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The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ, decide whether

G |= φ.

Example: G contains a dominating set of size k iff.

G |= ∃x1 . . . ∃xk∀y :
∨
i∈[k]

(y = xi ∨ y ∼ xi ).

Runtime: On the class of all graphs, FO model checking is AW[∗]-hard. We will
assume FPT ̸= AW[∗].

Question: On which classes is FO model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?
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Tractable Classes

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs.

C admits fpt FO model checking if and only if C is nowhere dense.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023+]

Let C be a hereditary and orderless class of graphs.

C admits fpt FO model checking if and only if C is monadically stable.

Theorem [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk, 2022]

Let C be a hereditary and ordered class of graphs.

C admits fpt FO model checking if and only if C has bounded twin-width.
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A Unifying Theory

Conjecture

Let C be a hereditary class of graphs.

C admits fpt FO model checking if and only if C is monadically NIP.
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FO Transductions

Transductions =̂ coloring + interpreting + taking an induced subgraph

Tφ

φ(x , y) := Red(x) ∧ Red(y) ∧ dist(x , y) = 3
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Monadic Stability and Monadic NIP

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.

Definition

A class is monadically NIP, if it does not transduce the class of all graphs.
Equivalently, it does not transduce the class of all 1-subdivided bicliques.
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Wanted: Combinatorial Characterizations

Monadically NIP classes are defined using logic.

Working towards algorithms we need tools that are combinatorial.

In this talk we will present:

• a combinatorial structure characterization: flip-breakability

• a combinatorial non-structure characterization: forbidden induced subgraphs
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Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set S we find a still
large set A that is r -independent after removing a set F of constantly many vertices.

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.
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Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

8 / 21



Towards Dense Graphs

Denote by G ⊕ (P,Q) the graph obtained from G by complementing edges between
pairs of vertices from P × Q.

P

G G⊕ (P,Q)

flip (P,Q)

Q P Q
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Characterizing Monadic Stability: Flip-Flatness

G

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r , in every large set S we find a still large set A
that is r -independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
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Characterizing Monadic NIP: Flip-Breakability
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A class C is flip-breakable if and only if it is monadically NIP.

11 / 21



Characterizing Monadic NIP: Flip-Breakability

G

S

F

A

r
B

r

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set S we find two large
sets A and B that and a flip F of bounded size such that N r

G⊕F (A) ∩ N r
G⊕F (B) = ∅.

Theorem [Dreier, Mählmann, Toruńczyk]
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Flip-Breakability: Example

A B S
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Flip-Breakability ⇒ Monadic NIP

Assume towards a contradiction a class C is not monadically NIP but flip-breakable.

S

2S
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Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic NIP

deletion- nowhere denseness

dist-∞ flip-
deletion-
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Wanted: Combinatorial Characterizations

In this talk we will present:

• a combinatorial structure characterization: flip-breakability ✓

• a combinatorial non-structure characterization: forbidden induced subgraphs
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Characterizing Monadic NIP by Forbidden Induced Subgraphs

star r-crossing

= r-subdivided biclique

r
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Characterizing Monadic NIP by Forbidden Induced Subgraphs

comparability grid
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Characterizing Monadic NIP by Forbidden Induced Subgraphs

Theorem [Dreier, Mählmann, Toruńczyk]

Let C be a graph class. Then C is monadically NIP if and only if for every r ≥ 1 there
exists k ∈ N such C excludes as induced subgraphs

• all layerwise flipped star r -crossings of order k, and
• all layerwise flipped clique r -crossings of order k, and
• all layerwise flipped half-graph r -crossings of order k , and
• the comparability grid of order k .
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Forbidden Induced Subgraphs: Applications

Theorem [Dreier, Mählmann, Toruńczyk]

1. FO Model checking is AW[∗]-hard on every hereditary class that is not mon.NIP.

2. Every small hereditary class is monadically NIP.
3. Every class with almost bounded flip-width is monadically NIP.
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Summary: We give two combinatorial characterizations of mon. NIP graph classes.

A structure characterization called flip-breakability:

G

S

F

A

r
B

r

A non-structure characterization by forbidden induced subgraphs:

FO model checking is AW[∗]-hard on hereditary graph classes that are not mon. NIP.
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