolean algebra has a prime ideal. We shall use
this characterisation for the reminder.

The constraint satisfaction problem is defined over re-
lational structures. Therefore, to fit into the framework of

CSP we should treat a Boolean algebra B as if it was de-

fined over a relational signature, with an unary predicate

top(𝑥) ⇔ 𝑥 = 1, ternary predicate and (𝑥,𝑦, 𝑧) ⇔ 𝑥 ∧ 𝑦 = 𝑧

and binary predicate not (𝑥,𝑦) ⇔ ¬𝑥 = 𝑦. The axioms must

express that there exists unique 𝑥 that satisfy top and that

and and not are functional relations.

Lemma 3.2 (Axiom CSP implies BPIT). Axiom CSP implies
BPIT in Boolean toposes.

Proof. Let B be a non-trivial Boolean algebra. By Axiom CSP,

it suffices to show that the set of finitary homomorphisms

hom(B, 2) is jointly total, i.e. for every finite 𝐵0 in 𝐾 (𝐵)
there exists a partial homomorphism 𝐵0 ⊆ 𝐵1 → 2. We can

assume that 𝐵1 is closed under Boolean-algebra operations

and still finite. The reason for that is that if 𝐵0 is finite then

in a Boolean topos 𝑃 (𝐵0) is finite as well (it coincides with
𝐾 (𝐵0)). Because AC holds for finite sets (Lemma 3.1), 𝐵1 has

a prime ideal, what completes the proof. □

Let uswork out the proof of Theorem 3.2 inCont(Aut (A)).
For a Boolean algebraB treated as an object inCont(Aut (A))
the object of finitary homomorphisms hom(B, 2) consists of
finitely supported homomorphisms from a finitely supported

finite subsets of B to 2, i.e.:

hom(B, 2) = {ℎ : 𝐵0 → 2 : 𝐵0 ⊆ 𝐵, 𝐵0, ℎ are finitely supported}
Because every finite set is finitely supported, and every func-

tion between finite sets is finitely supported the above is just

the set of all finitary homomorphisms from B to 2, i.e.:

hom(B, 2) = {ℎ : 𝐵0 → 2 : 𝐵0 ⊆ 𝐵}

For any finite 𝐵0 ⊆ 𝐵 consider the Boolean algebra 𝐵1 gener-

ated by 𝐵0. Let us assume that B is non-trivial. Because 𝐵1 is

easily seen to be finite, by BPIT for finite Boolean algebras

in the real world, one can find a homomorphism 𝐵1 → 2.

Therefore, hom(B, 2) is jointly total, and by Axiom CSP,

there exists a homomorphism B → 2.

9
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Lemma 3.3 (BPIT implies Axiom CSP). Axiom BPIT implies
Axiom CSP in Boolean toposes.

Proof. Let us assume thatV and D are structures over rela-

tional signature Σ. Furthermore, assume thatD = {0, 1, . . . , 𝐷−
1} is a finite cardinal and the set of partial functions 𝐷𝑉

is a jointly total family of homomorphisms. We shall treat

Var = 𝑉 ×𝐷 as a set of propositional variables. Consider the

following subsets of propositions 𝐹 (Var), where 𝐹 (Var) is
treated as the free Boolean algebra on Var :

• 𝑇 = {⟨𝑣, 0⟩ ∨ ⟨𝑣, 1⟩ ∨ · · · ∨ ⟨𝑣, 𝐷 − 1⟩ : 𝑣 ∈ 𝑉 }
• 𝑆 = {¬(⟨𝑣, 𝑛⟩ ∧ ⟨𝑣,𝑚⟩) : 𝑣 ∈ 𝑉 ,𝑛 ∈ 𝐷,𝑚 ∈ 𝐷,𝑛 ≠𝑚}
• 𝐶𝑅 = {¬(⟨𝑥1, 𝑑1⟩ ∧ ⟨𝑥2, 𝑑2⟩ ∧ · · · ∧ ⟨𝑥𝑛, 𝑑𝑛⟩) :
𝑅𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∧ ¬𝑅𝐷 (𝑑1, 𝑑2, . . . , 𝑑𝑛)} for every
𝑅 ∈ Σ

