Stochastic games and their complexities public defense

Marcin Przybyłko

University of New Caledonia

University of Warsaw

03.04.2019

Supervisors: Teodor Knapik \& Damian Niwiński
Auxiliary supervisor: Michał Skrzypczak

Stochastic games

Games with probabilistic transitions

backgammon board

Stochastic games

Games with probabilistic transitions

graph of configurations

Formal model

Games on graphs

- move a single token along the lines of a graph

- decide the outcome based on the history of the token
a word over the labels of the vertices

Stochastic branching games

I study

- two-player zero-sum games

> e.g. chess

- of infinite duration

```
                                    e.g. parity games
```

- with randomness

```
e.g. simple stochastic games
```

- and a form of concurrency.
i.e. stochastic branching games by Mio

Strong model: subsume many turn-based games
extension of Gale-Stewart games
and some concurrent games.

Branching game

Game $G=\langle\mathrm{B}, \Phi\rangle$ is played by two players (Eve and Adam) and consists of

- a board B
the graph where we move the tokens
- and an objective Φ : plays $(B) \rightarrow[0,1]$.
... that can be seen as a rulebook...

Branching games, an example

Board - (unfolding of a) binary graph, consisting of Adam's, Eve's, Nature's and branching vertices.

The black token marks the initial vertex.

Branching play

Play
c
preplay - a labelled tree with tokens

Branching play

Play

preplay - a labelled tree with tokens

Branching play

Play

preplay - a labelled tree with tokens

Branching play

Play

preplay - a labelled tree with tokens

Branching play

Play

preplay - a labelled tree with tokens

Branching play

Play

preplay - a labelled tree with tokens

Branching play

Play

preplay - a labelled tree with tokens

Branching play

Play

preplay - a labelled tree with tokens

Branching play

Play

preplay - a labelled tree with tokens

Branching play

Play

preplay - a labelled tree with tokens

Branching play

Play

play - an infinite labelled tree

Games and measure

Fix a game G and a profile of strategies $\langle\sigma, \pi\rangle$;

$$
\sigma, \pi:\{\mathrm{L}, \mathrm{R}\}^{*} \rightarrow\{\mathrm{~L}, \mathrm{R}\}
$$

the outcome generates a measure $\mu^{\sigma, \pi}$ defined on a set \mathcal{T}_{Γ};
\mathcal{T}_{Γ} - a set of trees labelled with some finite set Γ.
the objective is a function $\Phi: \mathcal{T}_{\Gamma} \rightarrow[0,1]$
Φ is called the pay-off function
Eve wants to maximise the pay-off,
Adam to minimise it.
the value $\operatorname{val}(\sigma, \pi)$ of a profile is the expected pay-off $\mathbb{E} \Phi$
wrt. the measure $\mu^{\sigma, \pi}$

Two questions

Problem (determinacy)
Given a game G, is the game determined?
pure and mixed determinacy

Problem (game value)
Given a game G, what is the value of the game G ?
six possible values

Game values and determinacy

Let G be a branching game,

- Eve's value:

$$
\operatorname{val}^{X E} \stackrel{\text { def }}{=} \sup _{\sigma \in \Sigma^{X E}} \inf _{\pi \in \Sigma^{A}} \operatorname{val}(\sigma, \pi)
$$

- Adam's value:

$$
\mathrm{val}^{X A} \stackrel{\text { def }}{=} \inf _{\pi \in \Sigma \times A} \sup _{\sigma \in \Sigma E} \operatorname{val}(\sigma, \pi)
$$

X ranges over pure (ε), behavioural (B), and mixed (M) strategies
Strategies

- pure $\sigma:\{\mathrm{L}, \mathrm{R}\}^{*} \rightarrow\{\mathrm{~L}, \mathrm{R}\}$,
- mixed $\sigma_{m} \in \operatorname{Dist}\left(\sigma:\{\mathrm{L}, \mathrm{R}\}^{*} \rightarrow\{\mathrm{~L}, \mathrm{R}\}\right)$.

$$
\begin{aligned}
& \Sigma_{B}^{E} \subsetneq \Sigma_{B}^{B E} \subsetneq \Sigma_{B}^{M E} \\
& \Sigma_{B}^{A} \subsetneq \Sigma_{B}^{B A} \subsetneq \Sigma_{B}^{M A}
\end{aligned}
$$

Determinacy

Holds

$$
v a l^{A} \geq v a l^{B A} \geq v a l^{M A} \geq v a l^{M E} \geq v a l^{B E} \geq v a l^{E}
$$

Game G is determined

- under pure strategies if $v a l^{A}=v a l^{E}$,
- under behavioural strategies if val ${ }^{B A}=v a l^{B E}$,
- under mixed strategies if val $l^{M A}=v a l^{M E}$.

