LP-guided branching, part 1: The MULTIWAY CUT problems

Marcin Pilipczuk, Michał Pilipczuk

Finse 1222, March 20th, 2014

Multiway Cut

EDGE MULTIWAY CUT

Input: A graph G with some terminals $T \subseteq V(G)$,

an integer k

Question: Is there a set of edges F with $|F| \le k$, such that

every path between two terminals is hit by F?

Multiway Cut

EDGE MULTIWAY CUT

Input: A graph G with some terminals $T \subseteq V(G)$,

an integer k

Question: Is there a set of edges F with $|F| \leq k$, such that

every path between two terminals is hit by F?

Node Multiway Cut

Input: A graph G with some terminals $T \subseteq V(G)$,

an integer k

Question: Is there a set of vertices $X \subseteq V(G) \setminus T$ with $|X| \le k$,

s.t. every path between two terminals is hit by X?

On the picture

On the picture

On the picture

If G is connected and F is optimum, then every vertex is reachable from some terminal.

• For |T| = 2 it is just an edge flow problem \Rightarrow P-time solvable.

- For |T| = 2 it is just an edge flow problem \Rightarrow P-time solvable.
- NP-hard for $|T| \ge 3$.

- For |T| = 2 it is just an edge flow problem \Rightarrow P-time solvable.
- NP-hard for $|T| \ge 3$.
- Goal: $\mathcal{O}^*(2^k)$ algorithm for EDGE MULTIWAY CUT.

- For |T| = 2 it is just an edge flow problem \Rightarrow P-time solvable.
- NP-hard for $|T| \ge 3$.
- Goal: $\mathcal{O}^*(2^k)$ algorithm for EDGE MULTIWAY CUT.
 - This algorithm is due to Xiao.

• Let $T = \{s, t\}$.

- Let $T = \{s, t\}$.
- An (s, t) cut is a subset $A \subseteq V(G)$ such that $s \in A$, $t \notin A$.

- Let $T = \{s, t\}$.
- An (s,t) cut is a subset $A \subseteq V(G)$ such that $s \in A$, $t \notin A$.
- The *cutset* is $\Delta(A) := E(A, \overline{A})$. Denote $\delta(A) = |\Delta(A)|$.

- Let $T = \{s, t\}$.
- An (s, t) cut is a subset $A \subseteq V(G)$ such that $s \in A$, $t \notin A$.
- The *cutset* is $\Delta(A) := E(A, \overline{A})$. Denote $\delta(A) = |\Delta(A)|$.
- An (s, t) cut A is minimum if $\delta(A)$ is minimum possible. The size of the minimum cut can be determined in polynomial time.

- Let $T = \{s, t\}$.
- An (s, t) cut is a subset $A \subseteq V(G)$ such that $s \in A$, $t \notin A$.
- The *cutset* is $\Delta(A) := E(A, \overline{A})$. Denote $\delta(A) = |\Delta(A)|$.
- An (s, t) cut A is minimum if $\delta(A)$ is minimum possible. The size of the minimum cut can be determined in polynomial time.
- **Note**: If (A, B) is a minimum cut, then A and B are connected. Hence $A = \text{reach}(s, G \setminus F)$, where F is the cutset.

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B)$$

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B)$$
1 0 0 1

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B)$$
0
1
0

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B)$$
0
1
0
1

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B)$$
1 0 1 0

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B)$$
1 1 1 1

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B)$$
1 0 0

Extreme minimum cuts

Extreme minimum cuts

Among all minimum (s, t) cuts, there exists a unique cut A that is inclusion-wise maximal, and a unique one that is inclusion-wise minimal.

• **Proof**: Take any two minimum (s, t) cuts A and B.

Extreme minimum cuts

- **Proof**: Take any two minimum (s, t) cuts A and B.
- Submodularity $\Rightarrow \delta(A) + \delta(B) \geq \delta(A \cup B) + \delta(A \cap B)$.

Extreme minimum cuts

- **Proof**: Take any two minimum (s, t) cuts A and B.
- Submodularity $\Rightarrow \delta(A) + \delta(B) \geq \delta(A \cup B) + \delta(A \cap B)$.
- A is minimum $\Rightarrow \delta(A) \leq \delta(A \cap B)$.

Extreme minimum cuts

- **Proof**: Take any two minimum (s, t) cuts A and B.
- Submodularity $\Rightarrow \delta(A) + \delta(B) \geq \delta(A \cup B) + \delta(A \cap B)$.
- A is minimum $\Rightarrow \delta(A) \leq \delta(A \cap B)$.
- Hence $\delta(B) \geq \delta(A \cup B)$.

Extreme minimum cuts

- **Proof**: Take any two minimum (s, t) cuts A and B.
- Submodularity $\Rightarrow \delta(A) + \delta(B) \geq \delta(A \cup B) + \delta(A \cap B)$.
- A is minimum $\Rightarrow \delta(A) \leq \delta(A \cap B)$.
- Hence $\delta(B) \geq \delta(A \cup B)$.
- B is minimum $\Rightarrow A \cup B$ is a minimum (s, t) cut.

Extreme minimum cuts

- **Proof**: Take any two minimum (s, t) cuts A and B.
- Submodularity $\Rightarrow \delta(A) + \delta(B) \geq \delta(A \cup B) + \delta(A \cap B)$.
- A is minimum $\Rightarrow \delta(A) \leq \delta(A \cap B)$.
- Hence $\delta(B) \geq \delta(A \cup B)$.
- B is minimum $\Rightarrow A \cup B$ is a minimum (s, t) cut.
- Symmetrical reasoning for $A \cap B$.

