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Multiway Cut

EDGE MuLTiwAYy CUT

Input: A graph G with some terminals T C V/(G),
an integer k

Question: s there a set of edges F with |F| < k, such that
every path between two terminals is hit by F?
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Multiway Cut

EDGE MuLTiwAYy CUT

Input: A graph G with some terminals T C V/(G),
an integer k

Question: s there a set of edges F with |F| < k, such that
every path between two terminals is hit by F?

NoDE MuLTiwAay CUT

Input: A graph G with some terminals T C V/(G),
an integer k

Question: s there a set of vertices X C V(G) \ T with |X| <k,
s.t. every path between two terminals is hit by X7
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On the picture
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On the picture
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On the picture

If G is connected and F is optimum,
then every vertex is reachable from some terminal.
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EDGE MuLTiwAYy CUT

@ For |T| =2 it is just an edge flow problem = P-time solvable.

Pilipczuk, Pilipczuk LP-guided branching



EDGE MuLTiwAYy CUT

@ For |T| =2 it is just an edge flow problem = P-time solvable.
@ NP-hard for |T| > 3.
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EDGE MuLTiwAYy CUT

@ For |T| =2 itis just an edge flow problem = P-time solvable.
@ NP-hard for |T| > 3.
e Goal: O*(2¥) algorithm for EDGE MuLTIWAY CUT.
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EDGE MuLTiwAYy CUT

@ For |T| =2 itis just an edge flow problem = P-time solvable.
e NP-hard for |T| > 3.
e Goal: O*(2%) algorithm for EDGE MuLTIWAY CUT.

e This algorithm is due to Xiao.
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When |T| =2

o Let T = {s,t}.
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When |T| =2

o Let T = {s,t}.
@ An (s, t) cutis a subset AC V(G) such thats € A, t ¢ A.
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When |T| =2

o Let T = {s,t}.
@ An (s, t) cutis a subset AC V(G) suchthats € A, t ¢ A.
o The cutset is A(A) :== E(A, A). Denote 6(A) = |A(A)|.
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When |T| =2

o Let T = {s,t}.

@ An (s, t) cutis a subset AC V(G) suchthats € A, t ¢ A.

o The cutset is A(A) := E(A, A). Denote §(A) = |A(A)|.

@ An (s, t) cut Ais minimum if 6(A) is minimum possible. The
size of the minimum cut can be determined in polynomial time.
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When |T| = 2

o Let T = {s,t}.

@ An (s, t) cutis a subset AC V(G) suchthats € A, t ¢ A.

o The cutset is A(A) := E(A, A). Denote §(A) = |A(A)|.

@ An (s, t) cut Ais minimum if 6(A) is minimum possible. The
size of the minimum cut can be determined in polynomial time.

e Note: If (A, B) is a minimum cut, then A and B are connected.
Hence A = reach(s, G \ F), where F is the cutset.
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Submodularity

s
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Submodularity

)

5(A)+6(B) > 5(AUB) + 5(AN B)
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Submodularity

)

5(A) +6(B) > (AU B) + (AN B)
10 0 1
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Submodularity

)

5(A) +6(B) > (AU B) + (AN B)
0o 1 1 0
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Submodularity

)

5(A) +6(B) > (AU B) + (AN B)
0o 1 0 1
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Submodularity

)

5(A) +6(B) > (AU B) + (AN B)
10 1 0
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Submodularity

)

5(A) +6(B) > (AU B) + (AN B)
11 1 1
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Submodularity

)

5(A) +6(B) > (AU B) + (AN B)
11 0 0
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Furthest and closest cuts

Among all minimum (s, t) cuts, there exists a unique cut A that is
inclusion-wise maximal, and a unique one that is inclusion-wise
minimal.
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Furthest and closest cuts

Among all minimum (s, t) cuts, there exists a unique cut A that is
inclusion-wise maximal, and a unique one that is inclusion-wise
minimal.

@ Proof: Take any two minimum (s, t) cuts A and B.
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Furthest and closest cuts

Among all minimum (s, t) cuts, there exists a unique cut A that is
inclusion-wise maximal, and a unique one that is inclusion-wise
minimal.

@ Proof: Take any two minimum (s, t) cuts A and B.
e Submodularity = §(A) +0(B) > 6(AUB) + 6(AN B).
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Furthest and closest cuts

Among all minimum (s, t) cuts, there exists a unique cut A that is
inclusion-wise maximal, and a unique one that is inclusion-wise
minimal.

@ Proof: Take any two minimum (s, t) cuts A and B.
e Submodularity = §(A) +0(B) > 6(AUB) + 6(AN B).
@ Ais minimum = 6(A) < J(AN B).
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Furthest and closest cuts

Among all minimum (s, t) cuts, there exists a unique cut A that is
inclusion-wise maximal, and a unique one that is inclusion-wise
minimal.

@ Proof: Take any two minimum (s, t) cuts A and B.

e Submodularity = §(A) +0(B) > 6(AUB) + 6(AN B).
e Ais minimum = 6(A) < J(AN B).

@ Hence §(B) > (AU B).
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Furthest and closest cuts

Among all minimum (s, t) cuts, there exists a unique cut A that is
inclusion-wise maximal, and a unique one that is inclusion-wise
minimal.

