
Symmetric Choice and the Quest for a Logic Capturing
Polynomial Time

Moritz Lichter

LoGAlg 2023
Nov 16, 2023

The Quest for a Logic Capturing Polynomial Time

?

fixed-point logic with counting (IFPC)

+ ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic
choice operators

witnessed
symmetric choice

2

The Quest for a Logic Capturing Polynomial Time

polynomial-time
Turing machine

TM

?

fixed-point logic with counting (IFPC)

+ ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic
choice operators

witnessed
symmetric choice

2

The Quest for a Logic Capturing Polynomial Time

polynomial-time
Turing machine

TM

?

formula of a logic

∃x∃y∃z . E (x , y) ∧
E (y , z) ∧ E (x , z)

fixed-point logic with counting (IFPC)

+ ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic
choice operators

witnessed
symmetric choice

2

The Quest for a Logic Capturing Polynomial Time

polynomial-time
Turing machine

TM

?

formula of a logic

∃x∃y∃z . E (x , y) ∧
E (y , z) ∧ E (x , z)

fixed-point logic with counting (IFPC)

+ ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic
choice operators

witnessed
symmetric choice

2

The Quest for a Logic Capturing Polynomial Time

polynomial-time
Turing machine

TM

?

formula of a logic

∃x∃y∃z . E (x , y) ∧
E (y , z) ∧ E (x , z)

fixed-point logic with counting (IFPC)

+ ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic
choice operators

witnessed
symmetric choice

2

The Quest for a Logic Capturing Polynomial Time

polynomial-time
Turing machine

TM

?

formula of a logic

∃x∃y∃z . E (x , y) ∧
E (y , z) ∧ E (x , z)

fixed-point logic with counting (IFPC)

+ ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic
choice operators

witnessed
symmetric choice

2

The Quest for a Logic Capturing Polynomial Time

polynomial-time
Turing machine

TM

?

formula of a logic

∃x∃y∃z . E (x , y) ∧
E (y , z) ∧ E (x , z)

fixed-point logic with counting (IFPC) + ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic
choice operators

witnessed
symmetric choice

2

The Quest for a Logic Capturing Polynomial Time

polynomial-time
Turing machine

TM

?

formula of a logic

∃x∃y∃z . E (x , y) ∧
E (y , z) ∧ E (x , z)

fixed-point logic with counting (IFPC) + ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic
choice operators

witnessed
symmetric choice

2

The Quest for a Logic Capturing Polynomial Time

polynomial-time
Turing machine

TM

?

formula of a logic

∃x∃y∃z . E (x , y) ∧
E (y , z) ∧ E (x , z)

fixed-point logic with counting (IFPC) + ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic

choice operators

witnessed
symmetric choice

2

The Quest for a Logic Capturing Polynomial Time

polynomial-time
Turing machine

TM

?

formula of a logic

∃x∃y∃z . E (x , y) ∧
E (y , z) ∧ E (x , z)

fixed-point logic with counting (IFPC) + ?

hereditarily finite sets

Choiceless
Polynomial Time

algebraic operators

rank logic
choice operators

witnessed
symmetric choice

2

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits
• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits

• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits

• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits

• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits

• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits

• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits

• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

∼=

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits

• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits

• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits

• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits
• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits
• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits
• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits
• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

3

Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits
• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)
3

Capturing PTIME and Canonization
in Choiceless Polynomial Time with

Witnessed Symmetric Choice

4

The Role of Canonization
Capturing PTIME via definable canonization

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5

The Role of Canonization
Capturing PTIME via definable canonization

graph class G

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5

The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G
canonization

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5

The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5

The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5

The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism
• Defining canonization is more difficult.

• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5

The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism
• Defining canonization is more difficult.
• Is canonization necessarily definable?

• Does isomorphism testing imply canonization?

