A Study of Weisfeiler-Leman Colourings on Planar Graphs

Sandra Kiefer Daniel Neuen

LOGALG 2023
Warsaw
16 November 2023

Graph Isomorphism Problem

Given two graphs G, H, decide whether $G \cong H$ or $G \neq H$.

The best known algorithm runs in quasipolynomial time.
A central technique in GI approaches is the Weisfeiler-Leman algorithm.

The WL algorithm

... is a combinatorial iterative approach to finding symmetries in graphs.
It uses local information to restrict the search space for isomorphisms.
Goal: Assign different colours to $u \in V(G)$ and $v \in V(H)$ iff no isomorphism maps u to v.

k-WL colours vertex k-tuples. It has an $O\left(n^{k+1} \log n\right)$-time implementation.
[Immerman, Lander '90]
Distinguishability of graphs by k-WL gives bounds on the descriptive complexity of their difference.

Colour refinement

1-WL iteratively computes a vertex colouring.

1-WL

- Initialisation: All vertices have their initial colours.
- Refinement: Recolour vertices depending on colours in their neighbourhoods.
- Stop when colouring is stable.

1-WL has an $O((m+n) \log n)$ implementation.

If two graphs result in different colourings, they are non-isomorphic.

Colour refinement

1-WL iteratively computes a vertex colouring.

1-WL

- Refinement: equally coloured v and w obtain different colours \Longleftrightarrow there is a colour c such that v and w have different numbers of c-coloured neighbours

If two graphs result in different colourings, they are non-isomorphic.

PLANAR GRAPHS

1-WL identifies almost all graphs.

Theorem (K., Schweitzer, Selman 2015*)

$1-$ WL identifies $G . \Longleftrightarrow$ The flip of G is a bouquet forest.
But it fails to identify, for example, all planar graphs.

Theorem (K., Ponomarenko, Schweitzer 2017)
3-WL identifies all planar graphs.

2-WL

- Refinement: (v, w) and $\left(v^{\prime}, w^{\prime}\right)$ obtain different colours. \Longleftrightarrow

A certain local refinement criterion holds.

Hard Examples

A strongly regular graph $\operatorname{srg}(n, d, \lambda, \mu)$ is a d-regular graph with n vertices such that every two adjacent vertices have exactly λ common neighbors and every two non-adjacent vertices have exactly μ common neighbors.

The Shrikhande graph and the line graph of $K_{4,4}$ are non-isomorphic examples for $\operatorname{srg}(16,6,2,2)$.

FACTS ABOUT 2-WL

2-WL is the original algorithm by Weisfeiler and Leman.
2-WL does not distinguish strongly regular graphs with equal parameters.
2-WL identifies all graphs of colour class size at most 3 .
2-WL identifies

- interval graphs.
- distance-hereditary graphs.
- almost all regular graphs.
[Evdokimov, Ponomarenko, Tinhofer '00]
[Gavrilyuk, Nedela, Ponomarenko '20]
[Bollobás '82]

2-WL detects

- (and counts) certain small subgraphs.
- 2-separators.

DECOMPOSITIONS

Reduction scheme:
(1) planar \leq vertex-coloured 2-connected planar
(2) vertex-col. 2-connected planar \leq arc-col. 3-connected planar

Our results

We investigate the colourings that 2-WL computes on planar graphs.
Understanding 2-WL on planar graphs amounts to studying it on 3-connected ones.

Theorem

For every 3-connected planar graph G, one of the following holds.
(1) 2-WL identifies G, or
(2) 2-WL detects a matching in G, or
(3) 2-WL detects a well-understood connected subgraph in G.

As a main tool, we use the following classification.

Theorem

A planar graph is edge-transitive. \Longleftrightarrow All edges have the same 2 -WL colour.

EdGE-COLOURED PLANAR GRAPHS OF MIN DEG 3

Theorem

A planar graph is edge-transitive. \Longleftrightarrow All edges have the same $2-W L$ colour.

GRAPHS INDUCED BY ONE EDGE COLOUR
How do graphs induced by a single edge colour look?

GRapHS INDUCED BY ONE EDGE COLOUR
How do graphs induced by a single edge colour look?

GRAPHS INDUCED BY ONE EDGE COLOUR
How do graphs induced by a single edge colour look?

GRapHS INDUCED BY ONE EDGE COLOUR
How do graphs induced by a single edge colour look?

GRaphs Induced by one edge colour

How do graphs induced by a single edge colour look?

Theorem

A planar graph is edge-transitive.

$$
\Longleftrightarrow
$$

All edges have the same 2-WL colour.

Edge types

Assume G is 3-connected.

Consider $G[c]$ for a 2-WL edge color c.
Then all components of $G[c]$ have the same numbers of vertices, edges, and faces.