@ Proof: Take any two minimum (s, t) cuts A and B.

e Submodularity = §(A) +0(B) > 6(AUB) + 6(AN B).
e Ais minimum = 6(A) < J(AN B).

@ Hence §(B) > (AU B).

@ B is minimum = AU B is a minimum (s, t) cut.
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Furthest and closest cuts

Among all minimum (s, t) cuts, there exists a unique cut A that is
inclusion-wise maximal, and a unique one that is inclusion-wise
minimal.

@ Proof: Take any two minimum (s, t) cuts A and B.

e Submodularity = §(A) +0(B) > 6(AUB) + 6(AN B).
e Ais minimum = 6(A) < J(AN B).

@ Hence §(B) > (AU B).

@ B is minimum = AU B is a minimum (s, t) cut.

°

Symmetrical reasoning for AN B. ]
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Furthest and closest cuts

@ These inclusion-wise maximal/minimal min-cuts are called
furthest from s and closest to s, respectively.

Pilipczuk, Pilipczuk LP-guided branching



Furthest and closest cuts

@ These inclusion-wise maximal/minimal min-cuts are called
furthest from s and closest to s, respectively.

@ Any sensible max-flow algorithm can provide these cuts within
the same running time.
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Furthest and closest cuts

@ These inclusion-wise maximal/minimal min-cuts are called
furthest from s and closest to s, respectively.

@ Any sensible max-flow algorithm can provide these cuts within
the same running time.

@ Naturally generalizes to S and T being sets of sources and sinks.
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Min-cut reduction for EDGE MuLTiwAy CUT

@ Pick a terminal ¢, and let A be the ({t}, T \ {t}) min-cut that
is furthest from t.



Min-cut reduction for EDGE MuLTiwAy CUT

@ Pick a terminal ¢, and let A be the ({t}, T \ {t}) min-cut that
is furthest from t.

There exists an optimal solution to the instance that does not include
any edge with both endpoints in A.




Min-cut reduction for EDGE MuLTiwAy CUT

@ Pick a terminal ¢, and let A be the ({t}, T \ {t}) min-cut that
is furthest from t.

There exists an optimal solution to the instance that does not include
any edge with both endpoints in A.

@ Note: If the lemma is true, then it is safe to contract the whole
set A onto t.

o [e]
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Min-cut reduction, proof

@ Let F be any opt. solution, and let B = reach(t, G \ F).
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Min-cut reduction, proof

@ Let F be any opt. solution, and let B = reach(t, G \ F).

@ Construct F’ from F by selling every edge with both endpoints
in AU B, and buying the remainder of A(AU B).
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Min-cut reduction, proof

@ Let F be any opt. solution, and let B = reach(t, G \ F).

@ Construct F’ from F by selling every edge with both endpoints
in AU B, and buying the remainder of A(AU B).

e Check (1). |[F'| <|F].
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Min-cut reduction, proof

@ Let F be any opt. solution, and let B = reach(t, G \ F).

@ Construct F’ from F by selling every edge with both endpoints
in AU B, and buying the remainder of A(AU B).

o Check (1). |F'| < |F]|.
o Check (2). F' is still a solution.

(] o

.

:
|
.

\0,
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Min-cut reduction, proof of (1)

@ We have sold at least E(B, A\ B), and bought E(A\ B, AU B).
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Min-cut reduction, proof of (1)

@ We have sold at least E(B, A\ B), and bought E(A\ B, AU B).
@ |t suffices to show that

[E(B,A\ B)| > |E(A\ B,AUB)|.
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Min-cut reduction, proof of (1)

@ We have sold at least E(B, A\ B), and bought E(A\ B, AU B).
@ |t suffices to show that

E(B.A\ B)| > |E(A\ B,AUB)|.
e By adding |E(B, AU B)| to both sides, equivalently:
§(B) > (AU B).
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Min-cut reduction, proof of (1)

@ We have sold at least E(B, A\ B), and bought E(A\ B, AU B).
@ |t suffices to show that

E(B,A\ B) = |E(A\ B,AUB)|.
e By adding |E(B, AU B)| to both sides, equivalently:
§(B) > (AU B).
@ Submodularity:

d(A)+0(B) > (AUB)+ (AN B).
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Min-cut reduction, proof of (1)

@ We have sold at least E(B, A\ B), and bought E(A\ B, AU B).
@ |t suffices to show that

E(B,A\ B)| > |E(A\ B,AUB)|.
e By adding |E(B, AU B)| to both sides, equivalently:
§(B) > (AU B).
@ Submodularity:
(A)+d(B) > (AU B)+ (AN B).

@ Ais minimum = 0(A) < J(AN B).
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Min-cut reduction, proof of (1)

@ We have sold at least E(B, A\ B), and bought E(A\ B, AU B).
@ |t suffices to show that

[E(B,A\ B)| > |E(A\ B,AUB)|.

By adding |E(B, AU B)| to both sides, equivalently:
§(B) > (AU B).

Submodularity:
(A)+d(B) > (AU B)+ (AN B).

A'is minimum = §(A) < J(AN B).
Hence §(B) > (AU B) and we are done.

(]

Pilipczuk, Pilipczuk LP-guided branching



Min-cut reduction, proof of (2)

@ Assume P is a t’-t” path untouched by F’ such that t’ # t.
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Min-cut reduction, proof of (2)

@ Assume P is a t’-t” path untouched by F’ such that t’ # t.