The intuitive meaning of these formula should be obvious:

formulas from𝑇 say that every 𝑣 ∈ 𝑉 is associated to at least

one value in 𝐷 (i.e. the relation is total); formulas from 𝑆

say that every 𝑣 ∈ 𝑉 is associated to at most one value in

𝐷 (i.e. the relation is single valued); formulas from 𝐶𝑅 say

that the valuations cannot volatile constraint 𝑅. Consider the

following set of propositions: 𝑃 = 𝑇 ∪ 𝑆 ∪⋃
𝑅∈Σ𝐶𝑅 . Let us

say that two propositions 𝜙,𝜓 from 𝐹 (Var) are equivalent if
there is a finite 𝑃0 ⊂ 𝑃 such that every valuation𝑉0 ×𝐷 → 2

satisfying 𝑃0 satisfies 𝜙 ⊕ 𝜓 . Then 𝐹 (Var) divided by this

equivalence relation is again a Boolean algebra 𝐹 (Var)/≡
with the usual operations. We want to show that 𝐹 (Var)/≡
is non-trivial, i.e. 0 ≠ 1. It suffices to show that every finite

𝑃0 ⊆ 𝑃 is satisfiable. Because every finite 𝑃0 ⊆ 𝑃 involves

only finitely many variables Var0 ⊆ Var and finitely many

constraints, the sets 𝑉0 = 𝛾0 (Var0) ⊆ 𝑉 and Σ0 ⊆ Σ of rela-

tions that appear in 𝑃0 are finite. In fact, 𝑃0 can be rewritten

as the union of:

• 𝑇0 = {⟨𝑣, 0⟩ ∨ ⟨𝑣, 1⟩ ∨ · · · ∨ ⟨𝑣, 𝐷 − 1⟩ : 𝑣 ∈ 𝑉0}
• 𝑆0 = {¬(⟨𝑣, 𝑛⟩ ∧ ⟨𝑣,𝑚⟩) : 𝑣 ∈ 𝑉0, 𝑛 ∈ 𝐷,𝑚 ∈ 𝐷,𝑛 ≠𝑚}
• 𝐶𝑅,0 = {¬(⟨𝑥1, 𝑑1⟩ ∧ ⟨𝑥2, 𝑑2⟩ ∧ · · · ∧ ⟨𝑥𝑛, 𝑑𝑛⟩) :
𝑥𝑖 ∈ 𝑉0, 𝑅𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∧ ¬𝑅𝐷 (𝑑1, 𝑑2, . . . , 𝑑𝑛)} for
every 𝑅 ∈ Σ0

Since 𝑉0 and Σ0 are finite, by the assumption of Axiom CSP,

there exists a finitary partial function ℎ0 ∈ hom(V,D) with
𝑉0 ⊆ 𝛾0 (ℎ0) that preserves relations from Σ0. This partial

function induces a valuation𝑉0×𝐷 → 2. By the definition of

the constraints, this valuationmakes 𝑃0 satisfiable. Therefore,

every finite 𝑃0 is satisfiable, and so 𝐹 (Var)/≡ is non-trivial.
By BPIT, there is a prime ideal 𝑢 : 𝐹 (Var)/≡→ 2, which com-

posed with the canonical embedding 𝑗 : 𝐹 (Var) → 𝐹 (Var)/≡
gives a prime ideal ℎ = 𝑢 ◦ 𝑗 on 𝐹 (Var). By the definition

of the quotient algebra, ℎ maps propositions from 𝑃 to 1.

Consider the restriction ℎ : 𝑉 × 𝐷 → 2 of ℎ to variables

Var = 𝑉 × 𝐷 . By propositions 𝑇 valuation ℎ is total and

by propositions 𝑆 it is single-valued. Moreover, by proposi-

tions𝐶𝑅 the valuation does not violate any of the constraints

𝑅 ∈ Σ. Therefore, ℎ is a homomorphism fromV to D. □

Theorem 3.4 (CSP ↔ BPIT ). In every Boolean topos the
following are equivalent:

• Boolean prime ideal theorem
• Axiom CSP

Proof. By Lemma 3.3 and Lemma 3.2. □

3.1 Characterisation theorems
This subsection states our main characterisation theorems.

Let us begin with the observation that (a variant
7
of) Theo-

rem 17 in [22] follows from James D. Halpern’s result [14]

from 1964 and our Theorem 3.4 (no advanced modern results

are needed).

Theorem 3.5 (defCSP in ZFA(Q)). defCSP holds in ZFA(Q).

