## Tutorial 8 27.11

Free-choice Petri nets - short theoretical introduction:

Three equivalent conditions: -  $\forall t_1 u \in T$   $\cdot t \cap \cdot u = \phi$  or  $\cdot t = \cdot u$ - ∀pepiteT (pit) EF => "t×p" EF Def. REP is a trap if R'E'R S ⊆ P is a siphon if 'S ⊆ S' Fact. Siphons and traps are closed under union.

Commoner's Theorem

1. Show that the reachability problem for free-choice Petri nets is not easier than for the general nets. Which equivalent representation of Petri nets would be the easiest to work with ? Counter automata as the arcs have reight one Idea: represent counter automation without zero tests using free-choice Petri nets Attempt 1 assume that we straightforward representation \* have k counters places sepresent states si and counters ci ж of the automaton transition moves a token from si to si ≭ and increment / decrement at most one counter place (representing automaton action)

Problem: it may not be a free-choice net

 $\begin{array}{c}
t_1 \\
\vdots \\
s_1 \\
\vdots \\
t_1 \\
\vdots \\
\vdots \\
t_1 \\$ missing are

from state s, we can go to 53 or sy ; however, if only one transition decrements some counter, it is not a free-choice net

Attempt 2

c<sub>2</sub>⊖→<del>↓</del>→⊖∫s<sub>4</sub>

\* we make k+1 copies of each state place s:: a new place si for each counter ci and one additional place si \* then we create k+1 tranzitions - one for each of the new places; each of these transitions takes a token from si and puts  $c_1 \bigcirc f_1 \rightarrow \bigcirc s_2$  $s_1 \bigcirc f_2 \rightarrow \bigcirc S_3$  $\xrightarrow{\sim} \quad s_1 \xrightarrow{\sim} \quad \xrightarrow{$ 

Problem: the new transitions satisfy free-choice conditions but still there is a problem with counter places decremented from different states:  $s_1^{\uparrow}$   $c_1$   $s_2^{\downarrow}$   $s_2^{\downarrow}$   $s_2^{\downarrow}$   $s_2^{\downarrow}$   $s_2^{\downarrow}$   $s_2^{\downarrow}$   $s_2^{\downarrow}$   $s_2^{\downarrow}$   $s_3^{\downarrow}$   $s_4^{\downarrow}$   $s_$ missing ancs... Attempt 3 - final solution \* use the same approach as before but for counter places - a new one for each state  $\begin{array}{c} S_{1}^{1} \bigcirc \\ & & \\ & & \\ S_{1}^{1} \bigcirc \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ \* it is easy to check that the new net is a free-choice net

2. How to compute a maximal trap in a given set 5 of places in a polynomial time? we know that traps are closed under union, \* hence, a maximal trap is well-defined recall that R = P is a trap if R = R ≭ we define the following algorithm: \* initialize Q := S while there exists  $s \in Q$  and  $t \in s^{\bullet}$ such that  $t \notin Q$ do  $Q \coloneqq Q \setminus 1s$ return a of course the final (returned) Q is a trap Ж now we'll prove that all the places that we \* deleted from S cannot belong to any trap = S first, we design the following structure: \* let s<sub>11</sub> s<sub>21</sub>..., s<sub>r</sub> be the sequence of all places deleted from Q ordered chronologically



- \* next, we add a directed edge from  $5_k$  to  $5_k$ for l < k any time we deleted  $s_k$  because of some  $t \in S_i$  such that  $5_k \in t^{\circ}$ , i.e.
  - Sk, O  $\leftarrow$  +  $\leftarrow$  O S<sub>L</sub> intuition: for s<sub>L</sub> to be Sk<sub>2</sub> O  $\leftarrow$  +  $\leftarrow$  O S<sub>L</sub> a part of a trap one of Sk<sub>3</sub> O  $\leftarrow$  +  $\leftarrow$  O S<sub>L</sub> a part of a trap one of Sk<sub>i</sub> has to belong to trap
- \* let si be a place that we deleted
  - if there are no outgoing edges there exists  $t \in s_i^*$  such that  $t \notin S$
  - if these are some autgoing edges, in order
    - to add si to the trap, we have to add
      - at least one end of these edges too;
  - we continue the process and finally reach some place s; s.t. some te s; and t & S
- \* thus, we have found the maximal trap

