Symmetric Choice and the Quest for a Logic Capturing Polynomial Time

Moritz Lichter

LoGAlg 2023
Nov 16, 2023

The Quest for a Logic Capturing Polynomial Time

The Quest for a Logic Capturing Polynomial Time

polynomial-time Turing machine

The Quest for a Logic Capturing Polynomial Time

polynomial-time Turing machine

$$
\begin{aligned}
& \exists x \exists y \exists z . E(x, y) \wedge \\
& E(y, z) \wedge E(x, z)
\end{aligned}
$$

formula of a logic

The Quest for a Logic Capturing Polynomial Time

polynomial-time Turing machine

$$
\begin{aligned}
& \exists x \exists y \exists z . E(x, y) \wedge \\
& E(y, z) \wedge E(x, z)
\end{aligned}
$$

formula of a logic

The Quest for a Logic Capturing Polynomial Time ग.ororull
polynomial-time Turing machine

$$
\begin{aligned}
& \exists x \exists y \exists z . E(x, y) \wedge \\
& E(y, z) \wedge E(x, z)
\end{aligned}
$$

formula of a logic

The Quest for a Logic Capturing Polynomial Time用解
polynomial-time Turing machine

$$
\begin{aligned}
& \exists x \exists y \exists z . E(x, y) \wedge \\
& E(y, z) \wedge E(x, z)
\end{aligned}
$$

formula of a logic

> fixed-point logic with counting (IFPC)

The Quest for a Logic Capturing Polynomial Time

 ๗िpolynomial-time Turing machine

$$
\begin{aligned}
& \exists x \exists y \exists z . E(x, y) \wedge \\
& E(y, z) \wedge E(x, z)
\end{aligned}
$$

formula of a logic
fixed-point logic with counting (IFPC) + ?

The Quest for a Logic Capturing Polynomial Time

polynomial-time Turing machine

$$
\begin{aligned}
& \exists x \exists y \exists z . E(x, y) \wedge \\
& E(y, z) \wedge E(x, z)
\end{aligned}
$$

formula of a logic

$$
\text { fixed-point logic with counting (IFPC) }+ \text { ? }
$$

hereditarily finite sets
Choiceless
Polynomial Time

The Quest for a Logic Capturing Polynomial Time

polynomial-time Turing machine

$\exists x \exists y \exists z . E(x, y) \wedge$
$E(y, z) \wedge E(x, z)$
formula of a logic

fixed-point logic with counting (IFPC) + ?

hereditarily finite sets
Choiceless
Polynomial Time
algebraic operators
rank logic

The Quest for a Logic Capturing Polynomial Time

polynomial-time Turing machine

$\exists x \exists y \exists z . E(x, y) \wedge$
$E(y, z) \wedge E(x, z)$
formula of a logic

fixed-point logic with counting (IFPC) + ?

hereditarily finite sets
Choiceless
Polynomial Time
algebraic operators rank logic
choice operators witnessed
symmetric choice

Witnessed Symmetric Choice (Gire and Hoang, '98)

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits
- unknown whether symmetric choice can be evaluated in Ptime

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits
- unknown whether symmetric choice can be evaluated in Ptime
- witnessed symmetric choice (WSC): witness orbits by automorphisms

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits
- unknown whether symmetric choice can be evaluated in Ptime
- witnessed symmetric choice (WSC): witness orbits by automorphisms

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits
- unknown whether symmetric choice can be evaluated in Ptime
- witnessed symmetric choice (WSC): witness orbits by automorphisms

Witnessed Symmetric Choice (Gire and Hoang, '98)

- symmetric choice (SC): choices from orbits
- unknown whether symmetric choice can be evaluated in Ptime
- witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

$$
\mathbf{f p}-\mathbf{w s c}\left(\Phi_{\text {step }}(x, y), \Phi_{\text {choice }}(x), \Phi_{\text {wit }}(x, z), \Phi_{\text {out }}(x)\right)
$$

Capturing PTIME and Canonization in Choiceless Polynomial Time with Witnessed Symmetric Choice

The Role of Canonization

Capturing Ptime via definable canonization

The Role of Canonization

Capturing Ptime via definable canonization

graph class G

The Role of Canonization

Capturing Ptime via definable canonization

$$
\begin{gathered}
\text { graph class G } \\
\qquad \begin{array}{l}
\text { ordered graph class G }
\end{array}
\end{gathered}
$$

