
The Descriptive Complexity of
Graph Neural Networks

Martin Grohe



Graph Neural Networks

2



Graph Neural Networks

▶ Graph neural networks (GNNs) are deep learning architectures for machine
learning problems on graphs.

▶ They can be viewed as a generalisation of convolutional neural networks from a
rigid grid structure to more flexibly structured data.

▶ GNNs have a wide range of applications, for example, in computational biology,
chemical engineering, physics, etc.

▶ By now, there is a large variety of GNN architectures.
In this talk, we focus on the core GNN architecture known as message passing
graph neural network or aggregate-combine graph neural network.

3



Graph Neural Networks

▶ Graph neural networks (GNNs) are deep learning architectures for machine
learning problems on graphs.

▶ They can be viewed as a generalisation of convolutional neural networks from a
rigid grid structure to more flexibly structured data.

▶ GNNs have a wide range of applications, for example, in computational biology,
chemical engineering, physics, etc.

▶ By now, there is a large variety of GNN architectures.
In this talk, we focus on the core GNN architecture known as message passing
graph neural network or aggregate-combine graph neural network.

3



Graph Neural Networks

▶ Graph neural networks (GNNs) are deep learning architectures for machine
learning problems on graphs.

▶ They can be viewed as a generalisation of convolutional neural networks from a
rigid grid structure to more flexibly structured data.

▶ GNNs have a wide range of applications, for example, in computational biology,
chemical engineering, physics, etc.

▶ By now, there is a large variety of GNN architectures.
In this talk, we focus on the core GNN architecture known as message passing
graph neural network or aggregate-combine graph neural network.

3



Graph Neural Networks

▶ Graph neural networks (GNNs) are deep learning architectures for machine
learning problems on graphs.

▶ They can be viewed as a generalisation of convolutional neural networks from a
rigid grid structure to more flexibly structured data.

▶ GNNs have a wide range of applications, for example, in computational biology,
chemical engineering, physics, etc.

▶ By now, there is a large variety of GNN architectures.
In this talk, we focus on the core GNN architecture known as message passing
graph neural network or aggregate-combine graph neural network.

3



Graph Neural Networks

v2

v1

v3

v4

v5

v6

4



Graph Neural Networks

v2

v1

v3

v4

v5

v6

ζ(0)(v1) =


1.0
1.0
1.0
1.0



ζ(0)(v2)

ζ(0)(v3)

ζ(0)(v4)

ζ(0)(v5)

ζ(0)(v6)

4



Graph Neural Networks

v2

v1

v3

v4

v5

v6

ζ(0)(v1) =


1.0
1.0
1.0
1.0



ζ(0)(v2)

ζ(0)(v3)

ζ(0)(v4)

ζ(0)(v5)

ζ(0)(v6)

m(1)
1 =

(
1.0
1.0

)

4



Graph Neural Networks

v2

v1

v3

v4

v5

v6

ζ(0)(v1) =


1.0
1.0
1.0
1.0



ζ(0)(v2)

ζ(0)(v3)

ζ(0)(v4)

ζ(0)(v5)

ζ(0)(v6)

m(1)
1 =

(
1.0
1.0

)
m(1)

4

4



Graph Neural Networks

v2

v1

v3

v4

v5

v6

ζ(0)(v1) =


1.0
1.0
1.0
1.0



ζ(0)(v2)

ζ(0)(v3)

ζ(0)(v4)

ζ(0)(v5)

ζ(0)(v6)

m(1)
1 =

(
1.0
1.0

)
m(1)

4
m(1)

1m(1)
2

m(1)
1m(1)

3

m(1)
2

m(1)
3

m(1)
3

m(1)
4

m(1)
4

m(1)
5

m(1)
4

m(1)
6

m(1)
5m(1)

6

4



Graph Neural Networks

v2

v1

v3

v4

v5

v6

m(1)
1 =

(
1.0
1.0

)
m(1)

4
m(1)

1m(1)
2

m(1)
1m(1)

3

m(1)
2

m(1)
3

m(1)
3

m(1)
4

m(1)
4

m(1)
5

m(1)
4

m(1)
6

m(1)
5m(1)

6

ζ(1)(v1) =


0.5
0.8
−0.3

0



ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

4



Graph Neural Networks

v2

v1

v3

v4

v5

v6

ζ(1)(v1) =


0.5
0.8
−0.3

0



ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

4



Graph Neural Networks

v2

v1

v3

v4

v5

v6

ζ(1)(v1) =


0.5
0.8
−0.3

0



ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

m(2)
1 =

(
0.5
0.8

)
m(2)