# 3. Prove that liveness in free-choice nets is co-NP complete.

## 4.4 The non-liveness problem is NP-complete

Commoner's Theorem leads to the following nondeterministic algorithm for deciding if a free choice system is *not* live:

- (1) guess a set of places R;
- (2) check if R is a siphon;
- (3) if R is a siphon, compute the maximal trap Q included in R;
- (4) if  $M_0(Q) = 0$ , then answer "non-live".

Steps (2) and (4) can be performed in polynomial time in the size of the system. Exercise 4.5 gives an algorithm for step (3); the reader can prove its correctness and show that its complexity is polynomial as well. It follows from these results that the non-liveness problem for free-choice systems is in NP.

The obvious corresponding deterministic algorithm consists of an exhaustive search through all subsets of places. However, since the number of these subsets is  $2^n$  for a net with n places, the algorithm has exponential complexity.

We now show that the non-liveness problem is NP-complete. As a consequence, no polynomial algorithm to decide liveness of a free-choice system exists unless P=NP.

**Theorem 4.28** Complexity of the non-liveness problem of free-choice systems

The following problem is NP-complete:

Given a free-choice system, to decide if it is not live.

#### **Proof:**

Commoner's Theorem shows that the problem is in NP. The hardness is proved by a reduction from the satisfiability problem for propositional formulas in conjunctive normal form (CNF-SAT).

A formula  $\phi$  is a conjunction of clauses  $C_1, \ldots, C_m$  over variables  $x_1, \ldots, x_n$ . A literal  $l_i$  is either a variable  $x_i$  or its negation  $\overline{x_i}$ . The negation of  $l_i$  is denoted by  $\overline{l_i}$ . A clause is a disjunction of literals.

Let  $\phi$  be a formula. We construct a free-choice system  $(N, M_0)$  in several stages, and show that  $\phi$  is satisfiable iff  $(N, M_0)$  is not live.



Fig. 4.7 The free-choice system corresponding to  $\phi$ 

- For every variable  $x_i$ , define a place  $A_i$ , two transitions  $x_i$  and  $\overline{x}_i$  and arcs  $(A_i, x_i)$  and  $(A_i, \overline{x}_i)$ . Let A denote the set  $\{A_1, \ldots, A_n\}$ .
- For every clause  $C_j$ , define a transition  $\overline{C_j}$ . For every clause  $C_j$  and for every literal  $l_i$  appearing in  $C_j$  define a place  $(\overline{l_i}, \overline{C_j})$ , an arc leading from the transition  $\overline{l_i}$  to the place  $(\overline{l_i}, \overline{C_j})$ , and an arc leading from  $(\overline{l_i}, \overline{C_j})$  to the transition  $\overline{C_j}$ .
- Define a place False and, for every clause  $C_j$ , an arc  $(\overline{C_j}, False)$ . Define a transition Back, an arc (False, Back) and, for every variable  $x_i$ , an arc (Back,  $A_i$ ).
- Define  $M_0$  as the marking that puts one token in all and only the places of A.

It is easy to see that N is a connected free-choice net, and hence  $(N, M_0)$  a freechoice system. Moreover,  $(N, M_0)$  can be constructed in polynomial time in the length of  $\phi$ . Figure 4.7 shows the system obtained from the formula

$$\phi = (x_1 \vee \overline{x_3}) \land (x_1 \vee \overline{x_2} \vee x_3) \land (x_2 \vee \overline{x_3}).$$

We can freely choose at every place  $A_i$  between letting the transition  $x_i$  or  $\overline{x_i}$  occur. The occurrences of the selected transitions correspond to the choice of a truth assignment. After these occurrences, a transition  $\overline{C_j}$  is enabled if and only if the truth assignment does not satisfy the clause  $C_j$ . If  $\overline{C_j}$  is enabled, then it can occur and put a token in the place *False*, which corresponds to the fact that, since the clause  $C_j$  is false under this assignment, the whole formula  $\phi$  is false. We now prove:

 $(\Rightarrow)$  If  $\phi$  is satisfiable, then  $(N, M_0)$  is not live.

