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Multiway Cut

Edge Multiway Cut

Input: A graph G with some terminals T ⊆ V (G ),
an integer k

Question: Is there a set of edges F with |F | ≤ k , such that
every path between two terminals is hit by F?

Node Multiway Cut

Input: A graph G with some terminals T ⊆ V (G ),
an integer k

Question: Is there a set of vertices X ⊆ V (G ) \ T with |X | ≤ k ,
s.t. every path between two terminals is hit by X?
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On the picture

If G is connected and F is optimum,
then every vertex is reachable from some terminal.

Pilipczuk, Pilipczuk LP-guided branching 3/42



On the picture

If G is connected and F is optimum,
then every vertex is reachable from some terminal.

Pilipczuk, Pilipczuk LP-guided branching 3/42



On the picture

If G is connected and F is optimum,
then every vertex is reachable from some terminal.

Pilipczuk, Pilipczuk LP-guided branching 3/42



Edge Multiway Cut

For |T | = 2 it is just an edge flow problem ⇒ P-time solvable.

NP-hard for |T | ≥ 3.

Goal: O?(2k) algorithm for Edge Multiway Cut.

This algorithm is due to Xiao.
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When |T | = 2

Let T = {s, t}.

An (s, t) cut is a subset A ⊆ V (G ) such that s ∈ A, t /∈ A.

The cutset is ∆(A) := E (A,A). Denote δ(A) = |∆(A)|.
An (s, t) cut A is minimum if δ(A) is minimum possible. The
size of the minimum cut can be determined in polynomial time.

Note: If (A,B) is a minimum cut, then A and B are connected.
Hence A = reach(s,G \ F ), where F is the cutset.
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Submodularity

s t

A

B

δ(A) + δ(B) ≥ δ(A ∪ B) + δ(A ∩ B)

1 0 0 10 1 1 00 1 0 11 0 1 01 1 1 11 1 0 0
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Furthest and closest cuts

Extreme minimum cuts

Among all minimum (s, t) cuts, there exists a unique cut A that is
inclusion-wise maximal, and a unique one that is inclusion-wise
minimal.

Proof: Take any two minimum (s, t) cuts A and B .

Submodularity ⇒ δ(A) + δ(B) ≥ δ(A ∪ B) + δ(A ∩ B).

A is minimum ⇒ δ(A) ≤ δ(A ∩ B).

Hence δ(B) ≥ δ(A ∪ B).

B is minimum ⇒ A ∪ B is a minimum (s, t) cut.

Symmetrical reasoning for A ∩ B .
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Furthest and closest cuts

These inclusion-wise maximal/minimal min-cuts are called
furthest from s and closest to s, respectively.

Any sensible max-flow algorithm can provide these cuts within
the same running time.

Naturally generalizes to S and T being sets of sources and sinks.
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Min-cut reduction for Edge Multiway Cut

Pick a terminal t, and let A be the ({t},T \ {t}) min-cut that
is furthest from t.

Lemma

There exists an optimal solution to the instance that does not include
any edge with both endpoints in A.

Note: If the lemma is true, then it is safe to contract the whole
set A onto t.

A
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Min-cut reduction, proof

Let F be any opt. solution, and let B = reach(t,G \ F ).

Construct F ′ from F by selling every edge with both endpoints
in A ∪ B , and buying the remainder of ∆(A ∪ B).

Check (1). |F ′| ≤ |F |.
Check (2). F ′ is still a solution.

A

B

A

B
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Min-cut reduction, proof of (1)

We have sold at least E (B ,A \ B), and bought E (A \ B ,A ∪ B).

It suffices to show that

|E (B ,A \ B)| ≥ |E (A \ B ,A ∪ B)|.

By adding |E (B ,A ∪ B)| to both sides, equivalently:

δ(B) ≥ δ(A ∪ B).

Submodularity:

δ(A) + δ(B) ≥ δ(A ∪ B) + δ(A ∩ B).

A is minimum ⇒ δ(A) ≤ δ(A ∩ B).

Hence δ(B) ≥ δ(A ∪ B) and we are done.
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Min-cut reduction, proof of (2)

Assume P is a t ′-t ′′ path untouched by F ′ such that t ′ 6= t.

F is an optimum solution; let uv be any edge of P that is in F .

uv ∈ F \ F ′, so u, v ∈ A ∪ B .

