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e the rules of FO

o #yp(y,x1,...,xx) > m for every m € N and formula ¢

Fragment of FO(P) and FOC(P) (Kuske, Schweikardt '17)

PARTDOMSET:

Ixq ... Axk \/ E(y,xi)Vy=x
1<i<k

h-index:

F#mypaper <#otherpapercite(mypaper, otherpaper) > h> >h
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Known Results for FO({>0})

Model-checking of is hard on forests of depth 4

Theorem (Dreier, Rossmanith '21)

On classes of bounded expansion, in linear FPT time
1. (1 + e)-approximation of

’

2. Exact evaluation of formulas 3x; ... Ixx#y p(y, x1,...,Xk) = m
————

FO w/o #

Theorem (Dreier, M., Rossmanith ’23)

On classes, in almost linear FPT time:
Exact evaluation of formulas 3x; ... Ixk#y (¥, X1,...,Xk) = m
—_———

quantifier-free

= PARTDOMSET in (almost) linear FPT time on bounded expansion & 3
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Other variants

Red Blue Partial Dominating Set

Input: A graph G and k, tred, thlue € N
Problem: Are there k vertices dominating > tyeq red and > tp,e blue vertices?
Parameter: k

G = 3x1 ... Ixk(F#y Red(y) A dom(y, X)) > tred A (F#y Blue(y) A dom(y, X)) > thiue
Exact Partial Dominating Set

Problem: Are there k vertices dominating exactly t vertices?

G = 3x1...Ixk#y dom(y,X) =t

Lift result to 3xq ... Ixk \/ /\(#y wi(yx) > m;)

boolean combination of ¢ counting terms
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Theorem (Our positive result)

On classes of bounded expansion, we can decide in time f(k,£)n‘T! whether
G | 3xa .. xkP(#y (%), ..., #y @u(yX))
~——
first-order

where P is some efficiently computable predicate over N.

Moreover, we can count the number of solutions.



Algorithmic Result

Theorem (Our positive result)

41

On classes of bounded expansion, we can decide in time f(k,¢)n"t* whether

G EIx...xP(#y ¢1(yX), ..., #y ¢i(yX))
~——

first-order

where P is some efficiently computable predicate over N.

Moreover, we can count the number of solutions.

= Exact Partial Dominating Set in time f(k)n? on bounded expansion.

— Red Blue Partial Dominating Set in time f(k)n3 on bounded expansion
(can be improved to f(k)n?).



Step 1: Reduction to a Simpler Problem

Original Problem: — Simpler Problem
G € C of bounded expansion — G € C’ of bounded expansion
$1 a

FO-formulas < : — : vertex weight fcts

Pe Cr

Forall i =uy...u € V(G)k:
GE #yp(yd) >t a(u) + -+ a(u) >t
A : S :
Nty oo(yd) = to (-;é(ul) + -t cuk) >t
G = w() (quantifier-free)
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Courcelle with Semiring Homomorphisms

Often don't want one satisfying assignment but computing a property of the set of
satisfying assignments

Example: Set of all vertex covers — minimum weight VC, number of VCs, all VCs...
Definition

A problem P is an MSO-evaluation problem if it can be expressed as computing
h(sat(p, G)) for some homomorphism h into a semiring and MSO-formula .

Example: min. weight VC: (R U {oo}, min, 4+, 00,0), h maps set to sum of weights
Theorem (Courcelle, Mosbah ’93)

An MSO-evaluation problem P can be solved in time fp(tw)nt on graphs of
treewidth tw where t is the time complexity of the semiring operations.



Maintain a table: for every (t1,...,t;) the number of 7 € V(G)* with
o G w(@)
° C1(U1) SF ook C1(Uk) = &
o
o g(u)+ - +alu) =t

Show that this forms a semiring with appropriate operations!

Complexity of operations is ~ n‘*¢

Theorem (Our positive result)

On classes of bounded expansion, we can decide in time f(k,£)n‘T! whether

G Ixa... Py ¢1(yX), ..., #y pu(yX))
~——

first-order
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k-SuM Problem: given m numbers xi, ..., Xn; target T
Find k numbers that add up to exactly T

Algorithms known for k-SUM: e O(Tm) e O(ml/21)
Theorem (Abboud et al. '21)
For every € > 0, k-SUM is not in time T*~*m°K) (under SETH).



Example: T =100;k =3
x1 = 32, Xxp = 42, x3 = b3, x4 = 15.

Reduction to model-checking of our fragment (on star forests):
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Reduction

Example: T =100;k =3

x1 = 32, Xxp = 42, x3 = b3, x4 = 15.
Reduction to model-checking of our fragment (on star forests)

AR AN

G = IxyIxeIxz#y Red(y) A dom(y,x) =9 A #y Blue(y) A dom(y,x) = 10

10



Reduction: Parameters

Theorem (Reminder)

For every e > 0, k-SuM is not in time T*~*m°K) (under SETH).

In our example: Parameter £ = 2, size |G| < 2v/Tm.
—> quadratic lower bound for model-checking
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Reduction: Parameters

Theorem (Reminder)

For every e > 0, k-SuM is not in time T*~*m°K) (under SETH).

In our example: Parameter £ = 2, size |G| < 2v/Tm.
—> quadratic lower bound for model-checking

In general: / freely choosable = |G| = O(~/T{m)

Have to “guess carry-overs”: only f(k,¥) many choices

Theorem (Our Lower Bound)

On star forests, for formulas of the form

I Ix(Fy ey, xa - oxk) =t A Ay ooy, xa o xi) = t)
there is no model-checking algorithm in time f(k,£)n‘=¢, for any function f ore > 0.
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Conclusion

Our results: Model-checking of FO(P) formulas
G| Da...xP(#y p1(yX),.. .. #y @u(yX))
~——

first-order

on classes of bounded expansion

e in time f(k,£)n""! polylog n
e not in time f(k, £)n*=¢ for all £ > 0 under SETH

For the case of boolean combinations of #¢ (yx) > m:

e in time f(k,£)n’ polylog n
e not in time f(k, £)n®/?=¢ for all € > 0 under SETH

Outlook:

e Close the gaps

e Lift to (structurally) nowhere dense classes 12
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Sparse Graph Classes
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PARTDOMSET
Input: A graph G and k,t € N
Problem: Are there k vertices dominating > t vertices?

Parameter: k

e DomSet: Ix; .. .kay(\/ E(y,xi)Vy =xi)
e PARTDOMSET cannot be expressed as an short FO-formula (requires Jy; ... Jy:)
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Partial Dominating Set

PARTDOMSET
Input: A graph G and k,t € N
Problem: Are there k vertices dominating > t vertices?

Parameter: k

DomSet: 3x; .. .kay(\/ E(y,xi)Vy = x)
PARTDOMSET cannot be expressed as an short FO-formula (requires Jy; ... Jy;)

W(1]-hard for 2-degenerate graphs

Can be solved on H-minor free graphs in time (g(H)k)*n°M)

Can be solved on classes C of bounded expansion in time fz(k)n

Can be solved on nowhere dense classes C in time fz(k)n'*e
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