@ F is an optimum solution; let uv be any edge of P thatis in F.
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Min-cut reduction, proof of (2)

@ Assume P is a t’-t” path untouched by F’ such that t’ # t.
@ F is an optimum solution; let uv be any edge of P thatis in F.
eueF\F ,souveAUB.
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Min-cut reduction, proof of (2)

@ Assume P is a t’-t” path untouched by F’ such that t’ # t.

@ F is an optimum solution; let uv be any edge of P thatis in F.
eu € F\F ,souveAUB.

@ G[AU B] is connected, so t is reachable from v in G[AU B].
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Min-cut reduction, proof of (2)

(]
(]
(]
o
(]

Assume P is a t’-t” path untouched by F’ such that t’ # t.

F is an optimum solution; let uv be any edge of P that is in F.
uv € F\F',souveAUB.

G[A U B] is connected, so t is reachable from v in G[AU B].
P[t', u] avoids F' O A(AU B).
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Min-cut reduction, proof of (2)

(]
(]
(]
o
(]
(]

Assume P is a t’-t” path untouched by F’ such that t’ # t.

F is an optimum solution; let uv be any edge of P that is in F.
uv € F\F',souveAUB.

G[A U B] is connected, so t is reachable from v in G[AU B].
P[t', u] avoids F' D A(AU B).

Ergo there is a t'-t path avoiding A(AU B), a contradiction.
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Second reduction rule

e Second reduction rule. If tt' € E(G) for some t, t' € T, then
remove tt’ and decrease the budget by 1.
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Second reduction rule

e Second reduction rule. If tt' € E(G) for some t,t' € T, then
remove tt’ and decrease the budget by 1.

@ Assume both the reduction rules are applied exhaustively.
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Second reduction rule

e Second reduction rule. If tt' € E(G) for some t,t' € T, then
remove tt’ and decrease the budget by 1.

@ Assume both the reduction rules are applied exhaustively.
@ Then the sets A({t}) for t € T are:
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Second reduction rule

e Second reduction rule. If tt' € E(G) for some t,t' € T, then
remove tt’ and decrease the budget by 1.

@ Assume both the reduction rules are applied exhaustively.
@ Then the sets A({t}) for t € T are:

e pairwise disjoint;
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Second reduction rule

e Second reduction rule. If tt' € E(G) for some t,t' € T, then
remove tt’ and decrease the budget by 1.
@ Assume both the reduction rules are applied exhaustively.
@ Then the sets A({t}) for t € T are:
e pairwise disjoint;
e the only minimum cuts from t to T \ {t}.
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Structure of the instance
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Structure of the instance

5(A) > 5({t})
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Digression: approximation

@ Let F be a solution and d; = d(reach(t;, G\ F)). Then
Fl=1>".d.
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Digression: approximation

@ Let F be a solution and d; = d(reach(t;, G\ F)). Then
Fl=1>".d.

@ Let G be the cutset of any min-cut between t; and T \ {t;}, and
let ¢; = |C;|. Obviously ¢; < d.
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Digression: approximation

@ Let F be a solution and d; = d(reach(t;, G\ F)). Then
Fl=1>".d.

@ Let G be the cutset of any min-cut between t; and T \ {t;}, and
let ¢; = |C;|. Obviously ¢; < d.

e F*:= |/, G is always a solution (even if we omit one of them)!
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Digression: approximation

@ Let F be a solution and d; = d(reach(t;, G\ F)). Then
Fl=1>".d.

@ Let G be the cutset of any min-cut between t; and T \ {t;}, and
let ¢; = |C;|. Obviously ¢; < d.

o F*:= |, G is always a solution (even if we omit one of them)!

o |[F*| <> .ci <> di <2|F|, hence F* is a 2-approximation.
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Digression: approximation

@ Let F be a solution and d; = d(reach(t;, G\ F)). Then
Fl=1>".d.

Let C; be the cutset of any min-cut between ¢t; and T \ {t;}, and
let ¢; = |C;|. Obviously ¢; < d.

F*:=J; G is always a solution (even if we omit one of them)!

|F*| <>°,¢ <>, di <2|F|, hence F* is a 2-approximation.

— 2
Tl

If we omit the largest C;, we get (2 )-approximation.

Pilipczuk, Pilipczuk LP-guided branching



The min-cuts as a lower bound

o Let N(G, T)=1%",c.
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The min-cuts as a lower bound

o Let N(G, T)=1%",c.

@ If we are dealing with a YES-instance, then

A(G, T) < OPT < k.
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The min-cuts as a lower bound

o Let N(G, T)=1%",c.

o If we are dealing with a YES-instance, then
MG, T) < OPT < k.

@ If the instance is moreover non-trivial, then 2A\(G, T) > k, so in
particular g < MG, T) < OPT < k.
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The min-cuts as a lower bound

Let M(G, T) = %Z, Ci.
If we are dealing with a YES-instance, then

A(G, T) < OPT < k.

o If the instance is moreover non-trivial, then 2A\(G, T) > k, so in
particular g < MG, T) < OPT < k.

@ Main idea: A branching algorithm makes progress not only if
the budget decreases, but also if A\(G, T) increases!
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The min-cuts as a lower bound

Let M(G, T) = %Z, Ci.
If we are dealing with a YES-instance, then

A(G, T) < OPT < k.