G [A ∪ B] is connected, so t is reachable from u in G [A ∪ B].

P[t ′, u] avoids F ′ ⊇ ∆(A ∪ B).

Ergo there is a t ′-t path avoiding ∆(A ∪ B), a contradiction.
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Second reduction rule

Second reduction rule. If tt ′ ∈ E (G ) for some t, t ′ ∈ T , then
remove tt ′ and decrease the budget by 1.

Assume both the reduction rules are applied exhaustively.

Then the sets ∆({t}) for t ∈ T are:

pairwise disjoint;
the only minimum cuts from t to T \ {t}.
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Structure of the instance

δ(A) > δ({t})

A
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Digression: approximation

Let F be a solution and di = δ(reach(ti ,G \ F )). Then
|F | = 1

2

∑
i di .

Let Ci be the cutset of any min-cut between ti and T \ {ti}, and
let ci = |Ci |. Obviously ci ≤ di .

F ? :=
⋃

i Ci is always a solution (even if we omit one of them)!

|F ?| ≤
∑

i ci ≤
∑

i di ≤ 2|F |, hence F ? is a 2-approximation.

If we omit the largest Ci , we get (2− 2
|T |)-approximation.
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The min-cuts as a lower bound

Let λ(G ,T ) = 1
2

∑
i ci .

If we are dealing with a YES-instance, then

λ(G ,T ) ≤ OPT ≤ k .

If the instance is moreover non-trivial, then 2λ(G ,T ) > k , so in
particular k

2
< λ(G ,T ) ≤ OPT ≤ k .

Main idea: A branching algorithm makes progress not only if
the budget decreases, but also if λ(G ,T ) increases!

The budget can decrease at most k times.
The lower bound cannot increase to more than the budget.
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The algorithm

Let φ(G ,T , k) := k − λ(G ,T ) = k − 1
2

∑
i ci . In a nontrivial

YES-instance we have 0 ≤ φ(G ,T , k) < k
2

Step 1. Apply both reduction rules exhaustively.

Step 2. Pick any edge ut incident to a terminal t, and branch
into two subcases:

(a) ut will be in the solution, so delete ut and decrement k by 1;
(b) ut will not be in the solution, so contract ut.

Step 3. Proceed with Steps 1 and 2 up to the point when every
terminal becomes isolated (YES), or φ(G ,T , k) becomes
negative (NO).
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Deleting the edge

φ(G ,T , k) := k − 1

2

∑
i

ci

Assume ut is deleted.

k is decremented by 1.
The min-cut from t decreases by 1.
The min-cut from any other terminal t ′ does not change, since
any ({t ′},T \ {t ′}) cut that includes ut has larger cutset than
the cut {t ′}.

Hence, the potential decreases by exactly 1− 1
2

= 1
2
.
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Contracting the edge

φ(G ,T , k) := k − 1

2

∑
i

ci

Assume ut is contracted.

k stays the same.
The min-cut from t increases by at least 1.
The min-cut from any other terminal t ′ stays the same.

Hence, the potential decreases by at least 1
2
.
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Wrapping up

Potential is less than k
2

in the beginning, and decreases by at
least 1

2
at each branch.

Hence we get an O?(2k) algorithm.

Crucial point: A branching rule can lead to some progress,
even if this progress is not visible in the budget.
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Technical details

Problem 1. Deleting an edge may disconnect the graph, and we
described the reductions for connected graphs.

Apply the rules to each connected component separately.
Everything goes smoothly.

Problem 2. We need to make sure that the potential does not
increase during reduction rules.

Min-cut rule: Contractions can only increase min-cuts, so the
potential can only decrease.
Second rule: k decreases by 1,

∑
i ci decreases by 2

⇒ the potential stays the same.
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Plan for now

An O?(2k) algorithm for Node Multiway Cut.

Based on a joint work with Cygan and Wojtaszczyk.
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The cuts

First idea: Take vertex cuts instead of edge cuts!

Problem: Sum of min-cuts is only a |T |-approximation of the
optimum solution.

A star with terminals on the petals.

We need a smarter lower bound.
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Linear programming, recap

A linear program consists of:

a vector of variables x = (x1, x2, . . . , xn) ∈ Rn;
a set of linear constraints (aj ∈ Rn, bj ∈ R) of the form

n∑
i=1

aijxi ≤ bj .

a goal vector c ∈ Rn.

