
A Study of Weisfeiler–Leman Colourings on Planar Graphs

Sandra Kiefer Daniel Neuen

LOGALG 2023
Warsaw

16 November 2023



GRAPH ISOMORPHISM PROBLEM

Given two graphs G, H , decide whether G ≥= H or G ”≥= H .

?≥=

{u, v} œ E(G) ≈∆ {Ï(u), Ï(v)} œ E(H)

The best known algorithm runs in quasipolynomial time. [Babai ’16]

A central technique in GI approaches is the Weisfeiler-Leman algorithm.
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THE WL ALGORITHM

. . . is a combinatorial iterative approach to finding symmetries in graphs.

It uses local information to restrict the search space for isomorphisms.

Goal: Assign different colours to u œ V (G) and v œ V (H)
iff no isomorphism maps u to v.

”≥=

k-WL colours vertex k-tuples. It has an O(nk+1 log n)-time implementation.
[Immerman, Lander ’90]

Distinguishability of graphs by k-WL gives bounds on the descriptive complexity of
their difference.
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COLOUR REFINEMENT

1-WL iteratively computes a vertex colouring.

1-WL

• Initialisation: All vertices have their initial colours.

• Refinement: Recolour vertices depending on colours in their neighbourhoods.

• Stop when colouring is stable.

1-WL has an O((m + n) log n) implementation.
[McKay ’81; Cardon, Crochemore ’82]

If two graphs result in different colourings, they are non-isomorphic.
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COLOUR REFINEMENT

1-WL iteratively computes a vertex colouring.

1-WL

• Refinement: equally coloured v and w obtain different colours ≈∆ there is a colour c
such that v and w have different numbers of c-coloured neighbours

If two graphs result in different colourings, they are non-isomorphic.
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PLANAR GRAPHS
1-WL identifies almost all graphs. [Babai, Erdös, Selkow ’80]

Theorem (K., Schweitzer, Selman 2015 *)

1-WL identifies G. ≈∆ The flip of G is a bouquet forest.

But it fails to identify, for example, all planar graphs.

Theorem (K., Ponomarenko, Schweitzer 2017)

3-WL identifies all planar graphs.
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2-WL

• Refinement: (v, w) and (vÕ, wÕ) obtain different colours. ≈∆
A certain local refinement criterion holds.
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Fact
2-WL does not distinguish strongly regular graphs with equal parameters.

7



HARD EXAMPLES

A strongly regular graph srg(n, d, ⁄, µ) is a d-regular graph with n vertices such that
every two adjacent vertices have exactly ⁄ common neighbors and every two
non-adjacent vertices have exactly µ common neighbors.

The Shrikhande graph and the line graph of K4,4 are non-isomorphic examples
for srg(16, 6, 2, 2).
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FACTS ABOUT 2-WL
2-WL is the original algorithm by Weisfeiler and Leman. [Weisfeiler, Leman ’68]

2-WL does not distinguish strongly regular graphs with equal parameters.

2-WL identifies all graphs of colour class size at most 3. [Immerman, Lander ’90]

2-WL identifies
• interval graphs. [Evdokimov, Ponomarenko, Tinhofer ’00]

• distance-hereditary graphs. [Gavrilyuk, Nedela, Ponomarenko ’20]

• almost all regular graphs. [Bollobás ’82]

2-WL detects
• (and counts) certain small subgraphs. [Fürer ’17]

• 2-separators. [K., Neuen ’19]
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DECOMPOSITIONS

Reduction scheme:
1 planar Æ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-connected planar Æ arc-col. 3-connected planar 2-WL
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OUR RESULTS
We investigate the colourings that 2-WL computes on planar graphs.

Understanding 2-WL on planar graphs amounts to studying it on 3-connected ones.

Theorem
For every 3-connected planar graph G, one of the following holds.

1 2-WL identifies G, or
2 2-WL detects a matching in G, or
3 2-WL detects a well-understood connected subgraph in G.

As a main tool, we use the following classification.

