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The FO Model Checking Problem
Problem: Given a graph G and an FO sentence ¢, decide whether

G .

Example: G contains a dominating set of size k iff.
G E3xg...3xVy : \/(y:x,-\/ywx;).
i€[k]

Runtime: On the class of all graphs, FO model checking is AW[«]-hard. We will
assume FPT # AW[x].

Question: On which classes is FO model checking fixed-parameter tractable, i.e.,
solvable in time f () - n°?
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Tractable Classes

Theorem [Grohe, Kreutzer, Siebertz, 2014]
Let C be a monotone class of graphs.

C admits fpt FO model checking if and only if C is nowhere dense.

Theorem [Dreier, Eleftheriadis, Mahlmann, McCarty, Pilipczuk, Toruriczyk, 2023+]
Let C be a hereditary and orderless class of graphs.

C admits fpt FO model checking if and only if C is monadically stable.

Theorem [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruficzyk, 2022
Let C be a hereditary and ordered class of graphs.
C admits fpt FO model checking if and only if C has bounded twin-width.
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A Unifying Theory

Let C be a hereditary class of graphs.
C admits fpt FO model checking if and only if C is monadically NIP.
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FO Transductions

Transductions = coloring + interpreting + taking an induced subgraph

o(x,y) == Red(x) A Red(y) A dist(x,y) =3
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Monadic Stability and Monadic NIP

A class is monadically stable, if it does not transduce the class of all half graphs.
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Monadic Stability and Monadic NIP
Definition

A class is monadically stable, if it does not transduce the class of all half graphs.

Definition
A class is monadically NIP, if it does not transduce the class of all graphs.
Equivalently, it does not transduce the class of all 1-subdivided bicliques.
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Wanted: Combinatorial Characterizations

Monadically NIP classes are defined using logic.

Working towards algorithms we need tools that are combinatorial.
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Wanted: Combinatorial Characterizations

Monadically NIP classes are defined using logic.
Working towards algorithms we need tools that are combinatorial.
In this talk we will present:

e a combinatorial structure characterization: flip-breakability

e a combinatorial non-structure characterization: forbidden induced subgraphs
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Characterizing Nowhere Denseness: Uniform Quasi-Wideness
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Characterizing Nowhere Denseness: Uniform Quasi-Wideness

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r, in every large set S we find a still
large set A that is r-independent after removing a set F of constantly many vertices.
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Characterizing Nowhere Denseness: Uniform Quasi-Wideness

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r, in every large set S we find a still
large set A that is r-independent after removing a set F of constantly many vertices.

Theorem [N&setFil, Ossona de Mendez, 2011]
A class C is uniformly quasi-wide if and only if it is nowhere dense.
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Towards Dense Graphs

Denote by G @ (P, Q) the graph obtained from G by complementing edges between
pairs of vertices from P x Q.

G Go(PQ)
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Characterizing Monadic Stability: Flip-Flatness
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Characterizing Monadic Stability: Flip-Flatness

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r, in every large set S we find a still large set A
that is r-independent after performing a set F of constantly many flips.

10/21



Characterizing Monadic Stability: Flip-Flatness

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r, in every large set S we find a still large set A
that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mahlmann, Siebertz, Toruriczyk, 2022]
A class C is flip-flat if and only if it is monadically stable.
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Characterizing Monadic NIP: Flip-Breakability
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Characterizing Monadic NIP: Flip-Breakability

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r, in every large set S we find two large
sets A and B that and a flip F of bounded size such that Ng-(A) N Ng,(B) = @.
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Flip-Breakability: Example
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Characterizing Monadic NIP: Flip-Breakability

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r, in every large set S we find two large
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Characterizing Monadic NIP: Flip-Breakability

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r, in every large set S we find two large
sets A and B that and a flip F of bounded size such that Ng . (A) N Ng(B) = 2.

Theorem [Dreier, Mahlmann, Torunczyk]

A class C is flip-breakable if and only if it is monadically NIP.
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Flip-Breakability = Monadic NIP

Assume towards a contradiction a class C is not monadically NIP but flip-breakable.
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Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.
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Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.
2. We demand our resulting set is either flat or broken.
flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-oc.

flatness breakability
. flip- monadic stability monadic NIP
dist-r .
deletion- nowhere denseness nowhere denseness
dist-co flip- bd. shrubdepth bd. cliquewidth
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Wanted: Combinatorial Characterizations

In this talk we will present:
e a combinatorial structure characterization: flip-breakability v

e a combinatorial non-structure characterization: forbidden induced subgraphs
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Characterizing Monadic NIP by Forbidden Induced Subgraphs

star r-crossing

= r-subdivided biclique
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star r-crossing

= r-subdivided biclique
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Characterizing Monadic NIP by Forbidden Induced Subgraphs

star r-crossing clique r-crossing half-graph r-crossing
= r-subdivided biclique
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Characterizing Monadic NIP by Forbidden Induced Subgraphs

|

i
\
!,
r

3
IR\

I
I
\ i
\
1
!

A \‘

comparability grid

AN
N
A

R
\\ ;}‘;._‘_\_E‘\Lei
N

‘n
|

N
\
\
]
I

NRIN

\\\ Ay
N

\




Characterizing Monadic NIP by Forbidden Induced Subgraphs

<A
o

Let C be a graph class. Then C is monadically NIP if and only if for every r > 1 there
exists k € N such C excludes as induced subgraphs

all layerwise flipped star r-crossings of order k, and

all layerwise flipped clique r-crossings of order k, and

all layerwise flipped half-graph r-crossings of order k, and

the comparability grid of order k.

Theorem [Dreier, Mahlmann, Torunczyk]
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Forbidden Induced Subgraphs: Applications

Theorem [Dreier, Mahlmann, Toruriczyk]

1. FO Model checking is AW[*]-hard on every hereditary class that is not mon. NIP.
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Forbidden Induced Subgraphs: Applications
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Theorem [Dreier, Mahlmann, Toruriczyk]

1. FO Model checking is AW[*]-hard on every hereditary class that is not mon. NIP.
2. Every small hereditary class is monadically NIP.
3. Every class with almost bounded flip-width is monadically NIP.
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Summary: We give two combinatorial characterizations of mon. NIP graph classes.

A structure characterization called flip-breakability:
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FO model checking is AW[x]-hard on hereditary graph classes that are not mon. NIP.
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