Game comonads – a new kid in the finite model theory playground

Tomáš Jakl

Czech Academy of Sciences & Czech Technical University

16 November 2023

2nd Workshop on Logic, Graphs, and Algorithms, Warsaw

Existential *k*-pebble game

The game from A to B, rules in each round:

- Spoiler places/moves one of pebbles p_1, \ldots, p_k on A,
- Duplicator moves the corresponding q_1, \ldots, q_k on B.

Duplicator wins if after every round the mapping $p_i \mapsto q_i$ is a partial homomorphism $A \to B$.

Proposition (Kolaitis, Vardi 1990)

For relational structures A, B, the following are equivalent:

- Duplicator has a winning strategy in the existential k-pebble game from A to B.
- $A \Rightarrow_{\exists^{+}\mathcal{L}^{k}} B$, i.e. \forall positive existential k-variable sentence φ , $A \models \varphi$ implies $B \models \varphi$.

Semantic reformulation

Proposition (Dawar, Severini, Zapata 2017)

The following are equivalent:

- Duplicator has a winning strategy in the existential k-pebble game from A to B.
- There exists a homomorphism $\mathbb{P}_k(A) \to B$.

For a graph/relational structure A,

 $\mathbb{P}_k(A)$ = the structure of Spoiler's plays on A with k pebbles

Formally

 $\mathbb{P}_k(A)$ given by

• universe of words $\overline{x} = [(p_1, a_1), \dots, (p_n, a_n)]$ where $a_1, \dots, a_n \in A$, $p_1, \dots, p_n \in \{1, \dots, k\}$ \Rightarrow define projections $p(\overline{x}) = p_n$ and $\varepsilon(\overline{x}) = a_n$

•
$$R^{\mathbb{P}_k(A)}(\overline{x}_1, \ldots, \overline{x}_n)$$
 if

- $R^{A}(\varepsilon(\overline{x}_{1}), \ldots, \varepsilon(\overline{x}_{n}))$
- for all *i*, *j*:
 - either $\overline{x}_i = \overline{x}_j \cdot \overline{y}$ and $p(x_i) \notin \overline{y}$ • or $\overline{x}_j = \overline{x}_i \cdot \overline{y}$ and $p(x_j) \notin \overline{y}$

A comonad is born

Theorem (Abramsky, Dawar, Wang 2017) $(\mathbb{P}_k, \varepsilon, \overline{(-)})$ is a comonad.

A comonad $(\mathbb{C}, \varepsilon, \overline{(-)})$ given by

- operation on structures/graphs $A \mapsto \mathbb{C}(A)$
- a homomorphism $\varepsilon_A \colon \mathbb{C}(A) \to A$ for each A
- extension operation $f: \mathbb{C}(A) \to B \mapsto \overline{f}: \mathbb{C}(A) \to \mathbb{C}(B)$ satisfying

$$\overline{\varepsilon} = \operatorname{id} \qquad \varepsilon \circ \overline{f} = f \qquad \overline{g \circ \overline{f}} = \overline{g} \circ \overline{f}$$

Coalgebras and tree-width

 $\alpha \colon A \to \mathbb{P}_k(A)$ is a **coalgebra** if

Coalgebras and tree-width

 $\alpha \colon A \to \mathbb{P}_k(A)$ is a **coalgebra** if

Lemma

For fixed A, there is a one-to-one correspondence between:

- coalgebras A → P_k(A)
- compatible k-pebble forest covers (A, ≤, p) where
 (≤) ⊆ A × A and p: A → {1,..., k}

Coalgebras and tree-width

 $\alpha \colon A \to \mathbb{P}_k(A)$ is a **coalgebra** if

Lemma

For fixed A, there is a one-to-one correspondence between:

- coalgebras A → P_k(A)
- compatible k-pebble forest covers (A, ≤, p) where
 (≤) ⊆ A × A and p: A → {1,..., k}

Theorem (Abramsky, Dawar, Wang 2017) A has tree-width $\langle k$ iff exists coalgebra $A \rightarrow \mathbb{P}_k(A)$.

Capturing logics

• $A \equiv_{\exists^+ \mathcal{L}^k} B$ iff exist $\mathbb{P}_k(A) \to B$ and $\mathbb{P}_k(B) \to A$

Capturing logics

• $A \equiv_{\exists^+\mathcal{L}^k} B$ iff exist $\mathbb{P}_k(A) \to B$ and $\mathbb{P}_k(B) \to A$

•
$$A \equiv_{\mathcal{C}^k} B$$
 iff exist $f : \mathbb{P}_k(A) \to B$ and $g : \mathbb{P}_k(B) \to A$
s.t. $\overline{g} \circ \overline{f} = \text{id}$ and $\overline{f} \circ \overline{g} = \text{id}$.

Capturing logics

• $A \equiv_{\exists^+ \mathcal{L}^k} B$ iff exist $\mathbb{P}_k(A) \to B$ and $\mathbb{P}_k(B) \to A$

•
$$A \equiv_{\mathcal{C}^k} B$$
 iff exist $f : \mathbb{P}_k(A) \to B$ and $g : \mathbb{P}_k(B) \to A$
s.t. $\overline{g} \circ \overline{f} = \text{id}$ and $\overline{f} \circ \overline{g} = \text{id}$.