> canonization:
> for all $A, B \in \mathbf{G}$
> - $\operatorname{can}(A) \cong A$
> - $\operatorname{can}(A)=\operatorname{can}(B)$
> $\quad \Leftrightarrow A \cong B$

The Role of Canonization

Capturing Ptime via definable canonization
graph class G
ordered graph class G
\downarrow canonization
capturing PTIME on G
canonization:
for all $A, B \in \mathbf{G}$

- $\operatorname{can}(A) \cong A$
- $\operatorname{can}(A)=\operatorname{can}(B)$
$\Leftrightarrow A \cong B$

The Role of Canonization

Capturing Ptime via definable canonization
graph class G
ordered graph class G
\downarrow canonization
capturing Ptime on G

> canonization:
> for all $A, B \in \mathbf{G}$
> - $\operatorname{can}(A) \cong A$
> - $\operatorname{can}(A)=\operatorname{can}(B)$
> $\quad \Leftrightarrow A \cong B$

Defining canonization vs. defining isomorphism

The Role of Canonization

Capturing Ptime via definable canonization
graph class G
ordered graph class G
\downarrow canonization
capturing PTIME on G

> canonization:
> for all $A, B \in \mathbf{G}$
> - $\operatorname{can}(A) \cong A$
> - $\operatorname{can}(A)=\operatorname{can}(B)$
> $\quad \Leftrightarrow A \cong B$

Defining canonization vs. defining isomorphism

- Defining canonization is more difficult.

The Role of Canonization

Capturing Ptime via definable canonization
graph class G
ordered graph class G
\downarrow canonization
capturing PTIME on G

> canonization:
> for all $A, B \in \mathbf{G}$
> - $\operatorname{can}(A) \cong A$
> - $\quad \operatorname{can}(A)=\operatorname{can}(B)$
> $\quad \Leftrightarrow A \cong B$

Defining canonization vs. defining isomorphism

- Defining canonization is more difficult.
- Is canonization necessarily definable?

The Role of Canonization

Capturing Ptime via definable canonization
graph class G
ordered graph class G
\downarrow canonization
capturing PTIME on G

> canonization:
> for all $A, B \in \mathbf{G}$
> - $\operatorname{can}(A) \cong A$
> - $\operatorname{can}(A)=\operatorname{can}(B)$
> $\quad \Leftrightarrow A \cong B$

Defining canonization vs. defining isomorphism

- Defining canonization is more difficult.
- Is canonization necessarily definable?
- Does isomorphism testing imply canonization?

CPT and Isomorphism Testing

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)
CPT-definable isomorphism test for G implies

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)
CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)
CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)
CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if \mathbf{G} is individualization-closed)
complete invariant: for all $A, B \in \mathbf{G}$
- $\operatorname{inv}(A)=\operatorname{inv}(B)$

$$
\Leftrightarrow A \cong B
$$

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

$\operatorname{inv}(a)=2, \operatorname{inv}(a)=1$

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

$\operatorname{inv}(a)=2, \operatorname{inv}(6)=1, \operatorname{inv}(0)=1$

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

> complete invariant: for all $A, B \in \mathbf{G}$ $\begin{gathered}\operatorname{inv}(A)=\operatorname{inv}(B) \\ \Leftrightarrow A \cong B\end{gathered}$

Gurevich's canonization algorithm (Gurevich, '01)

$\operatorname{inv}(6)=2, \operatorname{inv}(6)=1, \operatorname{inv}(x)=1, \operatorname{inv}(0)=1, \operatorname{inv}(\sqrt{0})=1$

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)
complete invariant: for all $A, B \in \mathbf{G}$
- $\operatorname{inv}(A)=\operatorname{inv}(B)$

$$
\Leftrightarrow A \cong B
$$

Gurevich's canonization algorithm (Gurevich, '01)

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

$\operatorname{inv}(\sigma)=4$

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

$$
\operatorname{inv}(\sqrt{c})=4, \operatorname{inv}(\sqrt{6})=3
$$

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

$$
\operatorname{inv}(\sqrt{6})=4, \operatorname{inv}(\sqrt{6})=3, \operatorname{inv}(\sqrt{6})=5
$$

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if \mathbf{G} is individualization-closed)