4
m(2)

1m(2)
2

m(2)
1m(2)

3

m(2)
2

m(2)
3

m(2)
3

m(2)
4

m(2)
4

m(2)
5

m(2)
4

m(2)
6

m(2)
5m(2)

6

4



Graph Neural Networks

v2

v1

v3

v4

v5

v6

m(2)
1 =

(
0.5
0.8

)
m(2)

4
m(2)

1m(2)
2

m(2)
1m(2)

3

m(2)
2

m(2)
3

m(2)
3

m(2)
4

m(2)
4

m(2)
5

m(2)
4

m(2)
6

m(2)
5m(2)

6

ζ(2)(v1) =


0.5
0.8
−0.3

0



ζ(2)(v2)

ζ(2)(v3)

ζ(2)(v4)

ζ(2)(v5)

ζ(2)(v6)

4



Graph Neural Networks

v2

v1

v3

v4

v5

v6

ζ(2)(v1) =


0.5
0.8
−0.3

0



ζ(2)(v2)

ζ(2)(v3)

ζ(2)(v4)

ζ(2)(v5)

ζ(2)(v6)

4



Feedforward Neural Networks

x1 x2 x3 x4

y1 y2 y3

▶ Nodes and edges are weighted.
▶ Node with weight b ∈ R and

incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

hyperbolic tangent
4 2 0 2 4

0

1

2

3

4

5

rectified linear unit (ReLU)

5



Feedforward Neural Networks

x1 x2 x3 x4

y1 y2 y3

▶ Nodes and edges are weighted.

▶ Node with weight b ∈ R and
incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

hyperbolic tangent
4 2 0 2 4

0

1

2

3

4

5

rectified linear unit (ReLU)

5



Feedforward Neural Networks

w1 w2 w3 w4 w5

b

▶ Nodes and edges are weighted.
▶ Node with weight b ∈ R and

incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

hyperbolic tangent
4 2 0 2 4

0

1

2

3

4

5

rectified linear unit (ReLU)

5



Feedforward Neural Networks

w1 w2 w3 w4 w5

b

▶ Nodes and edges are weighted.
▶ Node with weight b ∈ R and

incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

hyperbolic tangent
4 2 0 2 4

0

1

2

3

4

5

rectified linear unit (ReLU)
5



Universal Approximation Theorem

Theorem (Cybenko 1989, Hornik 1991)
Let
▶ σ : R→ R be be continuous and not polynomial,
▶ f : K → Rn continuous, where K ⊆ Rm is a compact set,
▶ ϵ > 0.

Then there is a depth-2 feedforward neural network N with activation functions
▶ σ on layer 1,
▶ the identity on layer 2

computing a function fN such that

sup
x∈K
∥f (x)− fN(x)∥ < ϵ.

6



Universal Approximation Theorem

Theorem (Cybenko 1989, Hornik 1991)
Let
▶ σ : R→ R be be continuous and not polynomial,
▶ f : K → Rn continuous, where K ⊆ Rm is a compact set,
▶ ϵ > 0.

Then there is a depth-2 feedforward neural network N with activation functions
▶ σ on layer 1,
▶ the identity on layer 2

computing a function fN such that

sup
x∈K
∥f (x)− fN(x)∥ < ϵ.

6



Computation of GNNs

GNN N with d layers maps graph G to sequence of signals

ζ(t) : V (G )→ Rp for t = 0, . . . , d

Initialisation: ζ(0)(v) ∈ Rp encodes node labels of v

Aggregation: α(t)(v) := aggt

({{
msgt

(
ζ(t−1)(v), ζ(t−1)(w)

) ∣∣∣ w ∈ NG (v)
}})

▶ msgt : R2p → Rp′ message function computed by a feedforward neural network
▶ aggt aggregation function: sum, mean or max

Global readout: γ(t) := agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}})

▶ agg′t aggregation function: sum, mean or max

Combination: ζ(t)(v) := combt
(
ζ(t−1)(v), α(t)(v), γ(t)