• $A \equiv_{\mathcal{L}^k} B$ iff there is a bisimulation between (coalgebras) $(\mathbb{P}_k(A), \sqsubseteq, p)$ and $(\mathbb{P}_k(B), \sqsubseteq, p)$ where $\overline{x} \sqsubset \overline{y} \iff \overline{x}$ is a prefix of \overline{y}

$$p([(p_1, a_1), \ldots, (p_n, a_n)]) = p_n$$

Other game comonads*

Comonad	Combinatorial property	logic fragment
\mathbb{E}_k	tree-depth	qrank $\leq k$ fragment
\mathbb{P}_k	tree-width	k-variable fragment
\mathbb{M}_k	sync. tree depth	modal depth $\leq k$
\mathbb{PR}_k	path-width	restricted conjunction
		<i>k</i> -variable
∏e _k	k-ary generalised tw.	generalised quantifier
		k-variable extension
\mathbb{G}_k	guarded tree decomp	quantifier-guarded
\mathbb{LG}_k	hypertree-width	k-conjunct guarded
$\mathbb{H}\mathbb{Y}_k$	generated tree-depth	hybrid modal depth
\mathbb{B}_k	generated tree-depth	bounded quantifiers

Categorical versions of (F)MT theorems

- 1. Lovász homomorphism counting uses: comonadicity of forgetful functors + finite rank comonad
- 2. Feferman–Vaught–Mostowski theorems [TJ, Marsden, Shah 2023] generalises: tensor products and bilinearity (linear algebra) for monads
- 3. Courcelle
- 4. van Benthem-Rosen [Abramsky, Marsden 2022] [Abramsky, Reggio 2023]
- 5. equi-rank HPT [Abramsky, Reggio 2022+] uses: model saturation ~ small object argument (algebraic topology)
- 6. Hudges' word construction
- 7. Gaifman/Hanf Locality

[TJ, Marsden, Shah 2022+]

[Reggio, Riba 2023+]

[TJ tba]

1. pebble games

1. pebble games

2. \mathbb{P}_k , new description of tw and its new td refinement

1. pebble games

2. \mathbb{P}_k , new description of tw and its new td refinement

3. hom. counting theorems [Dvořák 2010], [Grohe 2020], ...

- 1. pebble games
- hom. counting theorems
 [Dvořák 2010], [Grohe 2020],

2. \mathbb{P}_k , new description of tw and its new td refinement

4. comonadic counting thms, \mathbb{PR}_k comonad, answer to [Grohe 2020], simplification of [Dawar, Severini, Zapata 2016]

- 1. pebble games
- hom. counting theorems
 [Dvořák 2010], [Grohe 2020],

2. \mathbb{P}_k , new description of tw and its new td refinement

4. comonadic counting thms, \mathbb{PR}_k comonad, answer to [Grohe 2020], simplification of [Dawar, Severini, Zapata 2016]

5. unexpected corollary: equality elimination for C^k

- 1. pebble games
- hom. counting theorems
 [Dvořák 2010], [Grohe 2020],
- 6. [Lichter, Pago, Seppelt 2024] negative answer to [Conghaile, Dawar 2021]

2. \mathbb{P}_k , new description of tw and its new td refinement

4. comonadic counting thms, \mathbb{PR}_k comonad, answer to [Grohe 2020], simplification of [Dawar, Severini, Zapata 2016]

5. unexpected corollary: equality elimination for C^k

Theorem (TJ, Marsden, Shah 2023)

Assume \mathbb{C} classifies \mathcal{L} and Ψ is n-ary and functorial. If Ψ has a "Kleisli law" $\mathbb{C}(\Psi(A_1, \ldots, A_n)) \rightarrow \Psi(\mathbb{C}A_1, \ldots, \mathbb{C}A_n)$,

$$A_i \equiv_{\exists^+ \mathcal{L}} B_i$$
, for $i = 1, \dots, n$,

implies $\Psi(A_1,\ldots,A_n) \equiv_{\exists^+\mathcal{L}} \Psi(B_1,\ldots,B_n).$

Theorem (TJ, Marsden, Shah 2023)

Assume \mathbb{C} classifies \mathcal{L} and Ψ is n-ary and functorial. If Ψ has a "Kleisli law" $\mathbb{C}(\Psi(A_1, \ldots, A_n)) \rightarrow \Psi(\mathbb{C}A_1, \ldots, \mathbb{C}A_n)$,

$$A_i \equiv_{\#\mathcal{L}} B_i$$
, for $i = 1, \ldots, n$,

implies $\Psi(A_1, \ldots, A_n) \equiv_{\#\mathcal{L}} \Psi(B_1, \ldots, B_n).$

Theorem (TJ, Marsden, Shah 2023)