If the instance is moreover non-trivial, then 2\(G, T) > k, so in
particular g < MG, T) < OPT < k.
Main idea: A branching algorithm makes progress not only if
the budget decreases, but also if A\(G, T) increases!

o The budget can decrease at most k times.
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The min-cuts as a lower bound

Let M(G, T) = %Z, Ci.
If we are dealing with a YES-instance, then

A(G, T) < OPT < k.

If the instance is moreover non-trivial, then 2\(G, T) > k, so in
particular g < MG, T) < OPT < k.

Main idea: A branching algorithm makes progress not only if
the budget decreases, but also if A\(G, T) increases!

e The budget can decrease at most k times.
o The lower bound cannot increase to more than the budget.
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The algorithm

o Let ¢(G, T, k) :== k—A\(G, T)

= %Z, ¢i. In a nontrivial
YES-instance we have 0 < ¢(G, T, k) < %

Pilipczuk, Pilipczuk LP-guided branching



The algorithm

o Let ¢(G, T, k) :=k— NG, T)=k—33"

YES-instance we have 0 < ¢(G, T, k) < g
@ Step 1. Apply both reduction rules exhaustively.

; Gi. In a nontrivial
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The algorithm

o Let ¢(G, T, k) :=k— NG, T)=k—33"

YES-instance we have 0 < ¢(G, T, k) < g
@ Step 1. Apply both reduction rules exhaustively.

; Gi. In a nontrivial

@ Step 2. Pick any edge ut incident to a terminal t, and branch
into two subcases:
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The algorithm

o Let ¢(G, T, k) :=k— NG, T)=k—33"

YES-instance we have 0 < ¢(G, T, k) < g
@ Step 1. Apply both reduction rules exhaustively.

; Gi. In a nontrivial

@ Step 2. Pick any edge ut incident to a terminal t, and branch
into two subcases:

(a) ut will be in the solution, so delete ut and decrement k by 1;
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The algorithm

o Let ¢(G, T, k) :=k— NG, T)=k—33"

YES-instance we have 0 < ¢(G, T, k) < g
@ Step 1. Apply both reduction rules exhaustively.

; Gi. In a nontrivial

@ Step 2. Pick any edge ut incident to a terminal t, and branch
into two subcases:
(a) ut will be in the solution, so delete ut and decrement k by 1;
(b) ut will not be in the solution, so contract ut.
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The algorithm

o Let ¢(G, T, k) :=k— NG, T)=k—33"

YES-instance we have 0 < ¢(G, T, k) < g
@ Step 1. Apply both reduction rules exhaustively.

; Gi. In a nontrivial

@ Step 2. Pick any edge ut incident to a terminal t, and branch
into two subcases:
(a) ut will be in the solution, so delete ut and decrement k by 1;
(b) ut will not be in the solution, so contract ut.

@ Step 3. Proceed with Steps 1 and 2 up to the point when every
terminal becomes isolated (YES), or ¢(G, T, k) becomes
negative (NO).
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Deleting the edge

1
O(G, T, k) ::k—EZc,-

@ Assume ut is deleted.

Pilipczuk, Pilipczuk LP-guided branching



Deleting the edge

O(G, T, k) k——Zc,

@ Assume ut is deleted.
e k is decremented by 1.
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Deleting the edge

1
O(G, T, k) ::k—EZc,-

@ Assume ut is deleted.

e k is decremented by 1.
o The min-cut from t decreases by 1.
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Deleting the edge

1
O(G, T, k) ::k—EZc,-

@ Assume ut is deleted.

e k is decremented by 1.

e The min-cut from t decreases by 1.

e The min-cut from any other terminal t’ does not change, since
any ({t'}, T \ {t'}) cut that includes ut has larger cutset than
the cut {t'}.
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Deleting the edge

1
O(G, T, k) ::k—EZc,-

@ Assume ut is deleted.
e k is decremented by 1.
e The min-cut from t decreases by 1.
o The min-cut from any other terminal t' does not change, since
any ({t'}, T \ {t'}) cut that includes ut has larger cutset than
the cut {t'}.

. 1
@ Hence, the potential decreases by exactly 1 — 5 = 3.
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Contracting the edge

1
o(G, T, k) ::k—EZc,-

@ Assume ut is contracted.
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Contracting the edge

1
o(G, T, k) ::k—EZc,-

@ Assume ut is contracted.
e k stays the same.
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Contracting the edge

1
o(G, T, k) ::k—EZc,-

@ Assume ut is contracted.

e k stays the same.
e The min-cut from t increases by at least 1.
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Contracting the edge

1
o(G, T, k) ::k—EZc,-

@ Assume ut is contracted.
e k stays the same.
e The min-cut from t increases by at least 1.
e The min-cut from any other terminal t’ stays the same.
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Contracting the edge

1
o(G, T, k) ::k—EZc,-

@ Assume ut is contracted.

e k stays the same.
e The min-cut from t increases by at least 1.
o The min-cut from any other terminal t’ stays the same.

@ Hence, the potential decreases by at least %
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Wrapping up

@ Potential is less than g in the beginning, and decreases by at

least % at each branch.
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Wrapping up

@ Potential is less than g in the beginning, and decreases by at

least % at each branch.