)
▶ combt : R2p+p′ → Rp function computed by a feedforward neural network

7



Computation of GNNs

GNN N with d layers maps graph G to sequence of signals

ζ(t) : V (G )→ Rp for t = 0, . . . , d

Initialisation: ζ(0)(v) ∈ Rp encodes node labels of v

Aggregation: α(t)(v) := aggt

({{
msgt

(
ζ(t−1)(v), ζ(t−1)(w)

) ∣∣∣ w ∈ NG (v)
}})

▶ msgt : R2p → Rp′ message function computed by a feedforward neural network
▶ aggt aggregation function: sum, mean or max

Global readout: γ(t) := agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}})

▶ agg′t aggregation function: sum, mean or max

Combination: ζ(t)(v) := combt
(
ζ(t−1)(v), α(t)(v), γ(t)

)
▶ combt : R2p+p′ → Rp function computed by a feedforward neural network

7



Computation of GNNs

GNN N with d layers maps graph G to sequence of signals

ζ(t) : V (G )→ Rp for t = 0, . . . , d

Initialisation: ζ(0)(v) ∈ Rp encodes node labels of v

Aggregation: α(t)(v) := aggt

({{
msgt

(
ζ(t−1)(v), ζ(t−1)(w)

) ∣∣∣ w ∈ NG (v)
}})

▶ msgt : R2p → Rp′ message function computed by a feedforward neural network
▶ aggt aggregation function: sum, mean or max

Global readout: γ(t) := agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}})

▶ agg′t aggregation function: sum, mean or max

Combination: ζ(t)(v) := combt
(
ζ(t−1)(v), α(t)(v), γ(t)

)
▶ combt : R2p+p′ → Rp function computed by a feedforward neural network

7



Computation of GNNs

GNN N with d layers maps graph G to sequence of signals

ζ(t) : V (G )→ Rp for t = 0, . . . , d

Initialisation: ζ(0)(v) ∈ Rp encodes node labels of v

Aggregation: α(t)(v) := aggt

({{
msgt

(
ζ(t−1)(v), ζ(t−1)(w)

) ∣∣∣ w ∈ NG (v)
}})

▶ msgt : R2p → Rp′ message function computed by a feedforward neural network
▶ aggt aggregation function: sum, mean or max

Global readout: γ(t) := agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}})

▶ agg′t aggregation function: sum, mean or max

Combination: ζ(t)(v) := combt
(
ζ(t−1)(v), α(t)(v), γ(t)

)
▶ combt : R2p+p′ → Rp function computed by a feedforward neural network

7



Computation of GNNs

GNN N with d layers maps graph G to sequence of signals

ζ(t) : V (G )→ Rp for t = 0, . . . , d

Initialisation: ζ(0)(v) ∈ Rp encodes node labels of v

Aggregation: α(t)(v) := aggt

({{
msgt

(
ζ(t−1)(v), ζ(t−1)(w)

) ∣∣∣ w ∈ NG (v)
}})

▶ msgt : R2p → Rp′ message function computed by a feedforward neural network
▶ aggt aggregation function: sum, mean or max

Global readout: γ(t) := agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}})

▶ agg′t aggregation function: sum, mean or max

Combination: ζ(t)(v) := combt
(
ζ(t−1)(v), α(t)(v), γ(t)

)
▶ combt : R2p+p′ → Rp function computed by a feedforward neural network

7



Functions Computed by GNNs

Node-Level Functions
To compute a function Φ that maps each graph G to a signal Φ(G , ·) : V (G )→ Rq,
we apply a readout function ro such that

Φ(G , v) = ro
(
ζ(d)(v)

)
.

▶ ro : Rp → Rq is computed by a feedforward neural network

Graph-Level Functions
To compute a function ϕ that maps graphs to Rq, we apply an aggregate readout
function aggro such that

ϕ(G ) = ro
(
agg
({{

ζ(d)(v)
∣∣∣ v ∈ V (G )

}})
.

▶ agg aggregation function: sum, mean or max

▶ ro : Rp → Rq is computed by a feedforward neural network

8



Functions Computed by GNNs

Node-Level Functions
To compute a function Φ that maps each graph G to a signal Φ(G , ·) : V (G )→ Rq,
we apply a readout function ro such that

Φ(G , v) = ro
(
ζ(d)(v)

)
.

▶ ro : Rp → Rq is computed by a feedforward neural network

Graph-Level Functions
To compute a function ϕ that maps graphs to Rq, we apply an aggregate readout
function aggro such that

ϕ(G ) = ro
(
agg
({{

ζ(d)(v)
∣∣∣ v ∈ V (G )

}})
.