Proof. ByTheorem from Section 3 in [14] every𝑄0-equivariant

Boolean algebra B in ZFA(Q) has an 𝑄0-equivariant prime

ideal. This is the same as saying that every internal Boolean

algebra in the topos Cont(Aut (Q ⊔ Q0)) has an internal

prime ideal. Because the topos is Boolean, by Theorem 3.4 Ax-

iom CSP holds in Cont(Aut (Q ⊔ Q0)). Therefore, every 𝑄0-

equivariant CSP over a finite domain has an 𝑄0-equivariant

solution. In other words zfaCSP holds in ZFA(Q), and since

the formulation of defCSP is weaker than zfaCSP, defCSP

holds in ZFA(Q) as well. □

The proof of the next theorem is similar. We use the result

of Andreas Blass from 1986 [4].

Theorem 3.6 (zfaCSP inZFA(A)). zfaCSP holds inZFA(A)
if and only if A satisfies Ramsey property.

Proof. Theorem 2 of [4] states that Ramsey property of A is

equivalent to the property that every𝐴0-equivariant Boolean

in ZFA(A) has an 𝐴0-equivariant prime ideal. This is the

same as saying that every internal Boolean algebra in the

topos Cont(Aut (A ⊔ A0)) has an internal prime ideal. By

Theorem 3.4 this is equivalent to AxiomCSP inCont(Aut (A ⊔ A0)).
Therefore, zfaCSP holds inZFA(A) if and only ifA has Ram-

sey property. □

We will show now that seemingly weaker Axiom defCSP

is actually equivalent to Axiom zfaCSP over ZFA. We need

one more definition.

Definition 3.8 (Compact object). An object𝑋 of a cocomplete
category C is called compact if its co-representation:

homC (𝑋,−) : C→ Set

preserves filtered colimits of monomorphisms.

7
As mentioned in Section 2 our Theorem 3.4 can be modified to locally

finite CSP.
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For any topological group G compact objects in Cont(G)
are precisely the actions that have finitelymany orbits. There-

fore, compact objects in Cont(Aut (A ⊔ A0)) are just 𝐴0-

equivariant definable objects in ZFA(A). Consider the fol-
lowing axiom that can be interpreted in any topos with

filtered colimits.

Axiom 5 (ctCSP). For every compact relational signature Σ
and a pair of structuresV andD over Σ such that 𝐷 is a finite
cardinal andV is compact, the following are equivalent:

• there exists a homomorphism fromV to D
• the set of finitary functions hom(V,D) is a jointly total
family of homomorphisms

Theorem 3.7 (ctCSP implies Axiom CSP in continuous sets).
Let G be a topological group and Cont(G) be the topos of its
continuous actions on Set. Then ctCSP holds in Cont(G) iff
Axiom CSP holds in Cont(G).

Proof. An object 𝑋 in Cont(G) can be represented as a dis-

joint union of its orbits 𝑋 =
⋃
𝑋/G. By the definition of

compactness for every finite set of orbits 𝐹 ⊆ 𝑋/G the ob-

ject 𝑋0 =
⋃
𝐹 is compact.

Assume that ctCSP holds in Cont(G) and consider a CSP

⟨Σ,V,D⟩ such that the set of partial functions𝐷𝑉
is a jointly

total family of homomorphisms. Then for any restriction of

Σ to Σ0 and any substructure V0 ⊆ V interpreted over Σ0

the set of partial functions 𝐷𝑉0

is a jointly total family of

homomorphisms. Thus, if we assume that Σ0 andV0 have

finitely many orbits (i.e. they are compact), by ctCSP there

exists an equivariant homomorphismV0 → D over Σ0.

Now, observe that every CSP ⟨Σ,V,D⟩ inCont(G) can be
regarded as a classical structure ⟨Σ̃, Ṽ, D̃⟩ over an extended

signature Σ̃ that forces homomorphisms to be equivariant.