• These inclusion-wise maximal/minimal min-cuts are called *furthest from s* and *closest to s*, respectively.

- These inclusion-wise maximal/minimal min-cuts are called *furthest from s* and *closest to s*, respectively.
- Any sensible max-flow algorithm can provide these cuts within the same running time.

- These inclusion-wise maximal/minimal min-cuts are called *furthest from s* and *closest to s*, respectively.
- Any sensible max-flow algorithm can provide these cuts within the same running time.
- ullet Naturally generalizes to S and T being sets of sources and sinks.

Min-cut reduction for EDGE MULTIWAY CUT

• Pick a terminal t, and let A be the $(\{t\}, T \setminus \{t\})$ min-cut that is furthest from t.

Min-cut reduction for EDGE MULTIWAY CUT

• Pick a terminal t, and let A be the $(\{t\}, T \setminus \{t\})$ min-cut that is furthest from t.

Lemma

There exists an optimal solution to the instance that does not include any edge with both endpoints in A.

Min-cut reduction for EDGE MULTIWAY CUT

• Pick a terminal t, and let A be the $(\{t\}, T \setminus \{t\})$ min-cut that is furthest from t.

Lemma

There exists an optimal solution to the instance that does not include any edge with both endpoints in A.

• **Note**: If the lemma is true, then it is safe to contract the whole set *A* onto *t*.

• Let F be any opt. solution, and let $B = \operatorname{reach}(t, G \setminus F)$.

- Let F be any opt. solution, and let $B = \operatorname{reach}(t, G \setminus F)$.
- Construct F' from F by selling every edge with both endpoints in $A \cup B$, and buying the remainder of $\Delta(A \cup B)$.

- Let F be any opt. solution, and let $B = \operatorname{reach}(t, G \setminus F)$.
- Construct F' from F by selling every edge with both endpoints in $A \cup B$, and buying the remainder of $\Delta(A \cup B)$.
 - Check (1). $|F'| \leq |F|$.

- Let F be any opt. solution, and let $B = \operatorname{reach}(t, G \setminus F)$.
- Construct F' from F by selling every edge with both endpoints in $A \cup B$, and buying the remainder of $\Delta(A \cup B)$.
 - Check (1). $|F'| \leq |F|$.
 - Check (2). F' is still a solution.

• We have sold at least $E(B, A \setminus B)$, and bought $E(A \setminus B, \overline{A \cup B})$.

- We have sold at least $E(B, A \setminus B)$, and bought $E(A \setminus B, \overline{A \cup B})$.
- It suffices to show that

$$|E(B, A \setminus B)| \ge |E(A \setminus B, \overline{A \cup B})|.$$

- We have sold at least $E(B, A \setminus B)$, and bought $E(A \setminus B, \overline{A \cup B})$.
- It suffices to show that

$$|E(B, A \setminus B)| \ge |E(A \setminus B, \overline{A \cup B})|.$$

• By adding $|E(B, \overline{A \cup B})|$ to both sides, equivalently:

$$\delta(B) \geq \delta(A \cup B).$$

- We have sold at least $E(B, A \setminus B)$, and bought $E(A \setminus B, \overline{A \cup B})$.
- It suffices to show that

$$|E(B, A \setminus B)| \ge |E(A \setminus B, \overline{A \cup B})|.$$

• By adding $|E(B, \overline{A \cup B})|$ to both sides, equivalently:

$$\delta(B) \geq \delta(A \cup B)$$
.

Submodularity:

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B).$$

- We have sold at least $E(B, A \setminus B)$, and bought $E(A \setminus B, \overline{A \cup B})$.
- It suffices to show that

$$|E(B, A \setminus B)| \ge |E(A \setminus B, \overline{A \cup B})|.$$

• By adding $|E(B, \overline{A \cup B})|$ to both sides, equivalently:

$$\delta(B) \geq \delta(A \cup B)$$
.

Submodularity:

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B).$$

• A is minimum $\Rightarrow \delta(A) \leq \delta(A \cap B)$.

- We have sold at least $E(B, A \setminus B)$, and bought $E(A \setminus B, \overline{A \cup B})$.
- It suffices to show that

$$|E(B, A \setminus B)| \ge |E(A \setminus B, \overline{A \cup B})|.$$

• By adding $|E(B, \overline{A \cup B})|$ to both sides, equivalently:

$$\delta(B) \geq \delta(A \cup B)$$
.

Submodularity:

$$\delta(A) + \delta(B) \ge \delta(A \cup B) + \delta(A \cap B).$$

- A is minimum $\Rightarrow \delta(A) \leq \delta(A \cap B)$.
- Hence $\delta(B) > \delta(A \cup B)$ and we are done.

• Assume P is a t'-t'' path untouched by F' such that $t' \neq t$.

- Assume P is a t'-t'' path untouched by F' such that $t' \neq t$.
- \bullet F is an optimum solution; let uv be any edge of P that is in F.

- Assume P is a t'-t'' path untouched by F' such that $t' \neq t$.
- F is an optimum solution; let uv be any edge of P that is in F.
- $uv \in F \setminus F'$, so $u, v \in A \cup B$.

- Assume P is a t'-t'' path untouched by F' such that $t' \neq t$.
- F is an optimum solution; let uv be any edge of P that is in F.
- $uv \in F \setminus F'$, so $u, v \in A \cup B$.
- $G[A \cup B]$ is connected, so t is reachable from u in $G[A \cup B]$.

- Assume P is a t'-t'' path untouched by F' such that $t' \neq t$.
- F is an optimum solution; let uv be any edge of P that is in F.
- $uv \in F \setminus F'$, so $u, v \in A \cup B$.
- $G[A \cup B]$ is connected, so t is reachable from u in $G[A \cup B]$.
- P[t', u] avoids $F' \supseteq \Delta(A \cup B)$.