▶ agg aggregation function: sum, mean or max

▶ ro : Rp → Rq is computed by a feedforward neural network
8



Invariance and Equivariance

Invariance of Graph-Level Functions
Let ϕ be a graph-level function computed by a GNN. Then for all isomorphic graphs
G ,H,

ϕ(G ) = ϕ(H).

Equivariance of Node-Level Functions
Let Φ be a node-level function computed by a GNN. Then for all isomorphic graphs
G ,H, all isomorphisms h from G to H, and all vertices v ∈ V (G ):

Φ(G , v) = Φ(H, h(v)).

We are mainly interested in Boolean queries and unary queries, that is, invariant graph
level functions G 7→ {0, 1} and equivariant node-level functions G 7→ {0, 1}V (G).

9



Invariance and Equivariance

Invariance of Graph-Level Functions
Let ϕ be a graph-level function computed by a GNN. Then for all isomorphic graphs
G ,H,

ϕ(G ) = ϕ(H).

Equivariance of Node-Level Functions
Let Φ be a node-level function computed by a GNN. Then for all isomorphic graphs
G ,H, all isomorphisms h from G to H, and all vertices v ∈ V (G ):

Φ(G , v) = Φ(H, h(v)).

We are mainly interested in Boolean queries and unary queries, that is, invariant graph
level functions G 7→ {0, 1} and equivariant node-level functions G 7→ {0, 1}V (G).

9



Invariance and Equivariance

Invariance of Graph-Level Functions
Let ϕ be a graph-level function computed by a GNN. Then for all isomorphic graphs
G ,H,

ϕ(G ) = ϕ(H).

Equivariance of Node-Level Functions
Let Φ be a node-level function computed by a GNN. Then for all isomorphic graphs
G ,H, all isomorphisms h from G to H, and all vertices v ∈ V (G ):

Φ(G , v) = Φ(H, h(v)).

We are mainly interested in Boolean queries and unary queries, that is, invariant graph
level functions G 7→ {0, 1} and equivariant node-level functions G 7→ {0, 1}V (G).

9



Recurrent GNNs

As described so far, GNNs have a fixed number d of layers, and each layer t has its
own aggregation function aggt and combination function combt .

Recurrent GNNs
Instead, we can take a single layer and apply it repeatedly. That is, we have a single
aggregation function agg and combination function comb and let:

ζ(t)(v) = comb
(
ζ(t−1)(v), agg

({{
ζ(t−1)(w)

∣∣ w ∈ NG (v)
}}))

for all t ≥ 1.

We determine the number d of iterations at runtime (maybe depending on the size of
the input graph, or even depending on the evolution of the sequence

(
ζ(t)
)
t≥0). We

do not require any kind of convergence.

As before, we apply the readout function to the dth layer.

10



Recurrent GNNs

As described so far, GNNs have a fixed number d of layers, and each layer t has its
own aggregation function aggt and combination function combt .

Recurrent GNNs
Instead, we can take a single layer and apply it repeatedly. That is, we have a single
aggregation function agg and combination function comb and let:

ζ(t)(v) = comb
(
ζ(t−1)(v), agg

({{
ζ(t−1)(w)

∣∣ w ∈ NG (v)
}}))

for all t ≥ 1.

We determine the number d of iterations at runtime (maybe depending on the size of
the input graph, or even depending on the evolution of the sequence

(
ζ(t)
)
t≥0). We

do not require any kind of convergence.

As before, we apply the readout function to the dth layer.

10



Recurrent GNNs

As described so far, GNNs have a fixed number d of layers, and each layer t has its
own aggregation function aggt and combination function combt .

Recurrent GNNs
Instead, we can take a single layer and apply it repeatedly. That is, we have a single
aggregation function agg and combination function comb and let:

ζ(t)(v) = comb
(
ζ(t−1)(v), agg

({{
ζ(t−1)(w)

∣∣ w ∈ NG (v)
}}))

for all t ≥ 1.

We determine the number d of iterations at runtime (maybe depending on the size of
the input graph, or even depending on the evolution of the sequence

(
ζ(t)
)
t≥0).

We
do not require any kind of convergence.

As before, we apply the readout function to the dth layer.

10



Recurrent GNNs

As described so far, GNNs have a fixed number d of layers, and each layer t has its
own aggregation function aggt and combination function combt .

