Flip-Breakability: Combinatorial Characterizations of Monadically NIP Graph Classes

Jan Dreier¹, <u>Nikolas Mählmann</u>², Szymon Toruńczyk³

LoGAlg 2023

¹TU Wien ²University of Bremen ³University of Warsaw

The FO Model Checking Problem

Problem: Given a graph *G* and an FO sentence φ , decide whether

 $G \models \varphi$.

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

Runtime: On the class of all graphs, FO model checking is AW[*]-hard. We will assume $FPT \neq AW[*]$.

Question: On which classes is FO model checking fixed-parameter tractable, i.e., solvable in time $f(\varphi) \cdot n^c$?

Tractable Classes

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs.

 ${\mathcal C}$ admits fpt FO model checking if and only if ${\mathcal C}$ is nowhere dense.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023+]

Let \mathcal{C} be a hereditary and orderless class of graphs.

 ${\mathcal C}$ admits fpt FO model checking if and only if ${\mathcal C}$ is monadically stable.

Theorem [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk, 2022]

Let \mathcal{C} be a hereditary and ordered class of graphs.

 ${\mathcal C}$ admits fpt FO model checking if and only if ${\mathcal C}$ has bounded twin-width.

Tractable Classes

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs.

 ${\mathcal C}$ admits fpt FO model checking if and only if ${\mathcal C}$ is monadically NIP.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023+]

Let \mathcal{C} be a hereditary and orderless class of graphs.

 ${\mathcal C}$ admits fpt FO model checking if and only if ${\mathcal C}$ is monadically NIP.

Theorem [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk, 2022]

Let \mathcal{C} be a hereditary and ordered class of graphs.

 ${\mathcal C}$ admits fpt FO model checking if and only if ${\mathcal C}$ is monadically NIP.

A Unifying Theory

Conjecture

Let C be a hereditary class of graphs.

 ${\mathcal C}$ admits fpt FO model checking if and only if ${\mathcal C}$ is monadically NIP.

FO Transductions

 $Transductions \stackrel{\scriptscriptstyle \diamond}{=} coloring + interpreting + taking \text{ an induced subgraph}$

 $\varphi(x,y) := \operatorname{Red}(x) \wedge \operatorname{Red}(y) \wedge \operatorname{dist}(x,y) = 3$

Monadic Stability and Monadic NIP

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.

Monadic Stability and Monadic NIP

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.

Definition

A class is *monadically NIP*, if it does not transduce the class of *all graphs*. Equivalently, it does not transduce the class of all 1-subdivided bicliques.

Wanted: Combinatorial Characterizations

Monadically NIP classes are defined using logic.

Working towards algorithms we need tools that are combinatorial.

Wanted: Combinatorial Characterizations

Monadically NIP classes are defined using logic.

Working towards algorithms we need tools that are combinatorial.

In this talk we will present:

- a combinatorial structure characterization: flip-breakability
- a combinatorial non-structure characterization: forbidden induced subgraphs

Uniform Quasi-Wideness (slightly informal)

A class C is *uniformly quasi-wide* if for every radius r, in every large set S we find a still large set A that is r-independent after removing a set F of constantly many vertices.

Uniform Quasi-Wideness (slightly informal)

A class C is *uniformly quasi-wide* if for every radius r, in every large set S we find a still large set A that is r-independent after removing a set F of constantly many vertices.

Theorem [Něsetřil, Ossona de Mendez, 2011]

A class \mathcal{C} is uniformly quasi-wide if and only if it is nowhere dense.

Towards Dense Graphs

Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.

Flip-Flatness (slightly informal)

A class C is *flip-flat* if for every radius r, in every large set S we find a still large set A that is r-independent after performing a set F of constantly many flips.

Flip-Flatness (slightly informal)

A class C is *flip-flat* if for every radius r, in every large set S we find a still large set A that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.

Characterizing Monadic NIP: Flip-Breakability

Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N_{G\oplus F}^r(A) \cap N_{G\oplus F}^r(B) = \emptyset$.

Characterizing Monadic NIP: Flip-Breakability

Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N_{G\oplus F}^r(A) \cap N_{G\oplus F}^r(B) = \emptyset$.

Characterizing Monadic NIP: Flip-Breakability

Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N_{G\oplus F}^r(A) \cap N_{G\oplus F}^r(B) = \emptyset$.

G

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.

1. We modify a graph using either flips or vertex deletions.

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.
 - flat: pairwise separated; broken: separated into two large sets

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist- <i>r</i>	flip-	monadic stability	monadic NIP
	deletion-	nowhere denseness	
$dist\text{-}\infty$	flip-		
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist- <i>r</i>	flip-	monadic stability	monadic NIP
	deletion-	nowhere denseness	nowhere denseness
$dist\text{-}\infty$	flip-		
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist- <i>r</i>	flip-	monadic stability	monadic NIP
	deletion-	nowhere denseness	nowhere denseness
$dist\text{-}\infty$	flip-	bd. shrubdepth	bd. cliquewidth
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist- <i>r</i>	flip-	monadic stability	monadic NIP
	deletion-	nowhere denseness	nowhere denseness
$dist\text{-}\infty$	flip-	bd. shrubdepth	bd. cliquewidth
	deletion-	bd. treedepth	bd. treewidth

Wanted: Combinatorial Characterizations

In this talk we will present:

- a combinatorial structure characterization: flip-breakability
- a combinatorial non-structure characterization: forbidden induced subgraphs

 \checkmark

star r-crossing = r-subdivided biclique

star r-crossing = r-subdivided biclique clique r-crossing

star r-crossing = r-subdivided biclique

clique r-crossing

half-graph r-crossing

comparability grid

Theorem [Dreier, Mählmann, Toruńczyk]

Let C be a graph class. Then C is monadically NIP if and only if for every $r \ge 1$ there exists $k \in \mathbb{N}$ such C excludes as induced subgraphs

- all layerwise flipped star r-crossings of order k, and
- all layerwise flipped clique *r*-crossings of order *k*, and
- all layerwise flipped half-graph r-crossings of order k, and
- the comparability grid of order k.

Forbidden Induced Subgraphs: Applications

Theorem [Dreier, Mählmann, Toruńczyk]

1. FO Model checking is AW[*]-hard on every hereditary class that is not mon. NIP.

Forbidden Induced Subgraphs: Applications

Theorem [Dreier, Mählmann, Toruńczyk]

- 1. FO Model checking is AW[*]-hard on every hereditary class that is not mon. NIP.
- 2. Every small hereditary class is monadically NIP.

Forbidden Induced Subgraphs: Applications

Theorem [Dreier, Mählmann, Toruńczyk]

- 1. FO Model checking is AW[*]-hard on every hereditary class that is not mon. NIP.
- 2. Every small hereditary class is monadically NIP.
- 3. Every class with almost bounded flip-width is monadically NIP.

Summary: We give two combinatorial characterizations of mon. NIP graph classes.

A structure characterization called flip-breakability:

A non-structure characterization by forbidden induced subgraphs:

FO model checking is AW[*]-hard on hereditary graph classes that are not mon. NIP.