5

The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism
• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5

CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies

• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies

• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies

• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G

• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G

• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

2

inv
()

= 2

, inv
()

= 1, inv
()

= 1, inv
()

= 1, inv
()

= 1

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

2

1

inv
()

= 2, inv
()

= 1

, inv
()

= 1, inv
()

= 1, inv
()

= 1

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

2

1 1

inv
()

= 2, inv
()

= 1, inv
()

= 1

, inv
()

= 1, inv
()

= 1

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

2

1 1

11

inv
()

= 2, inv
()

= 1, inv
()

= 1, inv
()

= 1, inv
()

= 1

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

I

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

4

I

inv
()

= 4

, inv
()

= 3, inv
()

= 5, inv
()

= 3

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

4

3

I

inv
()

= 4, inv
()

= 3

, inv
()

= 5, inv
()

= 3

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

4

3 5

I

inv
()

= 4, inv
()

= 3, inv
()

= 5

, inv
()

= 3

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

4

3 5

3I

inv
()

= 4, inv
()

= 3, inv
()

= 5, inv
()

= 3

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

II

I

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

III

II IV

VI

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

III

II IV

VI

III

I II

IVV

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

IIIII IV VI III

II IV

VI

III

I II

IVV

6

CPT and Isomorphism Testing
Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies
• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)

IIIII IV VI III

II IV

VI

III

I II

IVV

Not definable in CPT but definable in CPT+WSC!

6

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, ’21)
For every individualization-closed graph class G, the following are equivalent:

1. CPT+WSC defines a complete invariant for G
2. CPT+WSC defines a canonization for G
3. CPT+WSC defines isomorphism of G

Corollary.
For every individualization-closed graph class G with a PTIME isomorphism test
CPT+WSC defines isomorphism of G ⇐⇒ CPT+WSC captures PTIME on G.

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, ’21)
For every individualization-closed graph class G, the following are equivalent:

1. CPT+WSC defines a complete invariant for G

2. CPT+WSC defines a canonization for G
3. CPT+WSC defines isomorphism of G

Corollary.
For every individualization-closed graph class G with a PTIME isomorphism test
CPT+WSC defines isomorphism of G ⇐⇒ CPT+WSC captures PTIME on G.

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, ’21)
For every individualization-closed graph class G, the following are equivalent:

1. CPT+WSC defines a complete invariant for G
2. CPT+WSC defines a canonization for G

3. CPT+WSC defines isomorphism of G

Corollary.
For every individualization-closed graph class G with a PTIME isomorphism test
CPT+WSC defines isomorphism of G ⇐⇒ CPT+WSC captures PTIME on G.

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, ’21)
For every individualization-closed graph class G, the following are equivalent:

1. CPT+WSC defines a complete invariant for G
2. CPT+WSC defines a canonization for G
3. CPT+WSC defines isomorphism of G

Corollary.
For every individualization-closed graph class G with a PTIME isomorphism test
CPT+WSC defines isomorphism of G ⇐⇒ CPT+WSC captures PTIME on G.

Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, ’21)
For every individualization-closed graph class G, the following are equivalent:

1. CPT+WSC defines a complete invariant for G
2. CPT+WSC defines a canonization for G
3. CPT+WSC defines isomorphism of G

Corollary.
For every individualization-closed graph class G with a PTIME isomorphism test
CPT+WSC defines isomorphism of G ⇐⇒ CPT+WSC captures PTIME on G.

Expressiveness of Symmetric Choice
in Fixed-Point Logic with Counting

8

Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Interpretation operator I (Θ , Φ) (Gire and Hoang, ’98)

• Is IFPC+WSC+I more expressive than IFPC+WSC?
• Is IFP+SC+I more expressive than IFP+SC? (Dawar, Richerby, ’03)

9

Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Interpretation operator I (Θ , Φ) (Gire and Hoang, ’98)

• Is IFPC+WSC+I more expressive than IFPC+WSC?
• Is IFP+SC+I more expressive than IFP+SC? (Dawar, Richerby, ’03)

9

Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Interpretation operator I (Θ , Φ) (Gire and Hoang, ’98)

• Is IFPC+WSC+I more expressive than IFPC+WSC?
• Is IFP+SC+I more expressive than IFP+SC? (Dawar, Richerby, ’03)

9

Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Θ⇒

Interpretation operator I (Θ , Φ) (Gire and Hoang, ’98)

• Is IFPC+WSC+I more expressive than IFPC+WSC?
• Is IFP+SC+I more expressive than IFP+SC? (Dawar, Richerby, ’03)

9

Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Θ⇒

Interpretation operator I (Θ , Φ) (Gire and Hoang, ’98)

• Is IFPC+WSC+I more expressive than IFPC+WSC?
• Is IFP+SC+I more expressive than IFP+SC? (Dawar, Richerby, ’03)

9

Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Θ⇒

Interpretation operator I (Θ , Φ) (Gire and Hoang, ’98)

• Is IFPC+WSC+I more expressive than IFPC+WSC?
• Is IFP+SC+I more expressive than IFP+SC? (Dawar, Richerby, ’03)

9

Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Θ⇒

Interpretation operator I (Θ , Φ) (Gire and Hoang, ’98)

• Is IFPC+WSC+I more expressive than IFPC+WSC?