Recurrent GNNs
Instead, we can take a single layer and apply it repeatedly. That is, we have a single
aggregation function agg and combination function comb and let:

ζ(t)(v) = comb
(
ζ(t−1)(v), agg

({{
ζ(t−1)(w)

∣∣ w ∈ NG (v)
}}))

for all t ≥ 1.

We determine the number d of iterations at runtime (maybe depending on the size of
the input graph, or even depending on the evolution of the sequence

(
ζ(t)
)
t≥0). We

do not require any kind of convergence.

As before, we apply the readout function to the dth layer.

10



Recurrent GNNs

As described so far, GNNs have a fixed number d of layers, and each layer t has its
own aggregation function aggt and combination function combt .

Recurrent GNNs
Instead, we can take a single layer and apply it repeatedly. That is, we have a single
aggregation function agg and combination function comb and let:

ζ(t)(v) = comb
(
ζ(t−1)(v), agg

({{
ζ(t−1)(w)

∣∣ w ∈ NG (v)
}}))

for all t ≥ 1.

We determine the number d of iterations at runtime (maybe depending on the size of
the input graph, or even depending on the evolution of the sequence

(
ζ(t)
)
t≥0). We

do not require any kind of convergence.

As before, we apply the readout function to the dth layer.

10



Digression: The Weisfeiler-Leman Algorithm

11



A Simple Combinatorial Algorithm

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Run Colour Refinement (Demo by Holger Dell)

Remark
Colour Refinement is essentially the same as the 1-dimensional Weisfeiler-Leman
algorithm. There is a subtle difference that is actually relevant here (but we ignore it
in the talk).

12

https://www2.lics.rwth-aachen.de/grohe/Dell-Colour-Refinement/


A Simple Combinatorial Algorithm

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Run Colour Refinement (Demo by Holger Dell)

Remark
Colour Refinement is essentially the same as the 1-dimensional Weisfeiler-Leman
algorithm. There is a subtle difference that is actually relevant here (but we ignore it
in the talk).

12

https://www2.lics.rwth-aachen.de/grohe/Dell-Colour-Refinement/


A Simple Combinatorial Algorithm

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Run Colour Refinement (Demo by Holger Dell)

Remark
Colour Refinement is essentially the same as the 1-dimensional Weisfeiler-Leman
algorithm. There is a subtle difference that is actually relevant here (but we ignore it
in the talk).

12

https://www2.lics.rwth-aachen.de/grohe/Dell-Colour-Refinement/


A Simple Combinatorial Algorithm

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Run Colour Refinement (Demo by Holger Dell)

Remark
Colour Refinement is essentially the same as the 1-dimensional Weisfeiler-Leman
algorithm. There is a subtle difference that is actually relevant here (but we ignore it
in the talk).

12

https://www2.lics.rwth-aachen.de/grohe/Dell-Colour-Refinement/


A Simple Combinatorial Algorithm

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Run Colour Refinement (Demo by Holger Dell)

Remark
Colour Refinement is essentially the same as the 1-dimensional Weisfeiler-Leman
algorithm. There is a subtle difference that is actually relevant here (but we ignore it
in the talk).

12

https://www2.lics.rwth-aachen.de/grohe/Dell-Colour-Refinement/


Colour Refinement as an Isomorphism Test

Colour Refinement distinguishes two graphs G ,H if their colour histograms differ,
that is, some colour appears a different number of times in G and H.

Thus Colour Refinement can be used as an incomplete isomorphism test.
▶ works on almost all graphs (Babai, Erdös, Selkow 1980)
▶ fails on some very simple graphs:

13



Colour Refinement as an Isomorphism Test

Colour Refinement distinguishes two graphs G ,H if their colour histograms differ,
that is, some colour appears a different number of times in G and H.

Thus Colour Refinement can be used as an incomplete isomorphism test.

▶ works on almost all graphs (Babai, Erdös, Selkow 1980)
▶ fails on some very simple graphs:

13



Colour Refinement as an Isomorphism Test

Colour Refinement distinguishes two graphs G ,H if their colour histograms differ,
that is, some colour appears a different number of times in G and H.

Thus Colour Refinement can be used as an incomplete isomorphism test.
▶ works on almost all graphs (Babai, Erdös, Selkow 1980)

▶ fails on some very simple graphs:

13



Colour Refinement as an Isomorphism Test

Colour Refinement distinguishes two graphs G ,H if their colour histograms differ,
that is, some colour appears a different number of times in G and H.

