Tutorial 6 13.11

1. Reachability for VASS with negative semantic belongs to NP.

Brief theoretical introduction (hint):
Linear proogramming (LP)
a minimization / maximization problem for a linear
function of n arguments:
$$x_{11}x_{21}..., x_{n_1}$$
 where
the arguments have to satisfy some conditions
(linear equations or inequalities using xis)
Example:
max x_1+2x_2
 x_1+2x_2
 $x_2 \leq x_1+2$
 $2x_1+x_2 \leq 4$
Integer programming (IP)
for each $i \in 11/2,...,n$ we add a condition $x_i \in Z$
this problem is NP-complete

Given: VASS (Q,T)

does there exist a nin that can drop below zero

Attempt 1

* denote transition vectors by
$$V_{11}V_{21}...,V_{n}$$

* solve a set of linear equations

$$\begin{bmatrix} \vdots & \vdots & y \\ V_{11}V_{2}... & V_{n} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = V^{1} \cdot V$$
where x_{i} is the number of times transition t_{i}
is to be fired (used)
Problem: we can obtain $x_{i} \notin \mathbb{Z}$ and $x_{i} < 0$
Attempt 2
and the goal of IP: min $\sum_{i=1}^{n} x_{i}$
* add conditions: $x_{i} \in \mathbb{Z}$, $x_{i} \neq 0$ for each i
Problem; firing each transition t_{i} x_{i} times
gives $v^{1} \cdot v$ but the transitions may

not form a run in VASS

Attempt 3

* add Kirchhoff's law conditions - for each state except q, q' the number of incoming transitions (sum of xi) equals the number of outgoing ones * for q there is one more outgoing transition and for q' - one more incoming Problem: Xi can describe a path from q to q' and a disjoint cycle... it satisfies **.** . our conditions

Attempt 4

* after obtaining xis, define S=dtieTlxi>0} and dreak whether each $t_i \in S$ can be reached from quising transitions in 5 the condition above ensures that we can * create the nun given xis (go from q using any available transition until reaching q with the last transition incoming to q' ; then, if we still have some spare transitions, we can create some cycles and glue them to the nun q > * q') * it seems like it should be enough for S to be connected in order to create such a nun Problem: solution to our IP program may not satisfy the condition from attempt 4, but there can be some other run that does another feasible solution that corresponds received solution, * 2 N X unable to create to a min but doesn't a min based on it minimize the goal function

Attempt 5 - final approach

* to ensure that every possible run is taken into account we can guess the transition set S^1 that we allow the use of and then solve IP with conditions $\forall_{i\in S^1} \times_i > 0$

$$\forall_{i \in T \setminus S'} \times_{i} = 0$$

- 2. Using the insights from the previous problem present a way to check condition Θ_1 Θ_1 : for every $m \ge 1$ $(q_1v) = -->^* (q_1'v')$ using every transition $\ge m$ times
 - * if there exists a num r for some selected m' > 0 using every transition $t_i \times_i \ge m'$ times, then there also exists a num r" that uses each transition at least $m'' = max(x_i) + 1$ times (we use notation $\# t_i \rightarrow y_i$ for r")

* both r'and r" satisfy the Kirchhoff's law,
hence so does
$$r" - r'$$
 which uses each
transition ti at least $gi - xi \ge 1$ times
* thus, $r" - r'$ is a cycle that has no side
effect on a given configuration
* the solution idea:
- define two sets of variables : $x_1, x_2, ..., x_n$
and $\Delta_1, \Delta_2, ..., \Delta_n$ such that both sets
satisfy Kirchhoff's law (first with a
twist for q and q')
- $x_i \ge 0$ (for a subset of transitions - as
discussed before), firing all tis x_i
times results in $v' - v$ change on
the configuration
- $\Delta_i \ge 0$ for all transitions and firing
tis don't change the configuration

- 3. Prove that the following implication holds:
 - $\exists m. eveny$ configuration reachable from (q_1v) has some coordinate $\leq m$

(1)

(2)

Im. every nur from (q,v), on some coordinate, is always < m

 \mathbb{V}

if (1) holds, we can set in to be the greatest ⊀ integer appearing in the coverability tree (it might take a lot of time to find m but we can afford it ; also, for VASSes we have to remember the state we are in) now, we show that such an m satisfies (2) * first, assume that the VASS is 2-dimensional ⊀ and assume that these exists a nun r such that r goes through points (V1, V2) with $v_1 \ge m$ and $(u_{11}u_2)$ with $u_2 \ge m$

it means that we had to reach (p, (w, -))* in the covenability tree => there exists a sequence or of transitions that starts and ends in p, increases the first coordinate and doesn't change the second one we can fire or as many times as it ≭ is required to increase the first coordinate by >m, i.e., we extend r in such a way $(p_{1}(w_{1},w_{2}))$ $(p_{1}(w_{1},w_{2}))$ $(p_{1}(w_{1}+c_{1},w_{2}))$ $(p_{1}(w_{1}+c_{1},w_{2}))$ it gives us a new run of that instead of * (u_{11}, u_2) reaches $(u_1 + k, u_2)$ with $k \ge m$ this configuration doesn't satisfy (1) - contradiction * for higher dimentions the reasoning is similar * (the only problem; going from $(w_1 \times_1 \dots \times_d)$ to (w, w, y2,..., yd) might decrease first coordinate)

SP2RP => ZRP:

now, we can use the blackbox for answering * single-place zero readnability problem and have to answer the zero reachability problem in N * the idea is to have a new place T s.t. at all times TT contains as many tokens as there are in all places of N, i.e., at every configuration M in the new net N': $M(T) = \sum_{i=1}^{r} M(p_i)$ to obtain it, we cannect TT with all transitions * of N with incoming and outgoing arcs - the weight of incoming and is the sum of incoming and usights in N and analogously for outgoing initially, TT contains the total number of tohens Ж in configuration Mo for N obviously, tj ET is fireable in N iff tj * is fireable in N¹ answer for ZRP in N = answer for SPZRP in N' *

obtaining N' from N - example *

Source of the net modification figures:

Michel Hack. Decidability Questions for Petri Nets

1° ZRP => SRP: homework (not obligatory)

belongs to NP.