@ Hence we get an O*(2¥) algorithm.
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Wrapping up

@ Potential is less than g in the beginning, and decreases by at

least % at each branch.
@ Hence we get an O*(2¥) algorithm.

@ Crucial point: A branching rule can lead to some progress,
even if this progress is not visible in the budget.
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Technical details

@ Problem 1. Deleting an edge may disconnect the graph, and we
described the reductions for connected graphs.
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Technical details

@ Problem 1. Deleting an edge may disconnect the graph, and we
described the reductions for connected graphs.
o Apply the rules to each connected component separately.
Everything goes smoothly.
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Technical details

@ Problem 1. Deleting an edge may disconnect the graph, and we
described the reductions for connected graphs.
e Apply the rules to each connected component separately.
Everything goes smoothly.

@ Problem 2. We need to make sure that the potential does not
increase during reduction rules.
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Technical details

@ Problem 1. Deleting an edge may disconnect the graph, and we
described the reductions for connected graphs.
e Apply the rules to each connected component separately.
Everything goes smoothly.

@ Problem 2. We need to make sure that the potential does not
increase during reduction rules.

o Min-cut rule: Contractions can only increase min-cuts, so the
potential can only decrease.
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Technical details

@ Problem 1. Deleting an edge may disconnect the graph, and we
described the reductions for connected graphs.
e Apply the rules to each connected component separately.
Everything goes smoothly.

@ Problem 2. We need to make sure that the potential does not
increase during reduction rules.
e Min-cut rule: Contractions can only increase min-cuts, so the
potential can only decrease.
o Second rule: k decreases by 1, ). ¢; decreases by 2
= the potential stays the same.
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Plan for now

e An O*(2¥) algorithm for NopE MUuLTIWAY CUT.
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Plan for now

e An O*(2%) algorithm for NopE MuLTIWAY CUT.
e Based on a joint work with Cygan and Wojtaszczyk.
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The cuts

o First idea: Take vertex cuts instead of edge cuts!
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The cuts

o First idea: Take vertex cuts instead of edge cuts!

@ Problem: Sum of min-cuts is only a | T |-approximation of the
optimum solution.
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The cuts

o First idea: Take vertex cuts instead of edge cuts!

@ Problem: Sum of min-cuts is only a | T|-approximation of the
optimum solution.

o A star with terminals on the petals.
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The cuts

o First idea: Take vertex cuts instead of edge cuts!

@ Problem: Sum of min-cuts is only a | T|-approximation of the
optimum solution.

e A star with terminals on the petals.

@ We need a smarter lower bound.
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Linear programming, recap

@ A linear program consists of:
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Linear programming, recap

@ A linear program consists of:
e a vector of variables x = (x1,x2,...,x,) € R";
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Linear programming, recap

@ A linear program consists of:

e a vector of variables x = (x1, x2, ..., xp) € R";
e a set of linear constraints (a; € R", bj € R) of the form

n
E ajjXj < bj.
i=1
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Linear programming, recap

@ A linear program consists of:

e a vector of variables x = (x1, x2, ..., xp) € R";
e a set of linear constraints (a; € R", b; € R) of the form

n
E ajx; < bj.
i=1

e a goal vector c € R".
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Linear programming, recap

@ A linear program consists of:

e a vector of variables x = (x1, x2, ..., xp) € R";
e a set of linear constraints (a; € R", b; € R) of the form

n
E ajx; < bj.
i=1

e a goal vector c € R".

@ The goal is to find a vector x that minimizes/maximizes
>-%, ¢ix; while satisfying all the constraints.
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Linear programming, recap

o If we additionally require that the variables must be integral,
then we get integer programming which is NP-hard.
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Linear programming, recap

o If we additionally require that the variables must be integral,
then we get integer programming which is NP-hard.

@ However, linear programming can be solved in polynomial time
using the ellipsoid method.
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Linear programming, recap

o If we additionally require that the variables must be integral,
then we get integer programming which is NP-hard.

@ However, linear programming can be solved in polynomial time
using the ellipsoid method.

@ This method works in a more general separation oracle model.
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Linear programming, recap

o If we additionally require that the variables must be integral,
then we get integer programming which is NP-hard.
@ However, linear programming can be solved in polynomial time
using the ellipsoid method.
@ This method works in a more general separation oracle model.
o We can have exponentially many constraints.
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Linear programming, recap

o If we additionally require that the variables must be integral,
then we get integer programming which is NP-hard.

@ However, linear programming can be solved in polynomial time
using the ellipsoid method.

@ This method works in a more general separation oracle model.

e We can have exponentially many constraints.
e But we need to provide a polynomial-time oracle that, for a
given vector, either
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Linear programming, recap

o If we additionally require that the variables must be integral,
then we get integer programming which is NP-hard.

@ However, linear programming can be solved in polynomial time
using the ellipsoid method.

@ This method works in a more general separation oracle model.

e We can have exponentially many constraints.
e But we need to provide a polynomial-time oracle that, for a
given vector, either
(a) concludes that all the constraints are satisfied; or
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Linear programming, recap

o If we additionally require that the variables must be integral,
then we get integer programming which is NP-hard.