This extended signature consists of a new ternary relation

𝑇 and two new unary relations 𝑈𝐺 ,𝑈𝑉 . To turn V into a

classical structure Ṽ we extend the sort𝑉 by elements of G,

i.e. 𝑉 = 𝑉 ⊔𝐺 and define new relations as follows:

• 𝑈𝐺 (𝑥) ↔ 𝑥 ∈ 𝐺
• 𝑈𝑉 (𝑥) ↔ 𝑥 ∈ 𝑉
• 𝑇 (𝑔, 𝑎, 𝑏) ↔ 𝑈𝐺 (𝑔) ∧ (𝑔 • 𝑎 = 𝑏)

To turn D into a classical structure
˜V we set 𝐷 = 𝐷 ⊔ {1}

and define new relations as:

• 𝑈𝐺 (𝑥) ↔ 𝑥 = 1

• 𝑈𝑉 (𝑥) ↔ 𝑥 ∈ 𝐷
• 𝑇 (𝑔, 𝑎, 𝑏) ↔ 𝑈𝐺 (𝑔) ∧ (𝑎 = 𝑏)

Then CSP ⟨Σ,V,D⟩ has a solution in Cont(G) if and only

if ⟨Σ̃, Ṽ, D̃⟩ has a solution in Set. By Axiom CSP in the real

world (i.e. in Set), Ṽ, D̃ has a solution if and only if every

finite substructure Ṽ0 of Ṽ over Σ̃0 has a solution. But every

finite Ṽ0 has a solution, because it is contained in some Ṽ1

for compactV1. Therefore, Ṽ, D̃ has a solution, which, by

definition, is an equivariant solution ofV,D. □

We can summarize the above characterisations in the next

theorem.

Theorem 3.8 (Characterisation theorem). LetA be a count-
able structure. Then the following are equivalent:

1. Aut (A) is extremely amenable
2. A has Ramsey property
3. zfaCSP holds in ZFA(A)
4. defCSP holds in ZFA(A)
5. Axiom CSP holds in Cont(Aut (A ⊔ A0)) for every

finite 𝐴0 ⊂ 𝐴
6. Boolean Prime Ideal theorem holds inCont(Aut (A ⊔ A0))

for every finite 𝐴0 ⊂ 𝐴

Proof. (1) ⇔ (2) is Proposition 4.7 in [21]. (2) ⇔ (3) is the
subject of Theorem 3.6. (3) ⇔ (4) is the consequence of

Theorem 3.7. (3) ⇐ (5) is trivial, (5) ⇒ (6) is the subject of
3.4, and (1) ⇔ (6) is the subject of [5]. □

Here are another two important statements equivalent to

BPIT over Boolean toposes, therefore after suitable augmen-

tion, equivalent to Axiom defCSP.

Corollary 3.9. Let A be an algebraic structure. Then the
following are equivalent in ZFA(A):
• defCSP
• every 𝐴0-equivariant non-trivial ring with unit has an
𝐴0-equivariant prime ideal [3]
• every 𝐴0-equivariant non-trivial complete distributive
lattice with compact unit has an 𝐴0-equivariant prime
element [2]

4 The case of non-Boolean toposes
When we move to non-Boolean toposes, we have to be ex-

tra careful when stating classical definitions and axioms,

because in constructive mathematics classically equivalent

statements may be far different. Fortunately for us, the con-

cept of Boolean algebra, ideal and prime ideal move smoothly

to the intuitionistic setting with one caveat: not every maxi-

mal ideal in a Boolean algebra has to be prime.

On the other hand, Axiom CSP is much more difficult

to handle in the intuitionistic setting. Actually, we have at

least several different variants of Axiom CSP depending on

our interpretation of “finiteness” and admissible relational

structures. Therefore, we should not expect that Axiom CSP

is equivalent to BPIT in constructive mathematics, because

BPIT does not involve any notion of finiteness and there is

not much concern about admissibility of Boolean algebra

operations (however, we could take this into account). In

general, the stronger the notion of “finiteness” and “admissi-

bility” is, the stronger Axiom CSP we obtain.

Let us discuss some possible definitions for an admissible

structure A:

11
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1. Only complemented relations 𝑅 are admissible. That is,

subobjects 𝑠 : 𝑅 → 𝐴𝑘
such that there exists a subob-

ject ¬𝑠 : 𝑅 → 𝐴𝑘
with the property that 𝑠 ∪ ¬𝑠 = id𝐴𝑘

and 𝑠 ∪ ¬𝑠 = 0.

2. 𝐴 is decidable. That is, the sobobjectΔ : 𝐴→ 𝐴×𝐴 that

correspond to the equality predicate is complemented.

Because, we assume that equality is always presented

in the signature, decidability of 𝐴 is subsumed by the

previous point.