- Assume P is a t'-t'' path untouched by F' such that $t' \neq t$.
- F is an optimum solution; let uv be any edge of P that is in F.
- $uv \in F \setminus F'$, so $u, v \in A \cup B$.
- $G[A \cup B]$ is connected, so t is reachable from u in $G[A \cup B]$.
- P[t', u] avoids $F' \supseteq \Delta(A \cup B)$.
- Ergo there is a t'-t path avoiding $\Delta(A \cup B)$, a contradiction.

• Second reduction rule. If $tt' \in E(G)$ for some $t, t' \in T$, then remove tt' and decrease the budget by 1.

- Second reduction rule. If $tt' \in E(G)$ for some $t, t' \in T$, then remove tt' and decrease the budget by 1.
- Assume both the reduction rules are applied exhaustively.

- Second reduction rule. If $tt' \in E(G)$ for some $t, t' \in T$, then remove tt' and decrease the budget by 1.
- Assume both the reduction rules are applied exhaustively.
- Then the sets $\Delta(\{t\})$ for $t \in T$ are:

- Second reduction rule. If $tt' \in E(G)$ for some $t, t' \in T$, then remove tt' and decrease the budget by 1.
- Assume both the reduction rules are applied exhaustively.
- Then the sets $\Delta(\{t\})$ for $t \in T$ are:
 - pairwise disjoint;

- Second reduction rule. If $tt' \in E(G)$ for some $t, t' \in T$, then remove tt' and decrease the budget by 1.
- Assume both the reduction rules are applied exhaustively.
- Then the sets $\Delta(\{t\})$ for $t \in T$ are:
 - pairwise disjoint;
 - the only minimum cuts from t to $T \setminus \{t\}$.

Structure of the instance

Structure of the instance

• Let F be a solution and $d_i = \delta(\operatorname{reach}(t_i, G \setminus F))$. Then $|F| = \frac{1}{2} \sum_i d_i$.

- Let F be a solution and $d_i = \delta(\operatorname{reach}(t_i, G \setminus F))$. Then $|F| = \frac{1}{2} \sum_i d_i$.
- Let C_i be the cutset of any min-cut between t_i and $T \setminus \{t_i\}$, and let $c_i = |C_i|$. Obviously $c_i \leq d_i$.

- Let F be a solution and $d_i = \delta(\operatorname{reach}(t_i, G \setminus F))$. Then $|F| = \frac{1}{2} \sum_i d_i$.
- Let C_i be the cutset of any min-cut between t_i and $T \setminus \{t_i\}$, and let $c_i = |C_i|$. Obviously $c_i \le d_i$.
- $F^* := \bigcup_i C_i$ is always a solution (even if we omit one of them)!

- Let F be a solution and $d_i = \delta(\operatorname{reach}(t_i, G \setminus F))$. Then $|F| = \frac{1}{2} \sum_i d_i$.
- Let C_i be the cutset of any min-cut between t_i and $T \setminus \{t_i\}$, and let $c_i = |C_i|$. Obviously $c_i \leq d_i$.
- $F^* := \bigcup_i C_i$ is always a solution (even if we omit one of them)!
- $|F^*| \leq \sum_i c_i \leq \sum_i d_i \leq 2|F|$, hence F^* is a 2-approximation.

- Let F be a solution and $d_i = \delta(\operatorname{reach}(t_i, G \setminus F))$. Then $|F| = \frac{1}{2} \sum_i d_i$.
- Let C_i be the cutset of any min-cut between t_i and $T \setminus \{t_i\}$, and let $c_i = |C_i|$. Obviously $c_i \leq d_i$.
- $F^* := \bigcup_i C_i$ is always a solution (even if we omit one of them)!
- $|F^*| \leq \sum_i c_i \leq \sum_i d_i \leq 2|F|$, hence F^* is a 2-approximation.
- If we omit the largest C_i , we get $(2 \frac{2}{|T|})$ -approximation.

• Let $\lambda(G, T) = \frac{1}{2} \sum_{i} c_{i}$.

- Let $\lambda(G, T) = \frac{1}{2} \sum_{i} c_{i}$.
- If we are dealing with a YES-instance, then

$$\lambda(G,T) \leq OPT \leq k$$
.

- Let $\lambda(G, T) = \frac{1}{2} \sum_{i} c_{i}$.
- If we are dealing with a YES-instance, then

$$\lambda(G,T) \leq OPT \leq k$$
.

• If the instance is moreover non-trivial, then $2\lambda(G,T) > k$, so in particular $\frac{k}{2} < \lambda(G,T) \le OPT \le k$.

- Let $\lambda(G, T) = \frac{1}{2} \sum_{i} c_{i}$.
- If we are dealing with a YES-instance, then

$$\lambda(G,T) \leq OPT \leq k$$
.

- If the instance is moreover non-trivial, then $2\lambda(G,T) > k$, so in particular $\frac{k}{2} < \lambda(G,T) \le OPT \le k$.
- Main idea: A branching algorithm makes progress not only if the budget decreases, but also if $\lambda(G, T)$ increases!

- Let $\lambda(G, T) = \frac{1}{2} \sum_{i} c_{i}$.
- If we are dealing with a YES-instance, then

$$\lambda(G,T) \leq OPT \leq k$$
.

- If the instance is moreover non-trivial, then $2\lambda(G,T) > k$, so in particular $\frac{k}{2} < \lambda(G,T) \le OPT \le k$.
- Main idea: A branching algorithm makes progress not only if the budget decreases, but also if $\lambda(G, T)$ increases!
 - The budget can decrease at most *k* times.