@ However, linear programming can be solved in polynomial time
using the ellipsoid method.
@ This method works in a more general separation oracle model.

e We can have exponentially many constraints.
e But we need to provide a polynomial-time oracle that, for a
given vector, either
(a) concludes that all the constraints are satisfied; or
(b) provides a constraint that is broken.
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Linear programming, recap

If we additionally require that the variables must be integral,
then we get integer programming which is NP-hard.

However, linear programming can be solved in polynomial time
using the ellipsoid method.
This method works in a more general separation oracle model.

e We can have exponentially many constraints.
e But we need to provide a polynomial-time oracle that, for a
given vector, either

(a) concludes that all the constraints are satisfied; or
(b) provides a constraint that is broken.

Usage: Model a problem as an integer program, and relax the
integer constraints to linear ones. The solution to the relaxation
is a lower bound for the solution to the integer program.
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Integer program for NMWC

@ For every non-terminal u, we have a variable x,.
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Integer program for NMWC

@ For every non-terminal u, we have a variable x,.

e Integer constraints: V, x, € {0,1}, denoting whether the
vertex is chosen or not.

Pilipczuk, Pilipczuk LP-guided branching



Integer program for NMWC

@ For every non-terminal u, we have a variable x,.

o Integer constraints: V, x, € {0,1}, denoting whether the
vertex is chosen or not.

e Goal: Minimize ) x,.
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Integer program for NMWC

@ For every non-terminal u, we have a variable x,.

o Integer constraints: V, x, € {0,1}, denoting whether the
vertex is chosen or not.

e Goal: Minimize > x,.
e Linear constraints: for every path P between two different

terminals, we have:
Z x, > 1.
ueV(P)
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Linear relaxation

@ For every non-terminal u, we have a variable x,.

@ Relaxed constraints: V, 0 < x, < 1, denoting in what fraction
the vertex is chosen to the solution.

e Goal: Minimize ) x,.
e Linear constraints: for every path P between two different

terminals, we have:
g x, > 1.
ueV(P)
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Linear relaxation

For every non-terminal u, we have a variable x,.

Relaxed constraints: V, 0 < x, < 1, denoting in what fraction
the vertex is chosen to the solution.

Goal: Minimize ) x,.

e Linear constraints: for every path P between two different
terminals, we have:

Separation oracle: Dijkstra with vertex weights.
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Half-integrality

@ Garg et al.: This LP-relaxation of NMWC is half-integral, i.e.,

there exists an optimum solution that assigns only values 0, %, 1.
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Half-integrality

@ Garg et al.: This LP-relaxation of NMWC is half-integral, i.e.,
there exists an optimum solution that assigns only values 0, %, 1.
e The proof is not difficult, but uses primal-dual complementary
slackness condition.
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Half-integrality

@ Garg et al.: This LP-relaxation of NMWC is half-integral, i.e.,
there exists an optimum solution that assigns only values 0, %, 1.
e The proof is not difficult, but uses primal-dual complementary
slackness condition.

e See the proof in Chapter 19 of Vazirani.
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Half-integrality

@ Garg et al.: This LP-relaxation of NMWC is half-integral, i.e.,
there exists an optimum solution that assigns only values 0, %, 1.
e The proof is not difficult, but uses primal-dual complementary
slackness condition.

e See the proof in Chapter 19 of Vazirani.

@ Note: Self-reducibility = We can find half-integral solution in
polynomial time.
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Half-integrality

@ Garg et al.: This LP-relaxation of NMWC is half-integral, i.e.,
there exists an optimum solution that assigns only values 0, %, 1.
e The proof is not difficult, but uses primal-dual complementary
slackness condition.

e See the proof in Chapter 19 of Vazirani.
@ Note: Self-reducibility = We can find half-integral solution in
polynomial time.
@ Note: Obviously OPTp < OPT, but also OPT <2- OPTyp,

since we can round all the halves up to ones. So this rounding
yields a 2-approximation.
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Structure of the solution

Take any half-integral optimum solution F.
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Structure of the solution

For t € T, the zero-region U; comprises
vertices reachable from t using paths of weight O.
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Structure of the solution

[

Define F’ by putting 1-s on vertices that see > 2
zero-regions, and % on those seeing 1 region.
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Structure of the solution

Observe: F’ is still a solution,
and F'(u) < F(u) for each u.
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Structure of the solution

Conclusion: F = F/
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Structure of the solution

Structure of the solution to the relaxation

Every optimum half-integral solution F has the following form:

@ F(u) =1if uis in the neighbourhood of two or more
zero-regions.

@ F(u) =3 if uis in the neighbourhood of exactly one
zero-regions.

e F(u) = 0 otherwise.
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Structure of the solution

Structure of the solution to the relaxation

Every optimum half-integral solution F has the following form:
@ F(u) =1if uis in the neighbourhood of two or more
zero-regions.
@ F(u) =3 if uis in the neighbourhood of exactly one
zero-regions.

e F(u) = 0 otherwise.

Reduction of Guillemot
There is always an optimum solution of NMWC that does not touch
any U;. Hence, it is safe to contract every region U; onto t.
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Proof of the reduction

@ Assume for simplicity that the LP solution does not use any ones.
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Proof of the reduction

@ Assume for simplicity that the LP solution does not use any ones.