Theorem
A planar graph is edge-transitive. ≈∆ All edges have the same 2-WL colour.
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EDGE-COLOURED PLANAR GRAPHS OF MIN DEG 3

Theorem
A planar graph is edge-transitive. ≈∆ All edges have the same 2-WL colour.
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GRAPHS INDUCED BY ONE EDGE COLOUR
How do graphs induced by a single edge colour look?

Theorem
A planar graph is edge-transitive.

≈∆

All edges have the same 2-WL colour.

13



GRAPHS INDUCED BY ONE EDGE COLOUR
How do graphs induced by a single edge colour look?

Theorem
A planar graph is edge-transitive.

≈∆

All edges have the same 2-WL colour.

13



GRAPHS INDUCED BY ONE EDGE COLOUR
How do graphs induced by a single edge colour look?

Theorem
A planar graph is edge-transitive.

≈∆

All edges have the same 2-WL colour.

13



GRAPHS INDUCED BY ONE EDGE COLOUR
How do graphs induced by a single edge colour look?

Theorem
A planar graph is edge-transitive.

≈∆

All edges have the same 2-WL colour.

13



GRAPHS INDUCED BY ONE EDGE COLOUR
How do graphs induced by a single edge colour look?

Theorem
A planar graph is edge-transitive.

≈∆

All edges have the same 2-WL colour.

13



EDGE TYPES

Assume G is 3-connected.

Consider G[c] for a 2-WL edge color c.

Then all components of G[c] have the same
numbers of vertices, edges, and faces.

We distinguish between three types for c.

1 G[c] has only one face.
; G[c] is a disjoint union of stars.

2 Every connected component of G[c] has exactly two faces.
; G[c] is a disjoint union of ¸-cycles for some ¸.

3 Every connected component of G[c] has at least three faces.
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GRAPHS OF TYPE 3
Assume there is a c such that every component of G[c] has at least three faces.

Lemma
Let G be a 3-connected planar graph and c be an edge
colour of Type 3.

Then G[c] is connected.

We obtain a precise classification of the graphs G[c]
for c of Type 3.

It includes the connected edge-transitive planar
graphs of minimum degree 3 – in particular, all
Platonic solids.
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GRAPHS INDUCED BY ONE EDGE COLOUR

Theorem
A planar graph is edge-transitive. ≈∆ All of its edges have the same 2-WL colour.
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EDGE TYPES

Assume G is 3-connected.

Consider G[c] for a 2-WL edge color c.

Then all components of G[c] have the same
numbers of vertices, edges, and faces.

We distinguish between three types for c.
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GRAPHS OF TYPE 1
Assume G[c] has only one face for every 2-WL edge colour c.

Theorem (K., Ponomarenko, Schweitzer 2017)

Let G be a 3-connected planar graph and suppose
v1, v2, v3 are distinct vertices on a common face of G.

Then 1-WL computes a discrete colouring on Gv1,v2,v3 .

Lemma
Let G be a 3-connected planar graph with edge colours
only of Type 1.

Then there is a v œ V such that Singles(v) = V .

In particular, 2-WL identifies G.
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EDGE TYPES

Assume G is 3-connected.

Consider G[c] for a 2-WL edge color c.

Then all components of G[c] have the same
numbers of vertices, edges, and faces.

We distinguish between three types for c.

1 G[c] has only one face.
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GRAPHS OF TYPE 2
Assume there is a c such that every component of G[c] has exactly two faces, and
there is no cÕ such that every component of G[cÕ] has at least three faces. . .

Examples of graphs of types IIa, IIb, IIc
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CONCLUSION

Theorem
For every 3-connected planar graph G, one of the following holds.

1 2-WL identifies G, or
2 2-WL detects a matching in G, or
3 2-WL detects a connected subgraph that

a is essentially a Platonic or Archimedean solid, or
b stems from a small number of infinite families of connected graphs.
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Determine the WL-dimension of planar graphs.

To this end, study interactions with the subgraphs from Case 3 .
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