> complete invariant: for all $A, B \in \mathbf{G}$ $\begin{gathered}\operatorname{inv}(A)=\operatorname{inv}(B) \\ \Leftrightarrow A \cong B\end{gathered}$

Gurevich's canonization algorithm (Gurevich, '01)

$$
\operatorname{inv}(\text { a) })=4, \operatorname{inv}(\text { a })=3, \operatorname{inv}(\text { a })=5, \operatorname{inv}(0)=3
$$

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)
complete invariant: for all $A, B \in \mathbf{G}$
- $\operatorname{inv}(A)=\operatorname{inv}(B)$

$$
\Leftrightarrow A \cong B
$$

Gurevich's canonization algorithm (Gurevich, '01)

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if \mathbf{G} is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if G is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19)

CPT-definable isomorphism test for G implies

- a CPT-definable complete invariant for G
- a canonization algorithm (if \mathbf{G} is individualization-closed)

Gurevich's canonization algorithm (Gurevich, '01)

Not definable in CPT but definable in CPT+WSC!

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, '21)
For every individualization-closed graph class G, the following are equivalent:

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, '21)
For every individualization-closed graph class G, the following are equivalent:

1. CPT+WSC defines a complete invariant for \mathbf{G}

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, '21)
For every individualization-closed graph class \mathbf{G}, the following are equivalent:

1. CPT+WSC defines a complete invariant for \mathbf{G}
2. $C P T+W S C$ defines a canonization for G

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, '21)
For every individualization-closed graph class G, the following are equivalent:

1. CPT+WSC defines a complete invariant for \mathbf{G}
2. CPT+WSC defines a canonization for \mathbf{G}
3. CPT+WSC defines isomorphism of G

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, '21)
For every individualization-closed graph class \mathbf{G}, the following are equivalent:

1. CPT+WSC defines a complete invariant for \mathbf{G}
2. CPT+WSC defines a canonization for \mathbf{G}
3. CPT+WSC defines isomorphism of G

Corollary.
For every individualization-closed graph class \mathbf{G} with a PTIME isomorphism test CPT+WSC defines isomorphism of $G \Longleftrightarrow$ CPT+WSC captures Ptime on G.

Expressiveness of Symmetric Choice in Fixed-Point Logic with Counting

Symmetric Choice, Asymmetric Structures, and Interpretations

Symmetric Choice, Asymmetric Structures, and Interpretations
symmetric choice on asymmetric structures is useless

Symmetric Choice, Asymmetric Structures, and Interpretations
symmetric choice on asymmetric structures is useless

Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Symmetric Choice, Asymmetric Structures, and Interpretations
symmetric choice on asymmetric structures is useless

Symmetric Choice, Asymmetric Structures, and Interpretations
symmetric choice on asymmetric structures is useless

Interpretation operator

$$
I(\Theta, \phi)
$$

(Gire and Hoang, '98)

Symmetric Choice, Asymmetric Structures, and Interpretations
symmetric choice on asymmetric structures is useless

Interpretation operator

$$
I(\Theta, \Phi)
$$

(Gire and Hoang, '98)

- Is IFPC+WSC+I more expressive than IFPC+WSC?

Symmetric Choice, Asymmetric Structures, and Interpretations
symmetric choice on asymmetric structures is useless

Interpretation operator

$$
I(\Theta, \phi)
$$

- Is IFPC+WSC+I more expressive than IFPC+WSC?
- Is IFP + SC + I more expressive than IFP + SC? (Dawar, Richerby, '03)

The CFI Query

The CFI Query

The CFI Query

The CFI Query

even CFI graph

odd CFI graph

The CFI Query

even CFI graph

odd CFI graph

CFI query: define whether a CFI graph is even

The CFI Query

base graph

even CFI graph

odd CFI graph

CFI query: define whether a CFI graph is even ordered CFI query: ordered base graphs

The CFI Query

base graph

even CFI graph

odd CFI graph

CFI query: define whether a CFI graph is even ordered CFI query: ordered base graphs

Theorem (Cai, Fürer, Immerman, '92). The (ordered) CFI query is not IFPC-definable.
Theorem (Gire, Hoang, '98). The ordered CFI query is IFP+WSC-definable.