We distinguish between three types for c.

EDGE TYPES

Assume G is 3-connected.

Consider $G[c]$ for a 2-WL edge color c.
Then all components of $G[c]$ have the same numbers of vertices, edges, and faces.

We distinguish between three types for c.
(1) $G[c]$ has only one face.
$\sim G[c]$ is a disjoint union of stars.

Edge types

Assume G is 3-connected.

Consider $G[c]$ for a 2-WL edge color c.
Then all components of $G[c]$ have the same numbers of vertices, edges, and faces.

We distinguish between three types for c.
(1) $G[c]$ has only one face.
$\sim G[c]$ is a disjoint union of stars.
(2) Every connected component of $G[c]$ has exactly two faces.
$\sim G[c]$ is a disjoint union of ℓ-cycles for some ℓ.

Edge types

Assume G is 3-connected.

Consider $G[c]$ for a 2-WL edge color c.
Then all components of $G[c]$ have the same numbers of vertices, edges, and faces.

We distinguish between three types for c.

(1) $G[c]$ has only one face.
$\sim G[c]$ is a disjoint union of stars.
(2) Every connected component of $G[c]$ has exactly two faces.
$\sim G[c]$ is a disjoint union of ℓ-cycles for some ℓ.
(3) Every connected component of $G[c]$ has at least three faces.

Edge types

Assume G is 3-connected.

Consider $G[c]$ for a 2-WL edge color c.

Then all components of $G[c]$ have the same

 numbers of vertices, edges, and faces.We distinguish between three types for c.

(1) $G[c]$ has only one face.
$\sim G[c]$ is a disjoint union of stars.
(2) Every connected component of $G[c]$ has exactly two faces.
$\sim G[c]$ is a disjoint union of ℓ-cycles for some ℓ.
(3) Every connected component of $G[c]$ has at least three faces.

GRaphs of type 3

Assume there is a c such that every component of $G[c]$ has at least three faces.

Lemma

Let G be a 3-connected planar graph and c be an edge colour of Type 3.

Then $G[c]$ is connected.

We obtain a precise classification of the graphs $G[c]$ for c of Type 3.

It includes the connected edge-transitive planar graphs of minimum degree 3 - in particular, all Platonic solids.

GRAPHS INDUCED BY ONE EDGE COLOUR

Theorem

A planar graph is edge-transitive. \Longleftrightarrow All of its edges have the same 2 -WL colour.

Edge Types

Assume G is 3-connected.

Consider $G[c]$ for a 2-WL edge color c.

Then all components of $G[c]$ have the same numbers of vertices, edges, and faces.

We distinguish between three types for c.
(1) $G[c]$ has only one face.
$\sim G[c]$ is a disjoint union of stars.
(2) Every connected component of $G[c]$ has exactly two faces.
$\sim G[c]$ is a disjoint union of ℓ-cycles for some ℓ.
(3) Every connected component of $G[c]$ has at least three faces.

GRaphs of type 1

Assume $G[c]$ has only one face for every 2 -WL edge colour c.

Theorem (K., Ponomarenko, Schweitzer 2017)

Let G be a 3-connected planar graph and suppose
v_{1}, v_{2}, v_{3} are distinct vertices on a common face of G.
Then 1-WL computes a discrete colouring on $G_{v_{1}, v_{2}, v_{3}}$.

Lemma

Let G be a 3-connected planar graph with edge colours only of Type 1.
Then there is a $v \in V$ such that $\operatorname{Singles}(v)=V$. In particular, 2-WL identifies G.

Edge Types

Assume G is 3-connected.

Consider $G[c]$ for a 2-WL edge color c.

Then all components of $G[c]$ have the same numbers of vertices, edges, and faces.

We distinguish between three types for c.
(1) $G[c]$ has only one face.
$\leadsto G[c]$ is a disjoint union of stars.
(2) Every connected component of $G[c]$ has exactly two faces.
$\sim G[c]$ is a disjoint union of ℓ-cycles for some ℓ.
(3) Every connected component of $G[c]$ has at least three faces.

GRAPHS OF TYPE 2

Assume there is a c such that every component of $G[c]$ has exactly two faces, and there is no c^{\prime} such that every component of $G\left[c^{\prime}\right]$ has at least three faces...

Examples of graphs of types IIa, IIb, IIc

CONCLUSION

Theorem

For every 3-connected planar graph G, one of the following holds.
(1) 2-WL identifies G, or
(2) 2-WL detects a matching in G, or
(3) 2-WL detects a connected subgraph that
a is essentially a Platonic or Archimedean solid, or
(b) stems from a small number of infinite families of connected graphs.

Future project:
Determine the WL-dimension of planar graphs.
To this end, study interactions with the subgraphs from Case (3).