- Let $\lambda(G, T) = \frac{1}{2} \sum_{i} c_{i}$.
- If we are dealing with a YES-instance, then

$$\lambda(G,T) \leq OPT \leq k$$
.

- If the instance is moreover non-trivial, then $2\lambda(G,T) > k$, so in particular $\frac{k}{2} < \lambda(G,T) \le OPT \le k$.
- Main idea: A branching algorithm makes progress not only if the budget decreases, but also if $\lambda(G, T)$ increases!
 - The budget can decrease at most *k* times.
 - The lower bound cannot increase to more than the budget.

The algorithm

• Let $\phi(G, T, k) := k - \lambda(G, T) = k - \frac{1}{2} \sum_{i} c_{i}$. In a nontrivial YES-instance we have $0 \le \phi(G, T, k) < \frac{k}{2}$

The algorithm

- Let $\phi(G, T, k) := k \lambda(G, T) = k \frac{1}{2} \sum_{i} c_{i}$. In a nontrivial YES-instance we have $0 \le \phi(G, T, k) < \frac{k}{2}$
- **Step 1**. Apply both reduction rules exhaustively.

- Let $\phi(G, T, k) := k \lambda(G, T) = k \frac{1}{2} \sum_{i} c_{i}$. In a nontrivial YES-instance we have $0 \le \phi(G, T, k) < \frac{k}{2}$
- **Step 1**. Apply both reduction rules exhaustively.
- **Step 2**. Pick any edge *ut* incident to a terminal *t*, and branch into two subcases:

- Let $\phi(G, T, k) := k \lambda(G, T) = k \frac{1}{2} \sum_{i} c_{i}$. In a nontrivial YES-instance we have $0 \le \phi(G, T, k) < \frac{k}{2}$
- **Step 1**. Apply both reduction rules exhaustively.
- **Step 2**. Pick any edge *ut* incident to a terminal *t*, and branch into two subcases:
 - (a) ut will be in the solution, so delete ut and decrement k by 1;

- Let $\phi(G, T, k) := k \lambda(G, T) = k \frac{1}{2} \sum_{i} c_{i}$. In a nontrivial YES-instance we have $0 \le \phi(G, T, k) < \frac{k}{2}$
- **Step 1**. Apply both reduction rules exhaustively.
- **Step 2**. Pick any edge *ut* incident to a terminal *t*, and branch into two subcases:
 - (a) ut will be in the solution, so delete ut and decrement k by 1;
 - (b) ut will not be in the solution, so contract ut.

- Let $\phi(G, T, k) := k \lambda(G, T) = k \frac{1}{2} \sum_{i} c_{i}$. In a nontrivial YES-instance we have $0 \le \phi(G, T, k) < \frac{k}{2}$
- Step 1. Apply both reduction rules exhaustively.
- **Step 2**. Pick any edge *ut* incident to a terminal *t*, and branch into two subcases:
 - (a) ut will be in the solution, so delete ut and decrement k by 1;
 - (b) ut will not be in the solution, so contract ut.
- **Step 3**. Proceed with Steps 1 and 2 up to the point when every terminal becomes isolated (YES), or $\phi(G, T, k)$ becomes negative (NO).

$$\phi(G,T,k):=k-\frac{1}{2}\sum_i c_i$$

• Assume ut is deleted.

$$\phi(G,T,k):=k-\frac{1}{2}\sum_i c_i$$

- Assume ut is deleted.
 - *k* is decremented by 1.

$$\phi(G,T,k):=k-\frac{1}{2}\sum_{i}c_{i}$$

- Assume ut is deleted.
 - *k* is decremented by 1.
 - \bullet The min-cut from t decreases by 1.

$$\phi(G,T,k):=k-\frac{1}{2}\sum_{i}c_{i}$$

- Assume ut is deleted.
 - *k* is decremented by 1.
 - The min-cut from t decreases by 1.
 - The min-cut from any other terminal t' does not change, since any $(\{t'\}, T \setminus \{t'\})$ cut that includes ut has larger cutset than the cut $\{t'\}$.

$$\phi(G,T,k):=k-\frac{1}{2}\sum_i c_i$$

- Assume ut is deleted.
 - *k* is decremented by 1.
 - The min-cut from t decreases by 1.
 - The min-cut from any other terminal t' does not change, since any $(\{t'\}, T \setminus \{t'\})$ cut that includes ut has larger cutset than the cut $\{t'\}$.
- Hence, the potential decreases by exactly $1 \frac{1}{2} = \frac{1}{2}$.

$$\phi(G,T,k):=k-\frac{1}{2}\sum_{i}c_{i}$$

Assume ut is contracted.

$$\phi(G,T,k):=k-\frac{1}{2}\sum_{i}c_{i}$$

- Assume ut is contracted.
 - k stays the same.

$$\phi(G,T,k):=k-\frac{1}{2}\sum_{i}c_{i}$$

- Assume ut is contracted.
 - *k* stays the same.
 - The min-cut from *t* increases by at least 1.

$$\phi(G,T,k):=k-\frac{1}{2}\sum_{i}c_{i}$$

- Assume ut is contracted.
 - *k* stays the same.
 - The min-cut from t increases by at least 1.
 - ullet The min-cut from any other terminal t' stays the same.

$$\phi(G,T,k):=k-\frac{1}{2}\sum_{i}c_{i}$$

- Assume ut is contracted.
 - *k* stays the same.
 - The min-cut from t increases by at least 1.
 - The min-cut from any other terminal t' stays the same.
- Hence, the potential decreases by at least $\frac{1}{2}$.