Assume \mathbb{C} classifies \mathcal{L} and Ψ is n-ary and functorial. If Ψ has a "smooth Kleisli law" $\mathbb{C}(\Psi(A_1, \ldots, A_n)) \rightarrow \Psi(\mathbb{C}A_1, \ldots, \mathbb{C}A_n)$,

$$A_i \equiv_{\mathcal{L}} B_i$$
, for $i = 1, \ldots, n$,

implies $\Psi(A_1,\ldots,A_n) \equiv_{\mathcal{L}} \Psi(B_1,\ldots,B_n).$

Theorem (TJ, Marsden, Shah 2023)

Assume \mathbb{C} classifies \mathcal{L} and Ψ is n-ary and functorial. If Ψ has a "Kleisli law" $\mathbb{C}(\Psi(A_1, \ldots, A_n)) \rightarrow \Psi(\mathbb{C}A_1, \ldots, \mathbb{C}A_n)$,

$$A_i \equiv_{\#\mathcal{L}} B_i$$
, for $i = 1, \ldots, n$,

implies
$$\Psi(A_1,\ldots,A_n) \equiv_{\#\mathcal{L}} \Psi(B_1,\ldots,B_n).$$

Many applications, e.g. [Karamlou, Shah 2023+]:

$$A \equiv_{\mathcal{L}} B \implies Q_d(A) \equiv_{\mathcal{L}} Q_d(B)$$

where

 \mathcal{L} = guarded $\mathcal{C}_{\infty,k}$, for structures with comeasurable relations $Q_d(A)$ = projector-valued measurements on A from [Abramsky, Barbosa, de Silva, Zapata 2017], for non-local quantum strategies

Conclusion

- 4 years of work for 2 professors, 3 postdocs, 3 PhDs
- many category theorists learning FMT and vice versa (including ESSLLI school, ACT Adjoint School)
- great interchange of ideas between the communities!

Open problems

- comonads for twin-width, flip-width, clique-width, ...
 ([Abramsky, TJ, Paine 2022] there is uninteresting comonad
 for any Δ s.t. A, B ∈ Δ iff A + B ∈ Δ)
- 2. comonads for fixpoint fragments and non-symmetric games
- 3. presentations of comonads
- 4. classification of nowhere dense/monadically stable comonads

Thank you!

References, i

Origins of the theory:

- 1. Anuj Dawar, Simone Severini, and Octavio Zapata. Pebble games and cospectral graphs. Electronic Notes in Discrete Mathematics 61 (2017): 323-329.
- 2. Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model theory. LICS 2017.

Theory basics and a survey of main achievements:

- Samson Abramsky, Nihil Shah, Relating structure and power: Comonadic semantics for computational resources. CMCS 2018 & Journal of Logic and Computation, Vol. 31(6), 2021.
- 4. Samson Abramsky. Structure and Power: an emerging landscape. Fundamenta Informaticae 186(1-4), 2022.

References, ii

Papers introducing further new game comonads

- 5. Adam Ó Conghaile, Anuj Dawar. Game Comonads & Generalised Quantifiers, CSL 2021.
- 6. Samson Abramsky, Dan Marsden. Comonadic semantics for guarded fragments, LICS 2021.
- 7. Yoàv Montacute, Nihil Shah. The Pebble-Relation Comonad in Finite Model Theory, LICS 2022.
- 8. Samson Abramsky, Dan Marsden. Comonadic semantics for hybrid logic and bounded fragments, MFCS 2022.
- 9. Bartosz Bednarczyk, Mateusz Urbańczyk. Comonadic semantics for description logics games. Description Logics Workshop @ FLoC 2022.
- 10. Santiago Figueira, Gabriel Goren Roig. A Modal Logic with n-ary Relations Over Paths: Comonadic Semantics and Expressivity. arXiv:2307.09679
 - * (more to appear later)

References, iii

Categorical (F)MT theorems

- $11. \ \mbox{Lovász-type}$ homomorphism counting theorems:
 - i Anuj Dawar, Tomáš Jakl and Luca Reggio, Lovász-type theorems and game comonads, LICS 2021.
 - ii Luca Reggio. Polyadic Sets and Homomorphism Counting. Advances in Mathematics, Vol. 410, 2022.
 - iii Samson Abramsky, Tomáš Jakl, Thomas Paine. Discrete Density Comonads and Graph Parameters. CMCS 2022.
- 12. Tomáš Jakl, Dan Marsden, Nihil Shah. A categorical account of composition methods in logic. LICS 2023.
- 13. Tomáš Jakl, Dan Marsden, Nihil Shah. A game comonadic account of Courcelle and Feferman-Vaught-Mostowski theorems. arXiv:2205.05387
- 14. for van Benthem-Rosen theorem, see [8]
- 15. Samson Abramsky and Luca Reggio. Arboreal categories and equi-resource homomorphism preservation theorems. arXiv:2211.15808
- Luca Reggio, Colin Riba. Finitely accessible arboreal adjunctions and Hintikka formulae. arXiv:2304.12709

References, iv

Synthetic finite model theory:

- 17. Samson Abramsky and Luca Reggio. Arboreal categories. An axiomatic theory of resources. ICALP 2021 & LMCS 2023.
- Samson Abramsky, Yoàv Montacute, Nihil Shah. Linear Arboreal Categories. arXiv:2301.10088
- 19. Further see [15] and [16] for examples of usage of this abstract setting.