3. All relations are admissible.

In the next subsections we discuss AxiomCSPwith respect

to two internal notions of “finiteness”:

• Kuratowski finiteness from Definition 3.1

• Kuratowski subfiniteness — i.e. being a subobject of a

Kuratowski finite object

4.1 Kuratowski finiteness is too strong
Consider Sierpienski topos Set•→•. It is a routine to check

that BPIT holds in Set•→•, but Axiom CSP does not hold

even in case “finiteness” is interpreted as Kuratowski finite-

ness and only complemented relations 𝑅 are admissible. For

a counterexample consider structures from Figure 5. The

structure on the right side is the terminal object 1 equipped

with the empty unary relation 0→ 1. The structure on the

left side is the only non-trivial subobject
1

2
of 1 equipped

with the full unary relation
1

2

id→ 1

2
. There is a unique mor-

phism ! from
1

2
to 1, but it is not a homomorphism, since it

does not preserve the unary relation, i.e. ! ◦ id 1

2

= 1

2
≠ 0. On

the other hand, the only Kuratowski finite subobject of
1

2
is

0 and the object of homomorphisms hom(0, 1) is isomorphic

to 1.

This example shows that Axiom CSP with Kuratowski

finiteness is too strong to be provable from BPIT, and too

strong in general. If we weaken Axiom CSP by weakening

the notion of finiteness to Kuratowski subfiniteness then

Axiom CSP will hold even if all relations are admissible.

The reason is that a structure X : A → B in Set•→• can be

encoded as a structure A ⊔ B in Set with one additional

relation encoding the graph of function 𝑋 , i.e. 𝑅(𝑥,𝑦) ⇔
𝑋 (𝑥) = 𝑦 and one unary relation to distinguish domain from

the codomain, i.e. 𝑆 (𝑥,𝑦) = 𝐴×𝐴⊔𝐵×𝐵. Then for every finite
substructure 𝐴0 ⊔ 𝐵0 of A ⊔ B there is a finite substructure

𝐴0 ⊔ 𝐵0 ⊂ 𝐴1 ⊔ 𝐵1 ⊆ A ⊔ B corresponding to a Kuratowski

subfinite substructure of X. Therefore, Axiom CSP holds in

Set•→• by the Axiom CSP in Set.

4.2 Kuratowski subfiniteness is too weak
Consider topos Set•←•→•. Figure 6 shows an example of a

Boolean algebra, which does not have a prime ideal. More-

over, this example explicitly shows why we cannot carry

over our proof of Theorem 3.2 to constructive mathematics

— the Boolean algebra under consideration is Kuratowski

{∗} {∗}

∅ {∗}
����

OO

��

Figure 5. Axiom CSP fails in Set•→• for Kuratowski finite-
ness. The structures are equippedwith a single unary relation

that holds on blue elements only.

⊥,⊥
⊥,⊤

⊤,⊥
⊤,⊤

⊥ ⊤
<
// ⊥ ⊤

<
//

𝜋1

t|
𝜋2

 (

<,= 33

=,<
++

<,=

33
=,<
++

Figure 6. An example of a non-trivial finite Boolean algebra

in Set•←•→• that has no prime ideal.

finite, what means that in Set•←•→• not every finite Boolean
algebra has a prime ideal. On the other hand, Axiom CSP

with Kuratowski finite subobjects fails and with Kuratowski

subfinite subobjects holds for the same reasons as in the

Sierpienski topos Set•→•. Therefore, example from Figure 6

shows that Axiom CSP with Kuratowski subfiniteness is too

weak to prove BPIT.

5 Conclusions and further work
In this paper we have given a simple purely-logical proof of

“equivariant definable CSP over finite domain has a solution

iff it has an equivariant definable solution” in the ordered

Fraenkel-Mostowski model (Theorem 3.5) without using any

advanced results from topology and model theory. More-

over, we have introduced an intrinsic characterisation of this

statement and investigate it in general toposes. It turns out

that in Boolean toposes this axiom is equivalent to Boolean

Prime Ideal theorem, whereas in intuitionistic toposes there

is no such an equivalence, nor an implication in either direc-

tions. It is an interesting question which positive-existential

theories have classifying toposes validating Axiom CSP; or

more generally, in which Grothendieck toposes Axiom CSP

holds. Finally, we reversed the main result of [22] by show-

ing that for a countable structure A Axiom defCSP holds in

ZFA(A) if and only if the automorphism group Aut (A) of
A is extremely amenable (Theorem 3.8).
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