Double matching pennies

$$
L \stackrel{\text { def }}{=}\left\{t \in \operatorname{plays}(\mathrm{~B}) \mid\left(x_{3}(t)=x_{4}(t)\right) \Longrightarrow\left(x_{1}(t)=x_{2}(t)=x_{3}(t)=x_{4}(t)\right)\right\}
$$

example by Mio

Double matching pennies

$$
L \stackrel{\text { def }}{=}\left\{t \in \operatorname{plays}(\mathrm{~B}) \mid\left(x_{3}(t)=x_{4}(t)\right) \Longrightarrow\left(x_{1}(t)=x_{2}(t)=x_{3}(t)=x_{4}(t)\right)\right\}
$$

example by Mio
Game values: $\begin{array}{cccccc}\mathrm{val}^{A} & \mathrm{val}^{B A} & \mathrm{val}^{M A} & \mathrm{val}^{M E} & \mathrm{val}^{B E} & \mathrm{val}^{E} \\ 1 & \frac{3}{4} & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & 0\end{array}$

Regular branching games

Fix a game G and a set of trees L
if $\Phi: \mathcal{T}_{\Gamma} \rightarrow[0,1]$ of form

$$
\Phi(t)= \begin{cases}1 & \text { if } t \in L \\ 0 & \text { otherwise }\end{cases}
$$

then L is called the winning set of G.
L regular $\Longrightarrow G$ regular branching game.
regular means recoginsable by a finite automaton on trees

Regular pure branching games

Regular pure two-player games

no Nature's vertices
Main results:

- games may not be determined, not even under mixed strategies; we provide an example
- pure values are computable;
winning strategies are enough
- the determinacy under pure strategies can be decided.
we can compute the values

Regular pure branching games

Theorem (indeterminacy)
There exists a regular finite branching pure game G such that

the winning set is a difference of two open sets

Theorem (computing the value)
Let G be a regular finite pure branching game. Then the set of winning strategies S_{E} (resp., S_{A}) of Eve (resp., Adam) is regular and effectively computable.

$$
v a l^{E}=\left[S_{E} \neq \emptyset\right], v a l^{A}=\left[S_{A} \neq \emptyset\right]
$$

Regular stochastic branching games

Regular stochastic branching games

Main results:

- determined under mixed strategies, if the winning set is topologically closed;
recall: difference of two closed sets can be indeterminate
- the values are not computable, not even for one-player games; nor even mixed values of two-player pure games

Regular stochastic two-player games

Theorem (determinacy)
Let G be a regular stochastic branching game with a closed winning set. Then G is determined under mixed strategies.
pay-off function is semicontinous \Longrightarrow apply Glicksberg's minimax theorem

Theorem (computing the value)
There is no algorithm that given a regular finitary branching game G computes the value of the game.
reduction from probabilistic automata

Measures

Regular zero-player stochastic games

Fix strategies σ, π and a board B , then $\mu^{\sigma, \pi}: 2^{\mathcal{T}_{\Gamma}} \rightharpoonup[0,1]$ defined as

$$
\mu^{\sigma, \pi}(L)=\operatorname{val}_{\langle\mathrm{B}, L\rangle}(\sigma, \pi)
$$

is a Borel measure.
We focus on the uniform measure on infinite binary trees μ^{*}

$$
\begin{aligned}
& \text { for any position } u \in\{\mathrm{~L}, \mathrm{R}\}^{*} \text { and any letter } a \in \Gamma \\
& \qquad \mu^{*}\left(\left\{t \in \mathcal{T}_{\Gamma} \mid t(u)=a\right\}\right)=|\Gamma|^{-1}
\end{aligned}
$$

Measures

regular means recoginsable by a finite automaton
Main result:
the uniform measure of a regular set of trees L is computable, if L is defined by

- a first-order formula with no descendant,
- or a conjunctive query.

Measures

Theorem (FO case)

If φ is a first-order formula not using descendant, then $\mu^{*}(L(\varphi))$ is rational and computable in three-fold exponential space.

Theorem (CQs case)
If φ is a Boolean combination of conjunctive queries, then $\mu^{*}(L(\varphi))$ is rational and computable in exponential space.
we reduce $L(\varphi)$ to a clopen set having the same measure

Plantation game

Plantation game

Goals:

- practical part of the thesis;
- presentation of potential use of discrete stochastic games;
- beachhead for the future, more involved, cooperation.

Problem to solve:

- given a history of a fruit plantation
a time series of measurements
- produce a tool to predict and control the level of infestation.
solution: stochastic games

Approach

Utilise a standard framework:

1. convert raw data into series with finite number of values
2. create a model simulating the changes
partially observable Markov decision process
3. create a game-based reactive model
a Gale-Stewart-like game with hidden states

Result:
simple and procedural framework creating reactive models for given time series of observations

Conclusions

Determinacy:

- mixed determinacy, if the winning set is closed;
- mixed determinacy fails at the second level of Borel hierarchy;

Values:

- pure values of pure regular branching games are computable;
- values of stochastic regular branching games are not.

Measures:

- uniform measure can be computed for some restricted first-order formulae.

Applications:

- a description of a roboust framework and a proposition of a possible implementation.