Thus Colour Refinement can be used as an incomplete isomorphism test.
▶ works on almost all graphs (Babai, Erdös, Selkow 1980)
▶ fails on some very simple graphs:

13



Expressiveness

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. colour refinement does not distinguish G and H;

2. G and H satisfy the same sentences of the logic C2, the 2-variable fragment of
first-order logic with counting quantifiers ∃≥nx.

3. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

4. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.

14



Expressiveness

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. colour refinement does not distinguish G and H;

2. G and H satisfy the same sentences of the logic C2, the 2-variable fragment of
first-order logic with counting quantifiers ∃≥nx.

3. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

4. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.

14



Expressiveness

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. colour refinement does not distinguish G and H;

2. G and H satisfy the same sentences of the logic C2, the 2-variable fragment of
first-order logic with counting quantifiers ∃≥nx.

3. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

4. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.

14



Expressiveness

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. colour refinement does not distinguish G and H;

2. G and H satisfy the same sentences of the logic C2, the 2-variable fragment of
first-order logic with counting quantifiers ∃≥nx.

3. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

4. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.

14



Higher-Dimensional Weisfeiler-Leman

The k-dimensional Weisfeiler-Leman
algorithm (k-WL) iteratively colours
k-tuples of nodes (Weisfeiler and
Leman 1968, Babai ∼1980)

Running time: O(nk+1 log n)

▶ 1-WL is essentially the same as Colour Refinement.
▶ k-WL is much more powerful, but still not a complete isomorphism test: for

every k there are non-isomorphic graphs Gk ,Hk of size O(k) not distinguished
by k-WL (Cai, Fürer, Immerman 1991).

▶ The characterisations of Colour Refinement in terms of logic, linear
(in)equalities, and homomorphism counts can be generalised to k-WL.

15



Higher-Dimensional Weisfeiler-Leman

The k-dimensional Weisfeiler-Leman
algorithm (k-WL) iteratively colours
k-tuples of nodes (Weisfeiler and
Leman 1968, Babai ∼1980)

Running time: O(nk+1 log n)

▶ 1-WL is essentially the same as Colour Refinement.
▶ k-WL is much more powerful, but still not a complete isomorphism test: for

every k there are non-isomorphic graphs Gk ,Hk of size O(k) not distinguished
by k-WL (Cai, Fürer, Immerman 1991).

▶ The characterisations of Colour Refinement in terms of logic, linear
(in)equalities, and homomorphism counts can be generalised to k-WL.

15



Higher-Dimensional Weisfeiler-Leman

The k-dimensional Weisfeiler-Leman
algorithm (k-WL) iteratively colours
k-tuples of nodes (Weisfeiler and
Leman 1968, Babai ∼1980)

Running time: O(nk+1 log n)

▶ 1-WL is essentially the same as Colour Refinement.

▶ k-WL is much more powerful, but still not a complete isomorphism test: for
every k there are non-isomorphic graphs Gk ,Hk of size O(k) not distinguished
by k-WL (Cai, Fürer, Immerman 1991).

▶ The characterisations of Colour Refinement in terms of logic, linear
(in)equalities, and homomorphism counts can be generalised to k-WL.

15



Higher-Dimensional Weisfeiler-Leman

The k-dimensional Weisfeiler-Leman
algorithm (k-WL) iteratively colours
k-tuples of nodes (Weisfeiler and
Leman 1968, Babai ∼1980)

Running time: O(nk+1 log n)

▶ 1-WL is essentially the same as Colour Refinement.
▶ k-WL is much more powerful, but still not a complete isomorphism test: for

every k there are non-isomorphic graphs Gk ,Hk of size O(k) not distinguished
by k-WL (Cai, Fürer, Immerman 1991).

▶ The characterisations of Colour Refinement in terms of logic, linear
(in)equalities, and homomorphism counts can be generalised to k-WL.

15



Higher-Dimensional Weisfeiler-Leman

The k-dimensional Weisfeiler-Leman
algorithm (k-WL) iteratively colours
k-tuples of nodes (Weisfeiler and
Leman 1968, Babai ∼1980)

Running time: O(nk+1 log n)

▶ 1-WL is essentially the same as Colour Refinement.
▶ k-WL is much more powerful, but still not a complete isomorphism test: for

every k there are non-isomorphic graphs Gk ,Hk of size O(k) not distinguished
by k-WL (Cai, Fürer, Immerman 1991).

