Canonical decompositions in bounded treedepth and bounded shrubdepth graphs

Wojciech Przybyszewski Joint work with Pierre Ohlmann, Michał Pilipczuk, Szymon Toruńczyk

LoGAlg 2023

The treedepth game is played on a graph G_1 . In round *i*

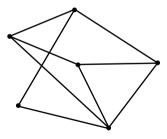
- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

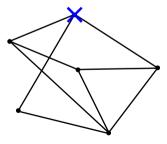
Splitter wins once G_i has size 1.



The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

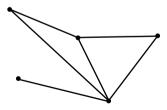
Splitter wins once G_i has size 1.



The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

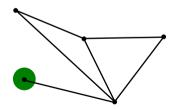
Splitter wins once G_i has size 1.



The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

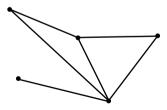
Splitter wins once G_i has size 1.



The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

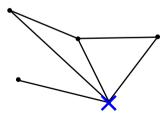
Splitter wins once G_i has size 1.



The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.



The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

.

Splitter wins once G_i has size 1.

The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

Example play of the treedepth game:

.

The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

Definition

A treedepth of a graph G is the minimum number of rounds that are enough for Splitter to always win the treedepth game, no matter how Connector is playing.

The treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v to delete
- 2. Connector chooses G_{i+1} as a connected component in $G_i v$.

Splitter wins once G_i has size 1.

Definition

A treedepth of a graph G is the minimum number of rounds that are enough for Splitter to always win the treedepth game, no matter how Connector is playing.

Observation: We don't need to assume that G is a finite graph for this definition to make sense.

Progressing moves in the treedepth game

Theorem.

There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that if a graph G has treedepth d then Splitter has at most f(d) progressing moves¹.

¹A vertex v is a progressing move for Splitter if every connected component C of $G - \{v\}$ has strictly smaller treedepth than G.

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

Consider the following theory over the signature that consists of constant symbols $\{v_i : i \in I\} \cup \{v_\infty\}$ and one binary relation E:

• $v_i \neq v_j$ for every $i, j \in I$;

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

- $v_i \neq v_j$ for every $i, j \in I$;
- $E(v_i, v_j)$ for every $(v_i, v_j) \in E(G)$ and $\neg E(v_i, v_j)$ for every $(v_i, v_j) \notin E(G)$;

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

- $v_i \neq v_j$ for every $i, j \in I$;
- $E(v_i, v_j)$ for every $(v_i, v_j) \in E(G)$ and $\neg E(v_i, v_j)$ for every $(v_i, v_j) \notin E(G)$;
- Splitter wins the treedepth game in *d* rounds if he plays optimally;

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.

Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

- $v_i \neq v_j$ for every $i, j \in I$;
- $E(v_i, v_j)$ for every $(v_i, v_j) \in E(G)$ and $\neg E(v_i, v_j)$ for every $(v_i, v_j) \notin E(G)$;
- Splitter wins the treedepth game in *d* rounds if he plays optimally;
- $v_{\infty} \neq v_i$ for every $i \in I$;

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.

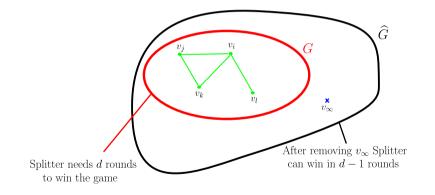
Proof.

Assume statement doesn't hold. Denote $V(G) = \{v_i : i \in I\}$.

- $v_i \neq v_j$ for every $i, j \in I$;
- $E(v_i, v_j)$ for every $(v_i, v_j) \in E(G)$ and $\neg E(v_i, v_j)$ for every $(v_i, v_j) \notin E(G)$;
- Splitter wins the treedepth game in *d* rounds if he plays optimally;
- $v_{\infty} \neq v_i$ for every $i \in I$;
- v_{∞} is a progressing move.

Lemma.

For every infinite graph G of treedepth d Splitter has finitely many progressing moves.



Theorem.

There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that if a graph G has treedepth d then Splitter has at most f(d) progressing moves.

Theorem.

There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that if a graph G has treedepth d then Splitter has at most f(d) progressing moves.

Proof.

Assume the statement is not true. Consider the following theory:

• Splitter can win the treedepth game in at most *d* rounds;

Theorem.