@ Let X be an optimum solution to NMWC; let
B — X ﬂ UtGT Ut.
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Proof of the reduction

@ Assume for simplicity that the LP solution does not use any ones.
@ Let X be an optimum solution to NMWC; let
B=XNU,r U
@ Let C be the set of those vertices of N(|J,.+ U:) that cannot be
reached from respective t without passing through B.
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Proof of the reduction

@ Assume for simplicity that the LP solution does not use any ones.
@ Let X be an optimum solution to NMWC; let
B=XNU,r U
o Let C be the set of those vertices of N(|J,.+ U:) that cannot be
reached from respective t without passing through B.
@ Replace B with C, i.e., consider X' := (X \ B) U C.
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Verifying X’

@ Again, we check two things.
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Verifying X’

@ Again, we check two things.
e Check (1). |[X'| < |X|, eq. |C| < |B].
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Verifying X’

@ Again, we check two things.
o Check (1). |X'| < |X], eq. |C| < |B].
e Check (2). X' is still a solution.
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Check (2)

@ The same argument as for the edge version.

Pilipczuk, Pilipczuk LP-guided branching



Check (2)

@ The same argument as for the edge version.

@ A t'-t” path P untouched by X’ must contain a vertex of B.
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Check (2)

@ The same argument as for the edge version.
@ A t'-t” path P untouched by X’ must contain a vertex of B.

@ Contradiction with N(U; U reach(t, G \ X)) separating t from
other terminals.
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Check (1)

@ Assume for contradiction that [C| > |B|.
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Check (1)

@ Assume for contradiction that [C| > |B|.
@ In F,do —con C and +¢ on B.
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Check (1)

@ Assume for contradiction that [C| > |B|.
@ InF,do —con C and +¢ on B.

@ The obtained F’ is still a solution, and has strictly lower cost.
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Second reduction

@ Ones used by the LP can be seen as halves from two or more
directions; everything goes through smoothly.
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Second reduction

@ Ones used by the LP can be seen as halves from two or more
directions; everything goes through smoothly.

@ After the application of regions U;, vertices that saw two regions
are vertices that see two terminals.
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Second reduction

@ Ones used by the LP can be seen as halves from two or more
directions; everything goes through smoothly.

@ After the application of regions U;, vertices that saw two regions
are vertices that see two terminals.

@ Such non-terminals must be always chosen.
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Second reduction

@ Ones used by the LP can be seen as halves from two or more
directions; everything goes through smoothly.

@ After the application of regions U;, vertices that saw two regions
are vertices that see two terminals.

@ Such non-terminals must be always chosen.

@ Corollary: Safe to greedily choose vertices assigned 1 by the LP.
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Second reduction

@ Ones used by the LP can be seen as halves from two or more
directions; everything goes through smoothly.

@ After the application of regions U;, vertices that saw two regions
are vertices that see two terminals.

@ Such non-terminals must be always chosen.
@ Corollary: Safe to greedily choose vertices assigned 1 by the LP.

o After applying both rules exhaustively, we can assume that the
only half-integral optimum solution to LP assigns % on each
N(t), for t € T.
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The algorithm

@ We do almost exactly the same.
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The algorithm

@ We do almost exactly the same.
@ Step 1. Apply both reduction rules exhaustively.
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The algorithm

@ We do almost exactly the same.
@ Step 1. Apply both reduction rules exhaustively.

@ Step 2. Pick any vertex u adjacent to a terminal t, and branch
into two subcases:
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The algorithm

@ We do almost exactly the same.
@ Step 1. Apply both reduction rules exhaustively.

@ Step 2. Pick any vertex u adjacent to a terminal t, and branch
into two subcases:

(a) u will be in the solution, so delete u and decrement k by 1;
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The algorithm

@ We do almost exactly the same.
@ Step 1. Apply both reduction rules exhaustively.

@ Step 2. Pick any vertex u adjacent to a terminal t, and branch
into two subcases:
(a) wu will be in the solution, so delete u and decrement k by 1;
(b) w will not be in the solution, so contract u onto t.
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The algorithm

@ We do almost exactly the same.
@ Step 1. Apply both reduction rules exhaustively.

@ Step 2. Pick any vertex u adjacent to a terminal t, and branch
into two subcases:
(a) wu will be in the solution, so delete u and decrement k by 1;
(b) u will not be in the solution, so contract u onto t.

@ Step 3. Proceed with Steps 1 and 2 up to the point when every
terminal becomes isolated (YES), or the LP solution exceeds the
budget (NO).
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Potential

e Potential: ¢(G, T, k) =k — OPTyp.
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Potential

e Potential: ¢(G, T, k) =k — OPTyp.

@ In a non-trivial YES instance we have
OPTip < k<2 -OPTp,

so 0 < ¢(G, T, k) <k/2.
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Potential

e Potential: ¢(G, T, k) =k — OPTyp.

@ In a non-trivial YES instance we have
OPTip < k<2 -OPTip,

so 0 < ¢(G, T, k) <k/2.

@ We analyse what happens with the potential in the branches.
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Deleting u

&(G, T, k) =k — OPTyp.

@ Budget k decreases by 1, and OPTyp decreases by exactly %
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Deleting u

&(G, T, k) =k — OPTyp.

@ Budget k decreases by 1, and OPTyp decreases by exactly %

e Every half-integral LP-solution of /” can be transformed into an
LP-solution of | by putting 1 on u.
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Deleting u

&(G, T, k) =k — OPTyp.