Let f be a truth assignment satisfying  $\phi$ , and let  $l_1, \ldots, l_n$  be the literals mapped to true by f. Let  $\sigma_f = l_1 \ldots l_n$ .

By the construction of  $(N, M_0)$ ,  $\sigma_f$  is an occurrence sequence (in our example, we can take  $\sigma_f = x_1 x_2 x_3$ ). Let  $M_0 \xrightarrow{\sigma_f} M$ .

We show that no transition of N is enabled at M, which proves the result. By the construction of  $(N, M_0)$  and  $\sigma_f$ , only  $\overline{C_j}$  transitions can be enabled at M. So it suffices to prove that no transition  $\overline{C_j}$  is enabled at M.

Consider a clause  $C_j$ . Since f satisfies  $\phi$ , there exists a literal  $l_i$  in  $C_j$  such that  $f(l_i) = true$ . By the definition of  $\sigma_f$ , we have  $l_i \in \sigma_f$  and  $\overline{l_i} \notin \sigma_f$ . Since  $\overline{l_i} \notin \sigma_f$ , the place  $(\overline{l_i}, \overline{C_j})$  is not marked at M. By the construction of N,  $(\overline{l_i}, \overline{C_j})$  is an input place of  $\overline{C_j}$ . So  $\overline{C_j}$  is not enabled at M.

### ( $\Leftarrow$ ) If $(N, M_0)$ is not live, then $\phi$ is satisfiable. $\leftarrow$ homework

We start with the following observation: if a transition  $x_i$  has an output place  $(x_i, \overline{C_j})$  and  $\overline{x_i}$  has an output place  $(\overline{x_i}, \overline{C_k})$ , then the set

$$Q = \{False, A_i, (x_i, \overline{C_j}), (\overline{x_i}, \overline{C_k})\}$$

is a trap. Moreover, Q is initially marked because  $M_0(A_i) = 1$ .

Now, assume that  $(N, M_0)$  is not live. By Commoner's Theorem, there exists a proper siphon R of N which includes no initially marked trap. By the construction of N, R contains *False* and at least one place  $A_i$  of A. Moreover, R contains either no place of  $x_i^{\bullet}$  or no place of  $\overline{x}_i^{\bullet}$ ; otherwise we would have  $Q \subseteq R$  for the initially marked trap Q defined above.

This last property of R allows us to construct a truth assignment f satisfying the following for every place  $A_i \in R$ : if  $x_i^{\bullet} \cap R \neq \emptyset$  then  $f(\overline{x_i}) = true$  and if  $\overline{x_i}^{\bullet} \cap R \neq \emptyset$  then  $f(x_i) = true$ .

We show that f satisfies  $\phi$ . Let  $C_j$  be an arbitrary clause of  $\phi$ . Since False is a place of R, the set R contains some input place  $(\overline{l_i}, \overline{C_j})$  of  $\overline{C_j}$  and hence it also contains the place  $A_i$ , which belongs to  ${}^{\bullet}\overline{l_i}$ . So  $\overline{l_i} {}^{\bullet} \cap R \neq \emptyset$ .

By the definition of f, we have  $f(l_i) = true$ . Since, by construction of N,  $l_i$  is a literal of  $C_j$ , the assignment f satisfies  $C_j$ . Finally, f satisfies  $\phi$  because  $C_j$  was arbitrarily chosen.



1. Construct two counterexamples proving that the Commoner's theorem does not hold for general Petri nets (weights = 1, connected). 2<sup>P</sup>. Prove that reachability is reducible to non-liveness in general Petri nets.

```
homework (not obligatory)
```