There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that if a graph G has treedepth d then Splitter has at most f(d) progressing moves.

Proof.

Assume the statement is not true. Consider the following theory:

- Splitter can win the treedepth game in at most *d* rounds;
- there are at least *m* progressing moves for every $m \in \mathbb{N}$.

Theorem.

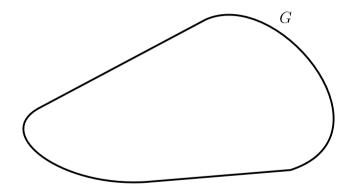
There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that if a graph G has treedepth d then Splitter has at most f(d) progressing moves.

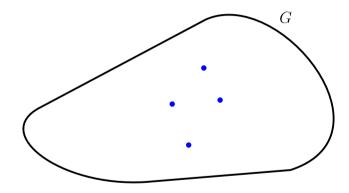
Proof.

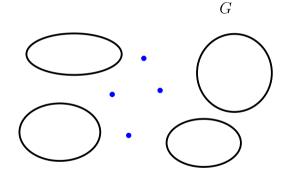
Assume the statement is not true. Consider the following theory:

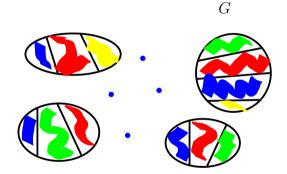
- Splitter can win the treedepth game in at most d rounds;
- there are at least *m* progressing moves for every $m \in \mathbb{N}$.

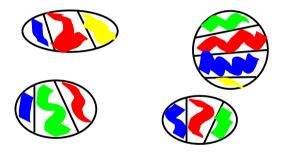
Compactness yields a model that contradicts the previous lemma.



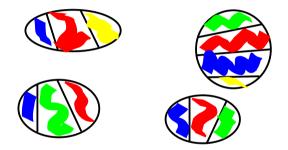








Canonical decomoposition of graphs of bounded treedepth



Observation: This yields a decomposition algorithm working in time $f(d) \cdot n^2$ on graphs of treedepth at most d.

Graph isomorphism for bounded treedepth

Theorem. [Bouland, Dawar, Kopczyński, 2012]

Graph isomorphism can be solved on graphs of treedepth at most d in time $f(d) \cdot n^3 \cdot \log n$.

Graph isomorphism for bounded treedepth

Theorem. [Bouland, Dawar, Kopczyński, 2012]

Graph isomorphism can be solved on graphs of treedepth at most d in time $f(d) \cdot n^3 \cdot \log n$.

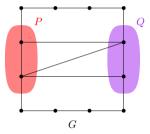
Remark: The running time can be further improved to $f(d) \cdot n \cdot \log^2 n$.

Flips

Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.

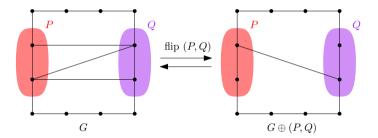
Flips

Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.



Flips

Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.



The Treedepth game is played on a graph G_1 . In round *i*

- 1. Splitter chooses a vertex v
- 2. Connector chooses G_{i+1} as a connected component in G v.

Splitter wins once G_i has size 1.

The Shrubdepth game is played on a graph G_1 . In round i

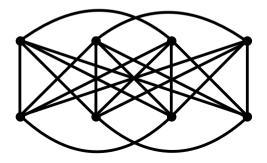
- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

Flipper wins once G_i has size 1.

The Shrubdepth game is played on a graph G_1 . In round i

- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

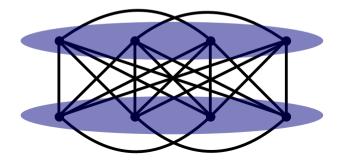
Flipper wins once G_i has size 1.



The Shrubdepth game is played on a graph G_1 . In round i

- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

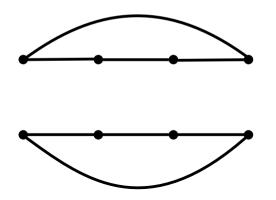
Flipper wins once G_i has size 1.



The Shrubdepth game is played on a graph G_1 . In round i

- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

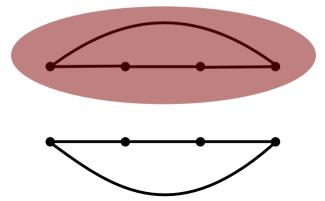
Flipper wins once G_i has size 1.