• Is IFP+SC+I more expressive than IFP+SC? (Dawar, Richerby, ’03)

9

Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Θ⇒

Interpretation operator I (Θ , Φ) (Gire and Hoang, ’98)

• Is IFPC+WSC+I more expressive than IFPC+WSC?
• Is IFP+SC+I more expressive than IFP+SC? (Dawar, Richerby, ’03)

9

The CFI Query

base graph

CFI query: define whether a CFI graph is even
ordered CFI query: ordered base graphs

Theorem (Cai, Fürer, Immerman, ’92). The (ordered) CFI query is not IFPC-definable.

Theorem (Gire, Hoang, ’98). The ordered CFI query is IFP+WSC-definable.

10

The CFI Query

base graph

CFI query: define whether a CFI graph is even
ordered CFI query: ordered base graphs

Theorem (Cai, Fürer, Immerman, ’92). The (ordered) CFI query is not IFPC-definable.

Theorem (Gire, Hoang, ’98). The ordered CFI query is IFP+WSC-definable.

10

The CFI Query

base graph

CFI query: define whether a CFI graph is even
ordered CFI query: ordered base graphs

Theorem (Cai, Fürer, Immerman, ’92). The (ordered) CFI query is not IFPC-definable.

Theorem (Gire, Hoang, ’98). The ordered CFI query is IFP+WSC-definable.

10

The CFI Query

base graph even CFI graph

̸∼=

odd CFI graph

CFI query: define whether a CFI graph is even
ordered CFI query: ordered base graphs

Theorem (Cai, Fürer, Immerman, ’92). The (ordered) CFI query is not IFPC-definable.

Theorem (Gire, Hoang, ’98). The ordered CFI query is IFP+WSC-definable.

10

The CFI Query

base graph even CFI graph

̸∼=

odd CFI graph

CFI query: define whether a CFI graph is even

ordered CFI query: ordered base graphs

Theorem (Cai, Fürer, Immerman, ’92). The (ordered) CFI query is not IFPC-definable.

Theorem (Gire, Hoang, ’98). The ordered CFI query is IFP+WSC-definable.

10

The CFI Query

base graph even CFI graph

̸∼=

odd CFI graph

CFI query: define whether a CFI graph is even
ordered CFI query: ordered base graphs

Theorem (Cai, Fürer, Immerman, ’92). The (ordered) CFI query is not IFPC-definable.

Theorem (Gire, Hoang, ’98). The ordered CFI query is IFP+WSC-definable.

10

The CFI Query

base graph even CFI graph

̸∼=

odd CFI graph

CFI query: define whether a CFI graph is even
ordered CFI query: ordered base graphs

Theorem (Cai, Fürer, Immerman, ’92). The (ordered) CFI query is not IFPC-definable.

Theorem (Gire, Hoang, ’98). The ordered CFI query is IFP+WSC-definable.

10

Separating IFPC+WSC from IFPC+WSC+I

ordered CFI graph

Theorem (L, ’23). IFPC+WSC < IFPC+WSC+I ≤ PTIME

IFP(C)+(W)SC does not define the ordered CFI+multipede query.
IFP(C)+(W)SC+I defines the ordered CFI+multipede query.

11

Separating IFPC+WSC from IFPC+WSC+I

multipede
(Gurevich, Shelah, ’96)
asymmetric structures
orbits not IFPC-definable

ordered CFI graph

Theorem (L, ’23). IFPC+WSC < IFPC+WSC+I ≤ PTIME

IFP(C)+(W)SC does not define the ordered CFI+multipede query.
IFP(C)+(W)SC+I defines the ordered CFI+multipede query.

11

Separating IFPC+WSC from IFPC+WSC+I

multipede
(Gurevich, Shelah, ’96)
asymmetric structures
orbits not IFPC-definable

ordered CFI graph

Theorem (L, ’23). IFPC+WSC < IFPC+WSC+I ≤ PTIME

IFP(C)+(W)SC does not define the ordered CFI+multipede query.
IFP(C)+(W)SC+I defines the ordered CFI+multipede query.