Separating IFPC+WSC from IFPC+WSC+I

ordered CFI graph

Separating IFPC+WSC from IFPC+WSC+I

ordered CFI graph

multipede

(Gurevich, Shelah, '96)
asymmetric structures orbits not IFPC-definable

Separating IFPC+WSC from IFPC+WSC+I

ordered CFI graph

multipede
(Gurevich, Shelah, '96) asymmetric structures orbits not IFPC-definable

Separating IFPC+WSC from IFPC+WSC+I

ordered CFI graph
multipede
(Gurevich, Shelah, '96)
asymmetric structures orbits not IFPC-definable

Separating IFPC+WSC from IFPC+WSC+I

ordered CFI+multipede query

 ordered CFI graph multipede(Gurevich, Shelah, '96) asymmetric structures orbits not IFPC-definable

Separating IFPC+WSC from IFPC+WSC+I

ordered CFI+multipede query

 ordered CFI graphmultipede
(Gurevich, Shelah, '96)
asymmetric structures orbits not IFPC-definable

Theorem (L, '23). IFPC + WSC $<$ IFPC + WSC + I \leq PtIME
IFP(C)+(W)SC does not define the ordered CFI+multipede query.
IFP(C) $+(\mathrm{W}) \mathrm{SC}+\mathrm{I}$ defines the ordered $\mathrm{CFI}+$ multipede query.

Towards Separating IFPC+WSC+I from Ptime

Towards Separating IFPC+WSC+I from Ptime

Goal: Prove an operator nesting hierarchy for IFPC+WSC+I on CFI graphs
$\mathrm{IFPC} \leq \mathrm{WSCI}(\mathrm{IFPC}) \leq \mathrm{WSCI}(\mathrm{WSCI}(\mathrm{IFPC})) \leq \cdots \leq$ Ptime

Towards Separating IFPC+WSC +1 from Ptime

Goal: Prove an operator nesting hierarchy for IFPC+WSC+I on CFI graphs
$\operatorname{IFPC}<\mathrm{WSCI}(\mathrm{IFPC}) \leq \mathrm{WSCI}(\mathrm{WSCI}(\operatorname{IFPC})) \leq \cdots \leq$ Ptime
(Gire, Hoang, '98)

Towards Separating IFPC+WSC +1 from Ptime

Goal: Prove an operator nesting hierarchy for IFPC+WSC+I on CFI graphs

IFPC $<\mathrm{WSCI}($ IFPC $)<\mathrm{WSCI}(\mathrm{WSCI}(I F P C)) \leq \cdots \leq$ Ptime

(Gire, Hoang, '98) (L., '23)

Towards Separating IFPC+WSC +1 from Ptime

Goal: Prove an operator nesting hierarchy for IFPC + WSC + I on CFI graphs

IFPC $<\mathrm{WSCI}($ IFPC $)<\mathrm{WSCI}(\mathrm{WSCI}(I F P C)) \leq \cdots \leq$ Ptime

(Gire, Hoang, '98)

(ongoing work ...)

Summary: Witnessed Symmetric Choice

$$
\mathbf{f p}-\mathbf{w s c}\left(\Phi_{\text {step }}(x, y), \Phi_{\text {choice }}(x), \Phi_{\text {wit }}(x, z), \Phi_{\text {out }}(x)\right)
$$

Summary: Witnessed Symmetric Choice

$$
\mathbf{f p} \text {-wsc }\left(\Phi_{\text {step }}(x, y), \Phi_{\text {choice }}(x), \Phi_{\text {wit }}(x, z), \Phi_{\text {out }}(x)\right)
$$

isomorphism
\Leftrightarrow canonization
in CPT+WSC
$\operatorname{inv}(6)=3$
\Downarrow

Summary: Witnessed Symmetric Choice

$$
\mathbf{f p} \text {-wsc }\left(\Phi_{\text {step }}(x, y), \Phi_{\text {choice }}(x), \Phi_{\text {wit }}(x, z), \Phi_{\text {out }}(x)\right)
$$

IFPC+WSC
does not capture Ptime

Summary: Witnessed Symmetric Choice

$$
\mathbf{f p}-\mathbf{w s c}\left(\Phi_{\text {step }}(x, y), \Phi_{\text {choice }}(x), \Phi_{\text {wit }}(x, z), \Phi_{\text {out }}(x)\right)
$$

isomorphism
\Leftrightarrow canonization
in CPT+WSC

IFPC+WSC does not capture PTIME

IFPC+WSC and interpretations