The Shrubdepth game is played on a graph G_1 . In round i

- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

Flipper wins once G_i has size 1.



The Shrubdepth game is played on a graph G_1 . In round i

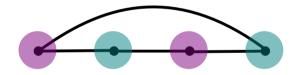
- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

Flipper wins once G_i has size 1.

The Shrubdepth game is played on a graph G_1 . In round i

- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

Flipper wins once G_i has size 1.



The Shrubdepth game is played on a graph G_1 . In round i

- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

Flipper wins once G_i has size 1.

The Shrubdepth game is played on a graph G_1 . In round i

- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

Flipper wins once G_i has size 1.

The Shrubdepth game is played on a graph G_1 . In round i

- 1. Flipper chooses two sets P, Q
- 2. Connector chooses G_{i+1} as a connected component in $G_i \oplus (P, Q)$.

Flipper wins once G_i has size 1.

Beyond sparsity

- 1. We found canonical moves for Splitter in the treedepth game
- 2. to obtain canonical decompositions and a graph isomorphism algorithm for graphs of bounded treedepth.

Beyond sparsity

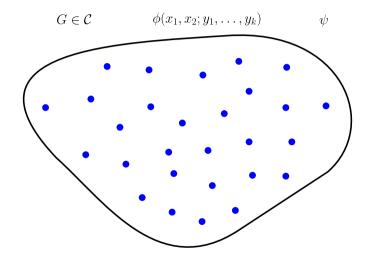
- 1. We want to find canonical moves for Flipper in the shrubdepth game
- 2. to obtain canonical decompositions and a graph isomorphism algorithm for graphs of bounded shrubdepth.

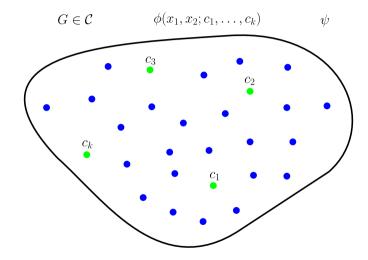
Beyond sparsity

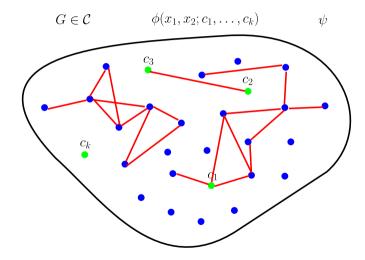
- 1. We want to find canonical moves for Flipper in the shrubdepth game
- 2. to obtain canonical decompositions and a graph isomorphism algorithm for graphs of bounded shrubdepth.

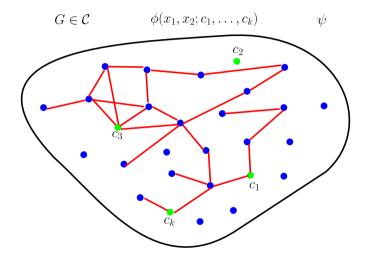
Defintion. [Ganian, Hliněný, Nešetřil, Obdržálek, Ossona de Mendez, 2017]

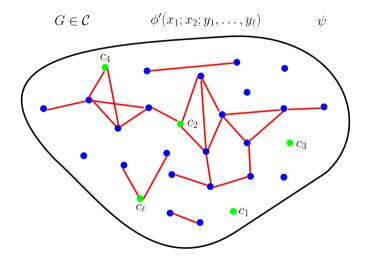
A graph G has *shrubdepth* at most d if Flipper can win the shrubdepth game on G in at most d rounds.

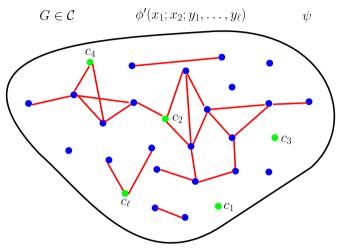












Proof uses a number of tools from stability theory [Shelah], most importantly properties of forking independence in stable theories.

Graph isomorphism on bounded shrubdepth

Theorem. [Ohlmann, Pilipczuk, Przybyszewski, Toruńczyk, 2023]

Graph isomorphism can be solved on graphs of shrubdepth at most d in time $f(d) \cdot n^2$.