@ Budget k decreases by 1, and OPTyp decreases by exactly %
o Every half-integral LP-solution of I’ can be transformed into an
LP-solution of I by putting 1 on wu.

o Every half-integral LP-solution of / that puts 1 on u has cost at
least OPTyp(/) + 3.
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Deleting u

&(G, T, k) =k — OPTyp.

@ Budget k decreases by 1, and OPTyp decreases by exactly %
o Every half-integral LP-solution of I’ can be transformed into an
LP-solution of I by putting 1 on wu.
e Every half-integral LP-solution of / that puts 1 on u has cost at
least OPTyp(/) + 5.
e Hence every LP-solution of /” must have cost at least
OPTip(l) — %
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Deleting u

&(G, T, k) =k — OPTyp.

@ Budget k decreases by 1, and OPTyp decreases by exactly %

o Every half-integral LP-solution of I’ can be transformed into an
LP-solution of I by putting 1 on wu.

e Every half-integral LP-solution of / that puts 1 on u has cost at
least OPTyp(/) + 5.

o Hence every LP-solution of /” must have cost at least
OPTip(l) — %

e But there is an LP-solution of /" of cost OPTyp(/) — %
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Deleting u

&(G, T, k) =k — OPTyp.

@ Budget k decreases by 1, and OPTyp decreases by exactly %

o Every half-integral LP-solution of I’ can be transformed into an
LP-solution of I by putting 1 on wu.

e Every half-integral LP-solution of / that puts 1 on u has cost at
least OPTyp(/) + 5.

o Hence every LP-solution of /” must have cost at least
OPTip(l) — %

o But there is an LP-solution of /" of cost OPTyp (/) — %

@ Hence, potential ¢ decreases by exactly 1 — 1 = 1.
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Contracting u

&(G, T, k) =k — OPTyp.

@ Budget k stays the same, and OPTyp increases by at least %
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Contracting u

&(G, T, k) =k — OPTyp.

o Budget k stays the same, and OPTyp increases by at least %

o Every half-integral LP-solution of /" can be transformed into a
half-integral LP-solution of / by putting 0 on w.
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Contracting u

&(G, T, k) =k — OPTyp.

o Budget k stays the same, and OPTyp increases by at least %
o Every half-integral LP-solution of I’ can be transformed into a
half-integral LP-solution of / by putting 0 on u.

o But every half-integral solution of / that puts 0 on u has cost at
least OPTp(/) + 3.
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Contracting u

&(G, T, k) =k — OPTyp.

o Budget k stays the same, and OPTyp increases by at least %
o Every half-integral LP-solution of I’ can be transformed into a
half-integral LP-solution of / by putting 0 on u.

o But every half-integral solution of / that puts 0 on u has cost at
least OPTyp(/) + 4.

@ Hence potential ¢ decreases by at least %
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Wrapping up

@ The potential is k/2 at the beginning and decreases by % at
each step.
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Wrapping up

@ The potential is k/2 at the beginning and decreases by % at
each step.

@ Again, reductions can only decrease the potential.
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Wrapping up

@ The potential is k/2 at the beginning and decreases by % at
each step.

@ Again, reductions can only decrease the potential.

@ Hence, we have an O*(2%) algorithm.
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Conclusions

o Take-away message: Use some polynomial-time computable
lower bound to guide a branching algorithm.
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Conclusions

o Take-away message: Use some polynomial-time computable
lower bound to guide a branching algorithm.

@ Progress is achieved not only by decreasing the budget, but also
by increasing the lower bound.
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Conclusions

o Take-away message: Use some polynomial-time computable
lower bound to guide a branching algorithm.

@ Progress is achieved not only by decreasing the budget, but also
by increasing the lower bound.

@ Solution to an LP relaxation may be a more robust lower bound
than a combinatorial object.
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Conclusions

@ At the end of the day, we get a standard branching algorithm,
just with an exotic progress measure.
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Conclusions

@ At the end of the day, we get a standard branching algorithm,
just with an exotic progress measure.
e Hence, we can open the toolbox of optimizing branching vectors
via case analysis, and try to reduce the running time.
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Conclusions

@ At the end of the day, we get a standard branching algorithm,
just with an exotic progress measure.
e Hence, we can open the toolbox of optimizing branching vectors

via case analysis, and try to reduce the running time.
e Cao, Chen, Fan: 0*(1.84) for EDGE-MWC.
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Conclusions

@ At the end of the day, we get a standard branching algorithm,
just with an exotic progress measure.
e Hence, we can open the toolbox of optimizing branching vectors
via case analysis, and try to reduce the running time.
o Cao, Chen, Fan: 0*(1.84%) for EDGE-MWC.
o Nothing better than O*(2%) is known for NopE-MWC.
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Conclusions

@ At the end of the day, we get a standard branching algorithm,
just with an exotic progress measure.
e Hence, we can open the toolbox of optimizing branching vectors
via case analysis, and try to reduce the running time.
o Cao, Chen, Fan: 0*(1.84%) for EDGE-MWC.
o Nothing better than O*(2¥) is known for NopE-MWC.

@ Tomorrow: Applications of the same concept to VERTEX
COVER ABOVE MAXIMUM MATCHING and other problems.
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