The goal is to find a vector x that minimizes/maximizes∑n
i=1 cixi while satisfying all the constraints.
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Linear programming, recap

If we additionally require that the variables must be integral,
then we get integer programming which is NP-hard.

However, linear programming can be solved in polynomial time
using the ellipsoid method.

This method works in a more general separation oracle model.

We can have exponentially many constraints.
But we need to provide a polynomial-time oracle that, for a
given vector, either

(a) concludes that all the constraints are satisfied; or
(b) provides a constraint that is broken.

Usage: Model a problem as an integer program, and relax the
integer constraints to linear ones. The solution to the relaxation
is a lower bound for the solution to the integer program.
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Integer program for NMWC

For every non-terminal u, we have a variable xu.

Integer constraints: ∀u xu ∈ {0, 1}, denoting whether the
vertex is chosen or not.

Goal: Minimize
∑

u xu.

Linear constraints: for every path P between two different
terminals, we have: ∑

u∈V (P)

xu ≥ 1.
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Linear relaxation

For every non-terminal u, we have a variable xu.

Relaxed constraints: ∀u 0 ≤ xu ≤ 1, denoting in what fraction
the vertex is chosen to the solution.

Goal: Minimize
∑

u xu.

Linear constraints: for every path P between two different
terminals, we have: ∑

u∈V (P)

xu ≥ 1.

Separation oracle: Dijkstra with vertex weights.
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Half-integrality

Garg et al.: This LP-relaxation of NMWC is half-integral, i.e.,
there exists an optimum solution that assigns only values 0, 1

2
, 1.

The proof is not difficult, but uses primal-dual complementary
slackness condition.
See the proof in Chapter 19 of Vazirani.

Note: Self-reducibility ⇒ We can find half-integral solution in
polynomial time.

Note: Obviously OPTLP ≤ OPT , but also OPT ≤ 2 · OPTLP,
since we can round all the halves up to ones. So this rounding
yields a 2-approximation.
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Structure of the solution

Take any half-integral optimum solution F .

For t ∈ T , the zero-region Ut comprises

vertices reachable from t using paths of weight 0.

Define F ′ by putting 1-s on vertices that see ≥ 2

zero-regions, and 1
2 on those seeing 1 region.

Observe: F ′ is still a solution,
and F ′(u) ≤ F (u) for each u.

Conclusion: F = F ′
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Structure of the solution

Structure of the solution to the relaxation

Every optimum half-integral solution F has the following form:

F (u) = 1 if u is in the neighbourhood of two or more
zero-regions.

F (u) = 1
2

if u is in the neighbourhood of exactly one
zero-regions.

F (u) = 0 otherwise.

Reduction of Guillemot

There is always an optimum solution of NMWC that does not touch
any Ut . Hence, it is safe to contract every region Ut onto t.

Pilipczuk, Pilipczuk LP-guided branching 30/42



Structure of the solution

Structure of the solution to the relaxation

Every optimum half-integral solution F has the following form:

F (u) = 1 if u is in the neighbourhood of two or more
zero-regions.

F (u) = 1
2

if u is in the neighbourhood of exactly one
zero-regions.

F (u) = 0 otherwise.

Reduction of Guillemot

There is always an optimum solution of NMWC that does not touch
any Ut . Hence, it is safe to contract every region Ut onto t.

Pilipczuk, Pilipczuk LP-guided branching 30/42



Proof of the reduction

Assume for simplicity that the LP solution does not use any ones.

Let X be an optimum solution to NMWC; let
B = X ∩

⋃
t∈T Ut .

Let C be the set of those vertices of N(
⋃

t∈T Ut) that cannot be
reached from respective t without passing through B .

Replace B with C , i.e., consider X ′ := (X \ B) ∪ C .

t

Ut

t

Ut
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Verifying X ′

Again, we check two things.

Check (1). |X ′| ≤ |X |, eq. |C | ≤ |B|.
Check (2). X ′ is still a solution.

t

Ut
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Check (2)

The same argument as for the edge version.

A t ′-t ′′ path P untouched by X ′ must contain a vertex of B .

Contradiction with N(Ut ∪ reach(t,G \ X )) separating t from
other terminals.

t

Ut
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Check (1)

Assume for contradiction that |C | > |B |.

In F , do −ε on C and +ε on B .