Wrapping up

• Potential is less than $\frac{k}{2}$ in the beginning, and decreases by at least $\frac{1}{2}$ at each branch.

Wrapping up

- Potential is less than $\frac{k}{2}$ in the beginning, and decreases by at least $\frac{1}{2}$ at each branch.
- Hence we get an $\mathcal{O}^*(2^k)$ algorithm.

Wrapping up

- Potential is less than $\frac{k}{2}$ in the beginning, and decreases by at least $\frac{1}{2}$ at each branch.
- Hence we get an $\mathcal{O}^*(2^k)$ algorithm.
- **Crucial point**: A branching rule can lead to some progress, even if this progress is not visible in the budget.

• **Problem 1**. Deleting an edge may disconnect the graph, and we described the reductions for connected graphs.

- **Problem 1**. Deleting an edge may disconnect the graph, and we described the reductions for connected graphs.
 - Apply the rules to each connected component separately.
 Everything goes smoothly.

- Problem 1. Deleting an edge may disconnect the graph, and we described the reductions for connected graphs.
 - Apply the rules to each connected component separately.
 Everything goes smoothly.
- **Problem 2**. We need to make sure that the potential does not increase during reduction rules.

- Problem 1. Deleting an edge may disconnect the graph, and we described the reductions for connected graphs.
 - Apply the rules to each connected component separately.
 Everything goes smoothly.
- **Problem 2**. We need to make sure that the potential does not increase during reduction rules.
 - Min-cut rule: Contractions can only increase min-cuts, so the potential can only decrease.

- **Problem 1**. Deleting an edge may disconnect the graph, and we described the reductions for connected graphs.
 - Apply the rules to each connected component separately. Everything goes smoothly.
- **Problem 2**. We need to make sure that the potential does not increase during reduction rules.
 - Min-cut rule: Contractions can only increase min-cuts, so the potential can only decrease.
 - **Second rule**: k decreases by 1, $\sum_i c_i$ decreases by 2 \Rightarrow the potential stays the same.

Plan for now

ullet An $\mathcal{O}^{\star}(2^k)$ algorithm for Node Multiway Cut.

Plan for now

- An $\mathcal{O}^{\star}(2^k)$ algorithm for NODE MULTIWAY CUT.
 - Based on a joint work with Cygan and Wojtaszczyk.

• First idea: Take vertex cuts instead of edge cuts!

- First idea: Take vertex cuts instead of edge cuts!
- **Problem**: Sum of min-cuts is only a |T|-approximation of the optimum solution.

- First idea: Take vertex cuts instead of edge cuts!
- **Problem**: Sum of min-cuts is only a |T|-approximation of the optimum solution.
 - A star with terminals on the petals.

- First idea: Take vertex cuts instead of edge cuts!
- **Problem**: Sum of min-cuts is only a |T|-approximation of the optimum solution.
 - A star with terminals on the petals.
- We need a smarter lower bound.

• A linear program consists of:

- A linear program consists of:
 - a vector of variables $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$;

- A linear program consists of:
 - a vector of variables $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$;
 - ullet a set of linear constraints $(a_i \in \mathbb{R}^n, b_i \in \mathbb{R})$ of the form

$$\sum_{i=1}^n a_{ij} x_i \le b_j.$$

- A linear program consists of:
 - a vector of variables $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$;
 - ullet a set of linear constraints $(a_j \in \mathbb{R}^n, b_j \in \mathbb{R})$ of the form

$$\sum_{i=1}^n a_{ij} x_i \leq b_j.$$

• a goal vector $c \in \mathbb{R}^n$.

- A linear program consists of:
 - a vector of variables $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$;
 - ullet a set of linear constraints $(a_j \in \mathbb{R}^n, b_j \in \mathbb{R})$ of the form

$$\sum_{i=1}^n a_{ij} x_i \le b_j.$$

- a goal vector $c \in \mathbb{R}^n$.
- The goal is to find a vector x that minimizes/maximizes $\sum_{i=1}^{n} c_i x_i$ while satisfying all the constraints.

• If we additionally require that the variables must be integral, then we get *integer programming* which is NP-hard.

- If we additionally require that the variables must be integral, then we get *integer programming* which is NP-hard.
- However, linear programming can be solved in polynomial time using the *ellipsoid method*.

- If we additionally require that the variables must be integral, then we get *integer programming* which is NP-hard.
- However, linear programming can be solved in polynomial time using the *ellipsoid method*.
- This method works in a more general separation oracle model.

- If we additionally require that the variables must be integral, then we get *integer programming* which is NP-hard.
- However, linear programming can be solved in polynomial time using the *ellipsoid method*.
- This method works in a more general separation oracle model.
 - We can have exponentially many constraints.

- If we additionally require that the variables must be integral, then we get *integer programming* which is NP-hard.
- However, linear programming can be solved in polynomial time using the ellipsoid method.
- This method works in a more general separation oracle model.
 - We can have exponentially many constraints.
 - But we need to provide a polynomial-time oracle that, for a given vector, either

- If we additionally require that the variables must be integral, then we get *integer programming* which is NP-hard.
- However, linear programming can be solved in polynomial time using the ellipsoid method.
- This method works in a more general separation oracle model.
 - We can have exponentially many constraints.
 - But we need to provide a polynomial-time oracle that, for a given vector, either
 - (a) concludes that all the constraints are satisfied; or

- If we additionally require that the variables must be integral, then we get *integer programming* which is NP-hard.
- However, linear programming can be solved in polynomial time using the ellipsoid method.
- This method works in a more general separation oracle model.
 - We can have exponentially many constraints.
 - But we need to provide a polynomial-time oracle that, for a given vector, either
 - (a) concludes that all the constraints are satisfied; or
 - (b) provides a constraint that is broken.

