ALGOMANET Sparsity Tutorial 1: Measuring sparsity January 20th, 2020

Problem 1. Prove that a graph is 1-degenerate if and only if it is a forest.

Problem 2. Prove that a *k*-degenerate graph on *n* vertices is *k*-colorable and has at most $1 + 2^k \cdot n$ different cliques.

Problem 3. The *arboricity* of a graph G, denoted $\operatorname{arb}(G)$, is the minimum number k such that the edge set of G can be partitioned into k sets, each inducing a forest. Prove that

$$\operatorname{arb}(G) \leq \operatorname{degeneracy}(G) \leq 2 \cdot \operatorname{arb}(G) - 1.$$

Problem 4. Prove that a *d*-degenerate *n*-vertex graph contains less than n/2 vertices of degree at least 4*d*.

Problem 5. Give a linear-time algorithm that given a graph, computes its degeneracy together with a suitable vertex ordering witnessing it.

Problem 6. Consider two classes of graphs \mathcal{G}_1 , \mathcal{G}_2 and an operator $\mathcal{G}_1 \oplus \mathcal{G}_2$ defined as follows. A graph G belongs to $\mathcal{G}_1 \oplus \mathcal{G}_2$ if there exist graphs $G_1 \in \mathcal{G}_1$ and $G_2 \in \mathcal{G}_2$ with $|V(G)| = |V(G_1)| = |V(G_2)|$ and bijections $\pi_1 : V(G) \to V(G_1)$ and $\pi_2 : V(G) \to V(G_2)$ such that $uv \in E(G)$ if and only if $\pi_1(u)\pi_1(v) \in E(G_1)$ or $\pi_2(u)\pi_2(v) \in E(G_2)$. Prove or disprove the following statements:

- 1. If \mathcal{G}_1 and \mathcal{G}_2 are of bounded degerenacy, then $\mathcal{G}_1 \oplus \mathcal{G}_2$ is of bounded degeneracy.
- 2. If \mathcal{G}_1 and \mathcal{G}_2 are of bounded expansion, then $\mathcal{G}_1 \oplus \mathcal{G}_2$ is of bounded expansion.
- 3. If \mathcal{G}_1 and \mathcal{G}_2 are nowhere dense, then $\mathcal{G}_1 \oplus \mathcal{G}_2$ is nowhere dense.

Problem 7. Prove that if $J \preceq_a H$ and $H \preceq_b G$, then $J \preceq_{2ab+a+b} G$.

Problem 8. For a class C and $d \in \mathbb{N}$, we denote

 $\mathcal{C} \nabla d \coloneqq \{ H : H \preceq_d G \text{ for some } G \in \mathcal{C} \}.$

Prove that if C has bounded expansion, then for every $d \in \mathbb{N}$ the class $C \nabla d$ also has bounded expansion. Similarly, prove that if C is nowhere dense, then for every $d \in \mathbb{N}$ the class $C \nabla d$ is also nowhere dense.

Definition 1. A graph H is a *depth-d topological minor* of G if there exists an *embedding* ψ of H into G such every vertex u of H is embedded into a different vertex $\psi(u)$ of G, and every edge uv of H is embedded as path $\psi(uv)$ of length at most 2d + 1 and connecting $\psi(u)$ with $\psi(v)$ in G, so that paths { $\psi(e) : e \in E(H)$ } are pairwise internally vertex-disjoint.

Problem 9. Prove that if G contains K_s as a depth-d minor, where $s = 2 + t^{2(d+1)}$, then G contains K_t as a depth-(3d + 1) topological minor.

Problem 10. We define *topologically nowhere dense* classes in the same way as nowhere dense classes, but using the notion of a bounded-depth topological minor. Prove that a class of graphs is nowhere dense if and only if it is topologically nowhere dense.

Problem 11. Prove that for a graph class C, the following conditions are equivalent:

- The class ${\mathcal C}$ is somewhere dense.
- There is $d \in \mathbb{N}$ such that for every $n \in \mathbb{N}$, the *d*-subdivision of K_n is a subgraph of some graph from \mathcal{C} .

Problem 12. Suppose G is a graph and $A \subseteq V(G)$ some subset of its vertices. Define the following equivalence relation \sim_A on the vertices of V(G) - A:

$$u \sim_A v$$
 if and only $N[u] \cap A = N[v] \cap A$

Prove that

- in V(G) A, the number of vertices with at least $2\nabla_0(G)$ neighbors in A is at most |A|; and
- \sim_A has at most $(4^{\nabla_1(G)} + \nabla_1(G)) \cdot |A| + 1$ equivalence classes.