The obtained F ′ is still a solution, and has strictly lower cost.

t

Ut

Pilipczuk, Pilipczuk LP-guided branching 34/42



Check (1)

Assume for contradiction that |C | > |B |.
In F , do −ε on C and +ε on B .

The obtained F ′ is still a solution, and has strictly lower cost.

t

Ut

Pilipczuk, Pilipczuk LP-guided branching 34/42



Check (1)

Assume for contradiction that |C | > |B |.
In F , do −ε on C and +ε on B .

The obtained F ′ is still a solution, and has strictly lower cost.

t

Ut

Pilipczuk, Pilipczuk LP-guided branching 34/42



Second reduction

Ones used by the LP can be seen as halves from two or more
directions; everything goes through smoothly.

After the application of regions Ut , vertices that saw two regions
are vertices that see two terminals.

Such non-terminals must be always chosen.

Corollary: Safe to greedily choose vertices assigned 1 by the LP.

After applying both rules exhaustively, we can assume that the
only half-integral optimum solution to LP assigns 1

2
on each

N(t), for t ∈ T .
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The algorithm

We do almost exactly the same.

Step 1. Apply both reduction rules exhaustively.

Step 2. Pick any vertex u adjacent to a terminal t, and branch
into two subcases:

(a) u will be in the solution, so delete u and decrement k by 1;
(b) u will not be in the solution, so contract u onto t.

Step 3. Proceed with Steps 1 and 2 up to the point when every
terminal becomes isolated (YES), or the LP solution exceeds the
budget (NO).
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Potential

Potential: φ(G ,T , k) = k − OPTLP.

In a non-trivial YES instance we have

OPTLP ≤ k ≤ 2 · OPTLP,

so 0 ≤ φ(G ,T , k) ≤ k/2.

We analyse what happens with the potential in the branches.
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Deleting u

φ(G ,T , k) = k − OPTLP.

Budget k decreases by 1, and OPTLP decreases by exactly 1
2
.

Every half-integral LP-solution of I ′ can be transformed into an
LP-solution of I by putting 1 on u.
Every half-integral LP-solution of I that puts 1 on u has cost at
least OPTLP(I ) + 1

2 .
Hence every LP-solution of I ′ must have cost at least
OPTLP(I )− 1

2 .
But there is an LP-solution of I ′ of cost OPTLP(I )− 1

2 .

Hence, potential φ decreases by exactly 1− 1
2

= 1
2
.
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Contracting u

φ(G ,T , k) = k − OPTLP.

Budget k stays the same, and OPTLP increases by at least 1
2
.

Every half-integral LP-solution of I ′ can be transformed into a
half-integral LP-solution of I by putting 0 on u.
But every half-integral solution of I that puts 0 on u has cost at
least OPTLP(I ) + 1

2 .

Hence potential φ decreases by at least 1
2
.
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Wrapping up

The potential is k/2 at the beginning and decreases by 1
2

at
each step.

Again, reductions can only decrease the potential.

Hence, we have an O?(2k) algorithm.
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Conclusions

Take-away message: Use some polynomial-time computable
lower bound to guide a branching algorithm.

Progress is achieved not only by decreasing the budget, but also
by increasing the lower bound.

Solution to an LP relaxation may be a more robust lower bound
than a combinatorial object.

Pilipczuk, Pilipczuk LP-guided branching 41/42



Conclusions

Take-away message: Use some polynomial-time computable
lower bound to guide a branching algorithm.

Progress is achieved not only by decreasing the budget, but also
by increasing the lower bound.

Solution to an LP relaxation may be a more robust lower bound
than a combinatorial object.

Pilipczuk, Pilipczuk LP-guided branching 41/42



Conclusions

Take-away message: Use some polynomial-time computable
lower bound to guide a branching algorithm.

Progress is achieved not only by decreasing the budget, but also
by increasing the lower bound.

Solution to an LP relaxation may be a more robust lower bound
than a combinatorial object.

Pilipczuk, Pilipczuk LP-guided branching 41/42



Conclusions

At the end of the day, we get a standard branching algorithm,
just with an exotic progress measure.

Hence, we can open the toolbox of optimizing branching vectors
via case analysis, and try to reduce the running time.
Cao, Chen, Fan: O?(1.84k) for Edge-MWC.
Nothing better than O?(2k) is known for Node-MWC.

Tomorrow: Applications of the same concept to Vertex
Cover above Maximum Matching and other problems.
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