- If we additionally require that the variables must be integral, then we get *integer programming* which is NP-hard.
- However, linear programming can be solved in polynomial time using the *ellipsoid method*.
- This method works in a more general separation oracle model.
 - We can have exponentially many constraints.
 - But we need to provide a polynomial-time oracle that, for a given vector, either
 - (a) concludes that all the constraints are satisfied; or
 - (b) provides a constraint that is broken.
- **Usage**: Model a problem as an integer program, and relax the integer constraints to linear ones. The solution to the relaxation is a lower bound for the solution to the integer program.

• For every non-terminal u, we have a variable x_u .

- For every non-terminal u, we have a variable x_u .
- Integer constraints: $\forall_u \ x_u \in \{0,1\}$, denoting whether the vertex is chosen or not.

- For every non-terminal u, we have a variable x_u .
- **Integer constraints**: $\forall_u \ x_u \in \{0,1\}$, denoting whether the vertex is chosen or not.
- **Goal**: Minimize $\sum_{u} x_{u}$.

- For every non-terminal u, we have a variable x_u .
- **Integer constraints**: $\forall_u \ x_u \in \{0,1\}$, denoting whether the vertex is chosen or not.
- **Goal**: Minimize $\sum_{u} x_{u}$.
- **Linear constraints**: for every path *P* between two different terminals, we have:

$$\sum_{u\in V(P)}x_u\geq 1.$$

Linear relaxation

- For every non-terminal u, we have a variable x_u .
- Relaxed constraints: $\forall_u \ 0 \le x_u \le 1$, denoting in what fraction the vertex is chosen to the solution.
- **Goal**: Minimize $\sum_{u} x_{u}$.
- **Linear constraints**: for every path *P* between two different terminals, we have:

$$\sum_{u\in V(P)}x_u\geq 1.$$

Linear relaxation

- For every non-terminal u, we have a variable x_u .
- Relaxed constraints: $\forall_u \ 0 \le x_u \le 1$, denoting in what fraction the vertex is chosen to the solution.
- **Goal**: Minimize $\sum_{u} x_{u}$.
- **Linear constraints**: for every path *P* between two different terminals, we have:

$$\sum_{u \in V(P)} x_u \ge 1.$$

• Separation oracle: Dijkstra with vertex weights.

• Garg et al.: This LP-relaxation of NMWC is *half-integral*, i.e., there exists an optimum solution that assigns only values $0, \frac{1}{2}, 1$.

- Garg et al.: This LP-relaxation of NMWC is half-integral, i.e., there exists an optimum solution that assigns only values $0, \frac{1}{2}, 1$.
 - The proof is not difficult, but uses primal-dual complementary slackness condition.

- Garg et al.: This LP-relaxation of NMWC is half-integral, i.e., there exists an optimum solution that assigns only values $0, \frac{1}{2}, 1$.
 - The proof is not difficult, but uses primal-dual complementary slackness condition.
 - See the proof in Chapter 19 of Vazirani.

- Garg et al.: This LP-relaxation of NMWC is half-integral, i.e., there exists an optimum solution that assigns only values $0, \frac{1}{2}, 1$.
 - The proof is not difficult, but uses primal-dual complementary slackness condition.
 - See the proof in Chapter 19 of Vazirani.
- Note: Self-reducibility ⇒ We can find half-integral solution in polynomial time.

- Garg et al.: This LP-relaxation of NMWC is half-integral, i.e., there exists an optimum solution that assigns only values $0, \frac{1}{2}, 1$.
 - The proof is not difficult, but uses primal-dual complementary slackness condition.
 - See the proof in Chapter 19 of Vazirani.
- Note: Self-reducibility ⇒ We can find half-integral solution in polynomial time.
- Note: Obviously $OPT_{\mathrm{LP}} \leq OPT$, but also $OPT \leq 2 \cdot OPT_{\mathrm{LP}}$, since we can round all the halves up to ones. So this rounding yields a 2-approximation.

Take any half-integral optimum solution F.

For $t \in T$, the zero-region U_t comprises vertices reachable from t using paths of weight 0.

Define F' by putting 1-s on vertices that see ≥ 2 zero-regions, and $\frac{1}{2}$ on those seeing 1 region.

Observe: F' is still a solution, and $F'(u) \leq F(u)$ for each u.

Conclusion: F = F'

Structure of the solution to the relaxation

Every optimum half-integral solution F has the following form:

- F(u) = 1 if u is in the neighbourhood of two or more zero-regions.
- $F(u) = \frac{1}{2}$ if u is in the neighbourhood of exactly one zero-regions.
- F(u) = 0 otherwise.

Structure of the solution to the relaxation

Every optimum half-integral solution F has the following form:

- F(u) = 1 if u is in the neighbourhood of two or more zero-regions.
- $F(u) = \frac{1}{2}$ if u is in the neighbourhood of exactly one zero-regions.
- F(u) = 0 otherwise.

Reduction of Guillemot

There is always an optimum solution of NMWC that does not touch any U_t . Hence, it is safe to contract every region U_t onto t.

• Assume for simplicity that the LP solution does not use any ones.

- Assume for simplicity that the LP solution does not use any ones.
- Let X be an optimum solution to NMWC; let $B = X \cap \bigcup_{t \in T} U_t$.

- Assume for simplicity that the LP solution does not use any ones.
- Let X be an optimum solution to NMWC; let $B = X \cap \bigcup_{t \in T} U_t$.
- Let C be the set of those vertices of $N(\bigcup_{t \in T} U_t)$ that cannot be reached from respective t without passing through B.

