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¢ symmetric choice (SC): choices from orbits
® unknown whether symmetric choice can be evaluated in PTIME

® witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc <¢steP(X7 ¥)s Pehoice(X), Puit (X, 2), (DOut(X))
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The Role of Canonization
Capturing PTIME via definable canonization

graph class G
l canonization
ordered graph class G
l Immerman-Vardi

capturing PTIME on G

Defining canonization vs. defining isomorphism
® Defining canonization is more difficult.
® |s canonization necessarily definable?

® Does isomorphism testing imply canonization?

canonization:

forall A,BeG

e can(A)= A

® can(A) =can(B)
& A=B

11l
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Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, '19) complete invariant:

CPT-definable isomorphism test for G implies forall A,BeG
® 3 CPT-definable complete invariant for G ® inv(A) =inv(B)
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® a canonization algorithm (if G is individualization-closed)
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Not definable in CPT but definable in CPT+WSC!
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Theorem. (L., Schweitzer, '21)
For every individualization-closed graph class G, the following are equivalent:

1. CPT-+WSC defines a complete invariant for G
2. CPT+WSC defines a canonization for G
3. CPT+WSC defines isomorphism of G

Corollary.
For every individualization-closed graph class G with a PTIME isomorphism test
CPT+WSC defines isomorphism of G <= CPT+WSC captures PTIME on G.
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Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

e
=

Interpretation operator 1(©, d) (Gire and Hoang, '98)

® |s [FPC+WSC+I1 more expressive than IFPC+WSC?
® |s [FP+SC+I more expressive than IFP4+SC? (Dawar, Richerby, '03)
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The CFl Query

base graph even CFI graph odd CFI graph

CFI query: define whether a CFI graph is even
ordered CFIl query: ordered base graphs

Theorem (Cai, Fiirer, Inmerman, '92). The (ordered) CFI query is not IFPC-definable.

Theorem (Gire, Hoang, '98). The ordered CFI query is IFP+WSC-definable.
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Separating IFPC4+WSC from IFPC+WSC+I
ordered CFl4+multipede query

ordered CFI graph

multipede

(Gurevich, Shelah, '96)
asymmetric structures
orbits not IFPC-definable

Theorem (L, '23). IFPC+WSC < IFPC4+WSC+I < PTIME

IFP(C)+(W)SC does not define the ordered CFl4+multipede query.
IFP(C)+(W)SC+I defines the ordered CFl+multipede query.
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Towards Separating IFPC4+WSC+I from PTIME

Goal: Prove an operator nesting hierarchy for IFPC4+WSC+I on CFl graphs

IFPC < WSCI(IFPC) < WSCI(WSCI(IFPC)) < --- < PTIME

(Gire, Hoang, '98) (L., '23) (ongoing work ...)
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Summary: Witnessed Symmetric Choice

fp-wsc (cbstep(xa }/)7 ¢Ch0ice(X)7 ¢wit(X7 Z), cbout(x))

isomorphism IFPC+WSC IFPC+WSC and
<> canonization does not capture PTIME interpretations
in CPT4+WSC
~(3)-
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