Tutorial 7 20.11

1. How to find all P-invariants of a given net?

* P-invariant I has to satisfy equation
$$I \cdot N = \vec{O}$$

where $N = \begin{bmatrix} \hat{f}_1 & \hat{f}_2 & \dots & \hat{f}_n \end{bmatrix}$ is a matrix consisting of

all available transitions

2. Define a polynomial algorithm checking whether
a given set of linear equations has a solution
satisfying a given set of implications of form
$$x \ge 0 \Longrightarrow y \ge 0$$
, where x,y are variables.

https://drive.google.com/file/d/11U54tA4LXrJoqlJswaMTf7a-bQXlmv1q/ view?usp=sharing 3. Structural unboundedness for general Petri nets belongs to NP.

What condition should be satisfied by a net to be structurally unbounded? Intuition: there exists a sequence of transitions that has a non-negative effect on all places and positive effect on at least one of them

To justify it, we can prove the following fact: the conditiones listed below are equivalent: 1) place p is structurally bounded, $[f_{i}, f_{2}, ..., f_{n}]$ 2) there exists y? Ilp s.t. $y T N \leq 0$, where

 $1 \downarrow p \in \mathbb{Z}^{|P|}$, $1 \downarrow p \lfloor q \rfloor = 1$ if q = p and D otherwise,

3) NO X 2 O satisfies NX 2 11 p. XENd, yEN"

Why can't we use coverability tree? Structurally. V configuration 1) ⇒ 3)

* we will prove ¬3) ⇒ ~1) (which is equivalent)
× let x ∈ N^d be a vector such that Nx ≥ 11p
* we can interpret x as a multiset of transitions
and say that we fire x in a given net, meaning
that we fire each transition the number of times
it occures in x

- k let M be the initial configuration big enough to
 fire X 1 then from M we obtain M1 > M
 on at least place p
 * of course we can fire X in M1 and iterate
 this process further, proving that place p
 - is unbounded
- 3) ⇒ 2)

to prove this implication, we use the following * fact from the theory of dual programs

Theorem. Exactly one of the following equation 71 systems has a solution: Farkas 1) Ax > 6 2) y > 0 lemma $\overline{\mathbf{y}}^{\mathsf{T}} \mathbf{A} = \mathbf{0}$ yTb>0 we have to prove: * no x≥0 s.t. Nx ≥ 11p => ∃y≥ 11p s.t. yTN≤0 * we observe the following $\overline{y} \ge \mathbf{0}$ $\begin{bmatrix} \mathsf{N} \\ \mathsf{I} \end{bmatrix} \cdot \times \geqslant \begin{bmatrix} \mathsf{A}_{\mathsf{P}} \\ \mathsf{O} \end{bmatrix}$ \overline{y}^{T} . $\begin{vmatrix} N \\ \overline{I} \end{vmatrix} = 0$ ∋ ¥1. P > 0 has solution no solution green box represents Nx 3 11 p and x 30 ≮ to analyze the blue box let us write * $\tilde{y}^{T} = \begin{bmatrix} y^{T} & z^{T} \end{bmatrix}$ it is easy to notice that $\tilde{y} \in \mathbb{Q}^{|P|+|T|}$ *

* first, it holds that

$$\begin{bmatrix}y^{T} \ge T\end{bmatrix} : \begin{bmatrix}N\\T\end{bmatrix} = 0 \iff y^{T}N + 2^{T}T = 0$$
hence, $y^{T}N \le 0$
* second, we have that $\overline{y} \ge 0 \Rightarrow y \ge 0$ and

$$\begin{bmatrix}y^{T} \ge 2^{T}\end{bmatrix} : \begin{bmatrix}4p\\0\end{bmatrix} \ge 0 \iff y^{T} \cdot 4p + 2^{T} \cdot 0 \ge 0$$
thus, $y^{T} \cdot 4p \ge 0 \Rightarrow y [p] \ge 0$
* however, $y \in Q^{|P|}$ and hence we have to
multiply all its coordinates by some number $K \in \mathbb{N}$
s.t. $Ky \in \mathbb{N}^{|P|}$ and $(Ky) [p] \ge 1$
2) $\Rightarrow 1$
* we assume that $\exists y \ge 4p$ s.t. $y^{T}N \le 0$
* look at initial conf. i and any seachable $2 = i + Nx$
* we would like to prove $2 [p] \le C$ for some $C \in \mathbb{N}$
* we can consider bounding $\begin{bmatrix}\frac{24}{y}p^{T} \ge 2p^{T}\end{bmatrix}$ instead
* $y[p] \cdot 2[p] \le y^{T}2 = y^{T}i + y^{T}Nx = m + ux \le m$

* finally, re obtain 2 [p] < m/ y [p]

Thus, to check structural unboundedness it is enough to check whether there exists a sequence of transitions that has a non-negative effect on all the places and positive effect for at least one of them.

* we use analoguous algorithm as the last time (integer programming) *

this time instead of equalities we have

a set of inequalities

we have to guess a place that increases its token *

count after firing the sequence of transitions

work on the details of this algorithm К

as an exercise

of N and puts a token on the 11 check " place To allowing the firing of new transitions O1, O2,..., Or * for $i \in P \setminus \widehat{P}$ transition Θ_i takes a token from p_i for $i \in \tilde{P}$ transition $\tilde{\Theta}_i$ takes one token from P_i ⊀ and one from TT_i (TT_i initially has $M_p(p_i)$ tohens) * finally, transition Do that takes a token from To

* it is obvious that zero configuration is reachable iff configuration Mp over P is reachable in N A set $S \in \mathbb{N}^{\gamma}$ is RP-solvable iff the problem of deciding whether there exists a readhable configuration in S for a given net N with initial configuration Mo is reducible to RP.

Eveny Reachability Set (a set of all configurations 6. reachable in some net (N, M_0) is RP-solvable.

let $R_N(M_0) \subseteq IN^{\gamma}$ be the Reachability set of (N_1M_0) ж our task is to show that for every other Petri * het (NI, Mo) of r places up can decide whether $R_N(M_0) \cap R_{N_1}(M_0^{\prime}) \neq \phi$ using a bladubox for RP instead of reducing to RP, we can reduce to ZRP ⊁ given N, N', Le construct a new net N" ж for each of the initial nets, we add a new * ", nun" place - po and po' respectively as we've done previously

* it is easy to see that N" can reach the zero configuration iff some configuration can be reached in both N and N'

1? Prove that reachability is reducible to

non-liveness in general Petri nets.

homework (not obligatory)