- Assume for simplicity that the LP solution does not use any ones.
- Let X be an optimum solution to NMWC; let $B = X \cap \bigcup_{t \in T} U_t$.
- Let C be the set of those vertices of $N(\bigcup_{t \in T} U_t)$ that cannot be reached from respective t without passing through B.
- Replace B with C, i.e., consider $X' := (X \setminus B) \cup C$.

Verifying X'

• Again, we check two things.

Verifying X'

- Again, we check two things.
 - Check (1). $|X'| \le |X|$, eq. $|C| \le |B|$.

Verifying X'

- Again, we check two things.
 - Check (1). $|X'| \le |X|$, eq. $|C| \le |B|$.

• Check (2). X' is still a solution.

Check (2)

• The same argument as for the edge version.

Check (2)

- The same argument as for the edge version.
- A t'-t'' path P untouched by X' must contain a vertex of B.

Check (2)

- The same argument as for the edge version.
- A t'-t'' path P untouched by X' must contain a vertex of B.

• Contradiction with $N(U_t \cup \text{reach}(t, G \setminus X))$ separating t from other terminals.

Check (1)

• Assume for contradiction that |C| > |B|.

Check (1)

- Assume for contradiction that |C| > |B|.
- In F, do $-\varepsilon$ on C and $+\varepsilon$ on B.

Check (1)

- Assume for contradiction that |C| > |B|.
- In F, do $-\varepsilon$ on C and $+\varepsilon$ on B.
- The obtained F' is still a solution, and has strictly lower cost.

 Ones used by the LP can be seen as halves from two or more directions; everything goes through smoothly.

- Ones used by the LP can be seen as halves from two or more directions; everything goes through smoothly.
- After the application of regions U_t , vertices that saw two regions are vertices that see two terminals.

- Ones used by the LP can be seen as halves from two or more directions; everything goes through smoothly.
- After the application of regions U_t , vertices that saw two regions are vertices that see two terminals.
- Such non-terminals must be always chosen.

- Ones used by the LP can be seen as halves from two or more directions; everything goes through smoothly.
- After the application of regions U_t , vertices that saw two regions are vertices that see two terminals.
- Such non-terminals must be always chosen.
- **Corollary**: Safe to greedily choose vertices assigned 1 by the LP.

- Ones used by the LP can be seen as halves from two or more directions; everything goes through smoothly.
- After the application of regions U_t , vertices that saw two regions are vertices that see two terminals.
- Such non-terminals must be always chosen.
- Corollary: Safe to greedily choose vertices assigned 1 by the LP.
- After applying both rules exhaustively, we can assume that the **only** half-integral optimum solution to LP assigns $\frac{1}{2}$ on each N(t), for $t \in T$.

• We do almost exactly the same.

- We do almost exactly the same.
- Step 1. Apply both reduction rules exhaustively.

- We do almost exactly the same.
- **Step 1**. Apply both reduction rules exhaustively.
- **Step 2**. Pick any vertex *u* adjacent to a terminal *t*, and branch into two subcases:

- We do almost exactly the same.
- **Step 1**. Apply both reduction rules exhaustively.
- **Step 2**. Pick any vertex *u* adjacent to a terminal *t*, and branch into two subcases:
 - (a) u will be in the solution, so delete u and decrement k by 1;

- We do almost exactly the same.
- **Step 1**. Apply both reduction rules exhaustively.
- **Step 2**. Pick any vertex *u* adjacent to a terminal *t*, and branch into two subcases:
 - (a) u will be in the solution, so delete u and decrement k by 1;
 - (b) u will not be in the solution, so contract u onto t.

- We do almost exactly the same.
- **Step 1**. Apply both reduction rules exhaustively.
- **Step 2**. Pick any vertex *u* adjacent to a terminal *t*, and branch into two subcases:
 - (a) u will be in the solution, so delete u and decrement k by 1;
 - (b) u will not be in the solution, so contract u onto t.
- **Step 3**. Proceed with Steps 1 and 2 up to the point when every terminal becomes isolated (YES), or the LP solution exceeds the budget (NO).

Potential

• Potential: $\phi(G, T, k) = k - OPT_{LP}$.

Potential

- Potential: $\phi(G, T, k) = k OPT_{LP}$.
- In a non-trivial YES instance we have

$$OPT_{LP} \le k \le 2 \cdot OPT_{LP}$$
,

so
$$0 \le \phi(G, T, k) \le k/2$$
.

Potential

- Potential: $\phi(G, T, k) = k OPT_{LP}$.
- In a non-trivial YES instance we have

$$OPT_{LP} \le k \le 2 \cdot OPT_{LP}$$
,

so
$$0 \le \phi(G, T, k) \le k/2$$
.

• We analyse what happens with the potential in the branches.

$$\phi(G, T, k) = k - OPT_{LP}$$
.

• Budget k decreases by 1, and OPT_{LP} decreases by exactly $\frac{1}{2}$.

$$\phi(G, T, k) = k - OPT_{LP}$$
.

- Budget k decreases by 1, and OPT_{LP} decreases by exactly $\frac{1}{2}$.
 - Every half-integral LP-solution of I' can be transformed into an LP-solution of I by putting 1 on u.

$$\phi(G, T, k) = k - OPT_{LP}$$
.

