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3, Prove that liveness in Qree-dnoice nets is co-NP comgete .

4.4 The non-liveness problem is NP-complete

Commoner’s Theorem leads to the following nondeterministic algorithm for deciding
if a free choice system is not live:

(1) guess a set of places R;

(2) check if R is a siphon;

(3) if R is a siphon, compute the maximal trap @ included in R;
(4) if My(Q) = 0, then answer “non-live”.

Steps (2) and (4) can be performed in polynomial time in the size of the system.
Exercise 4.5 gives an algorithm for step (3); the rcader can prove its correctness and
show that its complexity is polynomial as well. It follows from these results that the
non-liveness problem for free-choice systems is in NP.

The obvious corresponding deterministic algorithm consists of an exhaustive search
through all subsets of places. However, since the number of these subsets is 2" for
a net with n places, the algorithm has exponential complexity.

We now show that the non-liveness problem is NP-complete. As a consequence, no
polynomial algorithm to decide liveness of a free-choice system exists unless P=NP.

Theorem 4.28 Complerity of the non-liveness problem of free-choice systems

The following problem is NP-complete:

Given a free-choice system, to decide if it is not live.

Proof:

Commoner’s Theorem shows that the problem is in NP. The hardness is proved by
a reduction from the satisfiability problem for propositional formulas in conjunctive
normal form (CNF-SAT).

A formula ¢ is a conjunction of clauses C,...,C,, over variables z,...,z,. A
literal [; is either a variable z; or its negation Z;. The negation of /; is denoted by

l;. A clause is a disjunction of literals.

Let ¢ be a formula. We construct a free-choice system (N, Mp) in several stages,
and show that ¢ is satisfiable iff (N, M) is not live.



Lr' Back

Fig. 4.7 The free-choice system corresponding to ¢

e For every variable z;, define a place A;, two transitions z; and Z; and arcs
(Ai,z;) and (A;,T;). Let A denote the set {A;,..., A}

e For every clause C;, define a transition C;. For every clause C; and for every
literal [; appearing in C; define a place (I;, C;), an arc leading from the tran-
sition ; to the place (I;, C;), and an arc leading from (l.-,a) to the transition

C;.
e Define a place False and, for every clause C;, an arc (Cj, False). Define a tran-
sition Back, an arc (False, Back) and, for every variable z;, an arc (Back, A;).

e Define M, as the marking that puts one token in all and only the places of A.

It is easy to see that NV is a connected free-choice net, and hence (N, M) a free-
choice system. Moreover, (N, Mp) can be constructed in polynomial time in the
length of ¢. Figure 4.7 shows the system obtained from the formula

¢=(x1VT3)A(z1 VT2V 23) A (22 V T3).

We can freely choose at every place A; between letting the transition z; or Z; occur.
The occurrences of the selected transitions correspond to the choice of a truth as-
signment. After these occurrences, a transition Cj is enabled if and only if the truth



assignment does not satisfy the clause C;. If C; is enabled, then it can occur and
put a token in the place False, which corresponds to the fact that, since the clause
C; is false under this assignment, the whole formula ¢ is false. We now prove:

(=)

(+)

If ¢ is satisfiable, then (N, My) is not live.

Let f be a truth assignment satisfying ¢, and let ly,...,l, be the literals
mapped to true by f. Let o5 =1,...1,.

By the construction of (N, My), oy is an occurrence sequence (in our example,
we can take oy = I, 29 3). Let My 2L M.

We show that no transition of N is enabled at M, which proves the result. By

the construction of (N, My) and oy, only C; transitions can be enabled at M.
So it suffices to prove that no transition Cj is enabled at M.

Consider a clause Cj. Since f satisfies ¢, there exists a literal [; in C; such
that f(l;) = true. By the definition of oy, we have l; € oy and I ¢ oy. Since
I ¢ oy, the place (@, 5;) is not marked at M. By the construction of N,
(1;,C;) is an input place of C;. So Cj is not enabled at M.

If (N, Mp) is not live, then ¢ is satisfiable. ¢ howework

We start with the following observation: if a transition z; has an output place
(z:,C;) and 7; has an output place (7, Ck), then the set

Q - {Fa'lse’ Ab (xilﬁj)’ (a:—na)}
is a trap. Moreover, @ is initially marked because My(A;) = 1.

Now, assume that (N, Mp) is not live. By Commoner’s Theorem, there exists
a proper siphon R of N which includes no initially marked trap. By the
construction of N, R contains Fualse and at least one place A; of A. Moreover,
R contains either no place of z{ or no place of zZ}; otherwise we would have
@ C R for the initially marked trap @ defined above.

This last property of R allows us to construct a truth assignment f satisfying
the following for every place A; € R: if zf N R # @ then f(Z;) = true and if
Z;* N R # 0 then f(z;) = true.

We show that f satisfies ¢. Let C; be an arbitrary clause of ¢. Since False is
a place of R, the set R contains some input place (I;,C;) of C; and hence it
also contains the place A;, which belongs to *I;. So L' NR#.

By the definition of f, we have f(l;) = true. Since, by construction of N, l; is
a literal of Cj, the assignment f satisfies C;. Finally, f satisfies ¢ because Cj
was arbitrarily chosen. m]
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