Tutorial 13

- 1. Design a polynomial algorithm that computes the simulation equivalence for finite-state processes.
- 2. Prove that finding the first long-step approximant of strong bisimulation (\sim_1^w) is PSPACE-complete.
- 3. Define a game for two players, Prover and Spoiler, that takes as an input a process P and some modal formula ϕ to check. It should work in such a way that Prover has a winning strategy iff $P \models \phi$.
- 4. Show an example of processes for which modal logic equivalence doesn't imply bisimulation equivalence.
- 5. Characterize simulation equivalence using modal logic.

Homework (not mandatory)

1. Prove that finding the k-th long-step approximant of strong bisimulation (\sim_k^w) is PSPACE-complete for k > 1.