- Budget k decreases by 1, and OPT_{LP} decreases by exactly $\frac{1}{2}$.
 - Every half-integral LP-solution of I' can be transformed into an LP-solution of I by putting 1 on u.
 - Every half-integral LP-solution of I that puts 1 on u has cost at least $OPT_{\mathrm{LP}}(I) + \frac{1}{2}$.

$$\phi(G, T, k) = k - OPT_{LP}.$$

- Budget k decreases by 1, and OPT_{LP} decreases by exactly $\frac{1}{2}$.
 - Every half-integral LP-solution of I' can be transformed into an LP-solution of I by putting 1 on u.
 - Every half-integral LP-solution of I that puts 1 on u has cost at least $OPT_{LP}(I) + \frac{1}{2}$.
 - Hence every LP-solution of I' must have cost at least $OPT_{LP}(I) - \frac{1}{2}$.

$$\phi(G, T, k) = k - OPT_{LP}$$
.

- Budget k decreases by 1, and OPT_{LP} decreases by exactly $\frac{1}{2}$.
 - Every half-integral LP-solution of I' can be transformed into an LP-solution of I by putting 1 on u.
 - Every half-integral LP-solution of I that puts 1 on u has cost at least $OPT_{LP}(I) + \frac{1}{2}$.
 - Hence every LP-solution of I' must have cost at least $OPT_{LP}(I) \frac{1}{2}$.
 - But there is an LP-solution of I' of cost $OPT_{LP}(I) \frac{1}{2}$.

$$\phi(G, T, k) = k - OPT_{LP}$$
.

- Budget k decreases by 1, and OPT_{LP} decreases by exactly $\frac{1}{2}$.
 - Every half-integral LP-solution of I' can be transformed into an LP-solution of I by putting 1 on u.
 - Every half-integral LP-solution of I that puts 1 on u has cost at least $OPT_{LP}(I) + \frac{1}{2}$.
 - Hence every LP-solution of I' must have cost at least $OPT_{LP}(I) \frac{1}{2}$.
 - But there is an LP-solution of I' of cost $OPT_{LP}(I) \frac{1}{2}$.
- Hence, potential ϕ decreases by exactly $1 \frac{1}{2} = \frac{1}{2}$.

$$\phi(G, T, k) = k - OPT_{LP}.$$

• Budget k stays the same, and OPT_{LP} increases by at least $\frac{1}{2}$.

$$\phi(G, T, k) = k - OPT_{LP}.$$

- Budget k stays the same, and OPT_{LP} increases by at least $\frac{1}{2}$.
 - Every half-integral LP-solution of I' can be transformed into a half-integral LP-solution of I by putting 0 on u.

$$\phi(G, T, k) = k - OPT_{LP}.$$

- Budget k stays the same, and OPT_{LP} increases by at least $\frac{1}{2}$.
 - Every half-integral LP-solution of I' can be transformed into a half-integral LP-solution of I by putting 0 on u.
 - But every half-integral solution of I that puts 0 on u has cost at least $OPT_{LP}(I) + \frac{1}{2}$.

$$\phi(G, T, k) = k - OPT_{LP}.$$

- Budget k stays the same, and OPT_{LP} increases by at least $\frac{1}{2}$.
 - Every half-integral LP-solution of I' can be transformed into a half-integral LP-solution of I by putting 0 on u.
 - But every half-integral solution of I that puts 0 on u has cost at least $OPT_{LP}(I) + \frac{1}{2}$.
- Hence potential ϕ decreases by at least $\frac{1}{2}$.

Wrapping up

• The potential is k/2 at the beginning and decreases by $\frac{1}{2}$ at each step.

Wrapping up

- The potential is k/2 at the beginning and decreases by $\frac{1}{2}$ at each step.
- Again, reductions can only decrease the potential.

Wrapping up

- The potential is k/2 at the beginning and decreases by $\frac{1}{2}$ at each step.
- Again, reductions can only decrease the potential.
- Hence, we have an $\mathcal{O}^*(2^k)$ algorithm.

• Take-away message: Use some polynomial-time computable lower bound to guide a branching algorithm.

- **Take-away message**: Use some polynomial-time computable lower bound to guide a branching algorithm.
- Progress is achieved not only by decreasing the budget, but also by increasing the lower bound.

- **Take-away message**: Use some polynomial-time computable lower bound to guide a branching algorithm.
- Progress is achieved not only by decreasing the budget, but also by increasing the lower bound.
- Solution to an LP relaxation may be a more robust lower bound than a combinatorial object.

• At the end of the day, we get a standard branching algorithm, just with an exotic progress measure.

- At the end of the day, we get a standard branching algorithm, just with an exotic progress measure.
 - Hence, we can open the toolbox of optimizing branching vectors via case analysis, and try to reduce the running time.

- At the end of the day, we get a standard branching algorithm, just with an exotic progress measure.
 - Hence, we can open the toolbox of optimizing branching vectors via case analysis, and try to reduce the running time.
 - Cao, Chen, Fan: $\mathcal{O}^*(1.84^k)$ for EDGE-MWC.

- At the end of the day, we get a standard branching algorithm, just with an exotic progress measure.
 - Hence, we can open the toolbox of optimizing branching vectors via case analysis, and try to reduce the running time.
 - Cao, Chen, Fan: $\mathcal{O}^*(1.84^k)$ for EDGE-MWC.
 - Nothing better than $\mathcal{O}^*(2^k)$ is known for Node-MWC.

- At the end of the day, we get a standard branching algorithm, just with an exotic progress measure.
 - Hence, we can open the toolbox of optimizing branching vectors via case analysis, and try to reduce the running time.
 - Cao, Chen, Fan: $\mathcal{O}^*(1.84^k)$ for EDGE-MWC.
 - Nothing better than $\mathcal{O}^*(2^k)$ is known for Node-MWC.
- **Tomorrow**: Applications of the same concept to VERTEX COVER ABOVE MAXIMUM MATCHING and other problems.