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Existential k-pebble game

The game from A to B, rules in each round:

� Spoiler places/moves one of pebbles p1, . . . , pk on A,

� Duplicator moves the corresponding q1, . . . , qk on B.

Duplicator wins if after every round the mapping pi 7→ qi is a

partial homomorphism A → B.

Proposition (Kolaitis, Vardi 1990)

For relational structures A,B, the following are equivalent:

� Duplicator has a winning strategy in the existential k-pebble

game from A to B.

� A ⇛∃+Lk B, i.e. ∀ positive existential k-variable sentence φ,

A |= φ implies B |= φ.
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Semantic reformulation

Proposition (Dawar, Severini, Zapata 2017)

The following are equivalent:

� Duplicator has a winning strategy in the existential k-pebble

game from A to B.

� There exists a homomorphism Pk(A) → B.

For a graph/relational structure A,

Pk(A) = the structure of Spoiler’s plays on A with k pebbles
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Formally

Pk(A) given by

� universe of words x = [ (p1, a1), . . . , (pn, an) ]

where a1, . . . , an ∈ A, p1, . . . , pn ∈ {1, . . . , k}
⇒ define projections

p(x) = pn and ε(x) = an

� RPk (A)(x1, . . . , xn) if

� RA(ε(x1), . . . , ε(xn))

� for all i , j :

� either x i = x j · y and p(xi ) /∈ y

� or x j = x i · y and p(xj) /∈ y
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A comonad is born

Theorem (Abramsky, Dawar, Wang 2017)

(Pk , ε, (−)) is a comonad.

A comonad (C, ε, (−)) given by

� operation on structures/graphs A 7→ C(A)

� a homomorphism εA : C(A) → A for each A

� extension operation f : C(A) → B 7→ f : C(A) → C(B)

satisfying

ε = id ε ◦ f = f g ◦ f = g ◦ f
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Coalgebras and tree-width

α : A → Pk(A) is a coalgebra if

A

Pk(A) A

α id

εA

and

A Pk(A)

Pk(A) P2
k(A)

α

α

id

α εA

Lemma

For fixed A, there is a one-to-one correspondence between:

� coalgebras A → Pk(A)

� compatible k-pebble forest covers (A,≤, p) where

(≤) ⊆ A× A and p : A → {1, . . . , k}

Theorem (Abramsky, Dawar, Wang 2017)

A has tree-width < k iff exists coalgebra A → Pk(A).
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Capturing logics

� A ≡∃+Lk B iff exist Pk(A) → B and Pk(B) → A

� A ≡Ck B iff exist f : Pk(A) → B and g : Pk(B) → A

s.t. g ◦ f = id and f ◦ g = id.

� A ≡Lk B iff there is a bisimulation between (coalgebras)

(Pk(A),⊑, p) and (Pk(B),⊑, p)

where

x ⊑ y ⇐⇒ x is a prefix of y

p ( [(p1, a1), . . . , (pn, an)] ) = pn

(Equality has to be added to the signature for the last one.)
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Other game comonads∗

Comonad Combinatorial property logic fragment

Ek tree-depth qrank ≤k fragment

Pk tree-width k-variable fragment

Mk sync. tree depth modal depth ≤k

PRk path-width restricted conjunction

k-variable

Hek k-ary generalised t.-w. generalised quantifier

k-variable extension

Gk guarded tree decomp quantifier-guarded

LGk hypertree-width k-conjunct guarded

Hyk generated tree-depth hybrid modal depth

Bk generated tree-depth bounded quantifiers

. . . . . . . . .

