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Witnessed Symmetric Choice (Gire and Hoang, ’98)

• symmetric choice (SC): choices from orbits
• unknown whether symmetric choice can be evaluated in PTIME

• witnessed symmetric choice (WSC): witness orbits by automorphisms

fixed-point operators with (W)SC

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)
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Capturing PTIME and Canonization
in Choiceless Polynomial Time with

Witnessed Symmetric Choice
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The Role of Canonization
Capturing PTIME via definable canonization

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5



The Role of Canonization
Capturing PTIME via definable canonization

graph class G

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5



The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G
canonization

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5



The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5



The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism

• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5



The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism
• Defining canonization is more difficult.

• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5



The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism
• Defining canonization is more difficult.
• Is canonization necessarily definable?

• Does isomorphism testing imply canonization?

5



The Role of Canonization
Capturing PTIME via definable canonization

graph class G

ordered graph class G

capturing PTIME on G

canonization

Immerman-Vardi

canonization:
for all A, B ∈ G
• can (A) ∼= A
• can (A) = can (B)

⇔ A ∼= B

Defining canonization vs. defining isomorphism
• Defining canonization is more difficult.
• Is canonization necessarily definable?
• Does isomorphism testing imply canonization?

5



CPT and Isomorphism Testing

Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking, ’19)

CPT-definable isomorphism test for G implies

• a CPT-definable complete invariant for G
• a canonization algorithm (if G is individualization-closed)

complete invariant:
for all A, B ∈ G
• inv (A) = inv (B)

⇔ A ∼= B

Gurevich’s canonization algorithm (Gurevich, ’01)
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Not definable in CPT but definable in CPT+WSC!
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Defining Isomorphisms and Canonization in CPT+WSC

Theorem. (L., Schweitzer, ’21)
For every individualization-closed graph class G, the following are equivalent:

1. CPT+WSC defines a complete invariant for G
2. CPT+WSC defines a canonization for G
3. CPT+WSC defines isomorphism of G

Corollary.
For every individualization-closed graph class G with a PTIME isomorphism test
CPT+WSC defines isomorphism of G ⇐⇒ CPT+WSC captures PTIME on G.
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Expressiveness of Symmetric Choice
in Fixed-Point Logic with Counting
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Symmetric Choice, Asymmetric Structures, and Interpretations

symmetric choice on asymmetric structures is useless

Interpretation operator I ( Θ , Φ ) (Gire and Hoang, ’98)

• Is IFPC+WSC+I more expressive than IFPC+WSC?
• Is IFP+SC+I more expressive than IFP+SC? (Dawar, Richerby, ’03)
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Theorem (L, ’23). IFPC+WSC < IFPC+WSC+I ≤ PTIME

IFP(C)+(W)SC does not define the ordered CFI+multipede query.
IFP(C)+(W)SC+I defines the ordered CFI+multipede query.
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Towards Separating IFPC+WSC+I from PTIME

Goal: Prove an operator nesting hierarchy for IFPC+WSC+I on CFI graphs

IFPC ≤ WSCI(IFPC) ≤ WSCI(WSCI(IFPC)) ≤ · · · ≤ PTIME

(Gire, Hoang, ’98) (L., ’23) (ongoing work ...)
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Summary: Witnessed Symmetric Choice

fp-wsc
(
Φstep(x , y), Φchoice(x), Φwit(x , z), Φout(x)

)

isomorphism
⇔ canonization
in CPT+WSC

inv
( )

= 3

⇓

IIIII IV VI

IFPC+WSC
does not capture PTIME

IFPC+WSC and
interpretations
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