11

Separating IFPC+WSC from IFPC+WSC+I

multipede
(Gurevich, Shelah, ’96)
asymmetric structures
orbits not IFPC-definable

ordered CFI graph

Theorem (L, ’23). IFPC+WSC < IFPC+WSC+I ≤ PTIME

IFP(C)+(W)SC does not define the ordered CFI+multipede query.
IFP(C)+(W)SC+I defines the ordered CFI+multipede query.

11

Separating IFPC+WSC from IFPC+WSC+I

multipede
(Gurevich, Shelah, ’96)
asymmetric structures
orbits not IFPC-definable

ordered CFI graph

ordered CFI+multipede query

Theorem (L, ’23). IFPC+WSC < IFPC+WSC+I ≤ PTIME

IFP(C)+(W)SC does not define the ordered CFI+multipede query.
IFP(C)+(W)SC+I defines the ordered CFI+multipede query.

11

Separating IFPC+WSC from IFPC+WSC+I

multipede
(Gurevich, Shelah, ’96)
asymmetric structures
orbits not IFPC-definable

ordered CFI graph

ordered CFI+multipede query

Theorem (L, ’23). IFPC+WSC < IFPC+WSC+I ≤ PTIME

IFP(C)+(W)SC does not define the ordered CFI+multipede query.
IFP(C)+(W)SC+I defines the ordered CFI+multipede query.

11

Towards Separating IFPC+WSC+I from PTIME

Goal: Prove an operator nesting hierarchy for IFPC+WSC+I on CFI graphs

IFPC ≤ WSCI(IFPC) ≤ WSCI(WSCI(IFPC)) ≤ · · · ≤ PTIME

(Gire, Hoang, ’98) (L., ’23) (ongoing work ...)

12

Towards Separating IFPC+WSC+I from PTIME

Goal: Prove an operator nesting hierarchy for IFPC+WSC+I on CFI graphs

IFPC ≤ WSCI(IFPC) ≤ WSCI(WSCI(IFPC)) ≤ · · · ≤ PTIME

(Gire, Hoang, ’98) (L., ’23) (ongoing work ...)

12

Towards Separating IFPC+WSC+I from PTIME

Goal: Prove an operator nesting hierarchy for IFPC+WSC+I on CFI graphs

IFPC < WSCI(IFPC) ≤ WSCI(WSCI(IFPC)) ≤ · · · ≤ PTIME

(Gire, Hoang, ’98)

(L., ’23) (ongoing work ...)

12

Towards Separating IFPC+WSC+I from PTIME

Goal: Prove an operator nesting hierarchy for IFPC+WSC+I on CFI graphs

IFPC < WSCI(IFPC) < WSCI(WSCI(IFPC)) ≤ · · · ≤ PTIME

(Gire, Hoang, ’98) (L., ’23)

(ongoing work ...)

12

Towards Separating IFPC+WSC+I from PTIME

Goal: Prove an operator nesting hierarchy for IFPC+WSC+I on CFI graphs

IFPC < WSCI(IFPC) < WSCI(WSCI(IFPC)) ≤ · · · ≤ PTIME

(Gire, Hoang, ’98) (L., ’23) (ongoing work ...)

12

Summary: Witnessed Symmetric Choice

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

isomorphism
⇔ canonization
in CPT+WSC

inv
()

= 3

⇓

IIIII IV VI

IFPC+WSC
does not capture PTIME

IFPC+WSC and
interpretations

13

Summary: Witnessed Symmetric Choice

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

isomorphism
⇔ canonization
in CPT+WSC

inv
()

= 3

⇓

IIIII IV VI

IFPC+WSC
does not capture PTIME

IFPC+WSC and
interpretations

13

Summary: Witnessed Symmetric Choice

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

isomorphism
⇔ canonization
in CPT+WSC

inv
()

= 3

⇓

IIIII IV VI

IFPC+WSC
does not capture PTIME

IFPC+WSC and
interpretations

13

Summary: Witnessed Symmetric Choice

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

isomorphism
⇔ canonization
in CPT+WSC

inv
()

= 3

⇓

IIIII IV VI

IFPC+WSC
does not capture PTIME

IFPC+WSC and
interpretations

13