(*) Since 2018, due to Abramsky, Marsden, Shah, Dawar, etc.
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Categorical versions of (F)MT theorems

1. Lovász homomorphism counting [Dawar, TJ, Reggio 2021] [Reggio 2022]

uses: comonadicity of forgetful functors + finite rank comonad

2. Feferman–Vaught–Mostowski theorems [TJ, Marsden, Shah 2023]

generalises: tensor products and bilinearity (linear algebra) for monads

3. Courcelle [TJ, Marsden, Shah 2022+]

4. van Benthem-Rosen [Abramsky, Marsden 2022] [Abramsky, Reggio 2023]

5. equi-rank HPT [Abramsky, Reggio 2022+]

uses: model saturation ∼ small object argument (algebraic topology)

6. Hudges’ word construction [Reggio, Riba 2023+]

7. Gaifman/Hanf Locality [TJ tba]
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Homomorphism Counting & Interchange of Ideas

finite

model

theory

category

theory

1. pebble games

3. hom. counting theorems

[Dvǒrák 2010], [Grohe 2020], . . .

6. [Lichter, Pago, Seppelt 2024]

negative answer to [Conghaile,

Dawar 2021]

2. Pk , new description of tw

and its new td refinement

4. comonadic counting thms,

PRk comonad, answer to

[Grohe 2020], simplification of

[Dawar, Severini, Zapata 2016]

5. unexpected corollary:

equality elimination for Ck
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[Dvǒrák 2010], [Grohe 2020], . . .

6. [Lichter, Pago, Seppelt 2024]

negative answer to [Conghaile,

Dawar 2021]

2. Pk , new description of tw

and its new td refinement

4. comonadic counting thms,

PRk comonad, answer to

[Grohe 2020], simplification of

[Dawar, Severini, Zapata 2016]

5. unexpected corollary:

equality elimination for Ck
9



Homomorphism Counting & Interchange of Ideas

finite

model

theory

category

theory

1. pebble games

3. hom. counting theorems
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Feferman–Vaught–Mostowski theorems (≈ composition methods)

Theorem (TJ, Marsden, Shah 2023)

Assume C classifies L and Ψ is n-ary and functorial. If Ψ has a

“Kleisli law” C(Ψ(A1, . . . ,An)) → Ψ(CA1, . . . ,CAn),

Ai ≡∃+L Bi , for i = 1, . . . , n,

implies Ψ(A1, . . . ,An) ≡∃+L Ψ(B1, . . . ,Bn).

Many applications, e.g. [Karamlou, Shah 2023+]:

A ≡L B =⇒ Qd(A) ≡L Qd(B)

where

L = guarded C∞,k , for structures with comeasurable relations

Qd(A) = projector-valued measurements on A from [Abramsky,

Barbosa, de Silva, Zapata 2017], for non-local quantum strategies
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Theorem (TJ, Marsden, Shah 2023)

Assume C classifies L and Ψ is n-ary and functorial. If Ψ has a
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Conclusion

� 4 years of work for 2 professors, 3 postdocs, 3 PhDs

� many category theorists learning FMT and vice versa

(including ESSLLI school, ACT Adjoint School)

� great interchange of ideas between the communities!

Open problems

1. comonads for twin-width, flip-width, clique-width, ...

([Abramsky, TJ, Paine 2022] there is uninteresting comonad

for any ∆ s.t. A,B ∈ ∆ iff A+ B ∈ ∆)

2. comonads for fixpoint fragments and non-symmetric games

3. presentations of comonads

4. classification of nowhere dense/monadically stable comonads
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Thank you!



References, i

Origins of the theory:

1. Anuj Dawar, Simone Severini, and Octavio Zapata. Pebble games and cospectral

graphs. Electronic Notes in Discrete Mathematics 61 (2017): 323-329.

2. Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad

in finite model theory. LICS 2017.

Theory basics and a survey of main achievements:

3. Samson Abramsky, Nihil Shah, Relating structure and power: Comonadic

semantics for computational resources. CMCS 2018 & Journal of Logic and

Computation, Vol. 31(6), 2021.

4. Samson Abramsky. Structure and Power: an emerging landscape. Fundamenta

Informaticae 186(1-4), 2022.



References, ii

Papers introducing further new game comonads
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