▶ The characterisations of Colour Refinement in terms of logic, linear
(in)equalities, and homomorphism counts can be generalised to k-WL.

15



Weisfeiler and Leman go Neural

16



GNNs Revisited

v2

v1

v3

v4

v5

v6

ζ(1)(v1)

ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

m(1)
1

m(1)
4m(1)

1m(1)
2

m(1)
1m(1)

3

m(1)
2

m(1)
3

m(1)
3

m(1)
4

m(1)
4

m(1)
5

m(1)
4

m(1)
6

m(1)
5m(1)

6

Initialisation: ζ(0)(v) encodes node label of v
Aggregation and Combination:

ζ(t)(v) = combt

(
ζ(t−1)(v), aggt

({{
msgt(ζ

(t−1)(v), ζ(t−1)(w))
∣∣ w ∈ NG (v)

}})
,

agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}}))

Read-out: ΦN(G , v) := ro(ζ(d)(v)) (node level)
ϕN(G ) := ro(agg({{ζ(d)(v)) | v ∈ V (G )}})) (graph level)

17



GNNs Revisited

v2

v1

v3

v4

v5

v6

ζ(1)(v1)

ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

m(1)
1

m(1)
4m(1)

1m(1)
2

m(1)
1m(1)

3

m(1)
2

m(1)
3

m(1)
3

m(1)
4

m(1)
4

m(1)
5

m(1)
4

m(1)
6

m(1)
5m(1)

6

Initialisation: ζ(0)(v) encodes node label of v

Aggregation and Combination:
ζ(t)(v) = combt

(
ζ(t−1)(v), aggt

({{
msgt(ζ

(t−1)(v), ζ(t−1)(w))
∣∣ w ∈ NG (v)

}})
,

agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}}))

Read-out: ΦN(G , v) := ro(ζ(d)(v)) (node level)
ϕN(G ) := ro(agg({{ζ(d)(v)) | v ∈ V (G )}})) (graph level)

17



GNNs Revisited

v2

v1

v3

v4

v5

v6

ζ(1)(v1)

ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

m(1)
1

m(1)
4m(1)

1m(1)
2

m(1)
1m(1)

3

m(1)
2

m(1)
3

m(1)
3

m(1)
4

m(1)
4

m(1)
5

m(1)
4

m(1)
6

m(1)
5m(1)

6

Initialisation: ζ(0)(v) encodes node label of v
Aggregation and Combination:

ζ(t)(v) = combt

(
ζ(t−1)(v), aggt

({{
msgt(ζ

(t−1)(v), ζ(t−1)(w))
∣∣ w ∈ NG (v)

}})
,

agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}}))

Read-out: ΦN(G , v) := ro(ζ(d)(v)) (node level)
ϕN(G ) := ro(agg({{ζ(d)(v)) | v ∈ V (G )}})) (graph level)

17



GNNs Revisited

v2

v1

v3

v4

v5

v6

ζ(1)(v1)

ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

m(1)
1

m(1)
4m(1)

1m(1)
2

m(1)
1m(1)

3

m(1)
2

m(1)
3

m(1)
3

m(1)
4

m(1)
4

m(1)
5

m(1)
4

m(1)
6

m(1)
5m(1)

6

Initialisation: ζ(0)(v) encodes node label of v
Aggregation and Combination:

ζ(t)(v) = combt

(
ζ(t−1)(v), aggt

({{
msgt(ζ

(t−1)(v), ζ(t−1)(w))
∣∣ w ∈ NG (v)

}})
,

agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}}))

Read-out: ΦN(G , v) := ro(ζ(d)(v)) (node level)

ϕN(G ) := ro(agg({{ζ(d)(v)) | v ∈ V (G )}})) (graph level)

17



GNNs Revisited

v2

v1

v3

v4

v5

v6

ζ(1)(v1)

ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

m(1)
1

m(1)
4m(1)

1m(1)
2

m(1)
1m(1)

3

m(1)
2

m(1)
3

m(1)
3

m(1)
4

m(1)
4

m(1)
5

m(1)
4

m(1)
6

m(1)
5m(1)

6

Initialisation: ζ(0)(v) encodes node label of v
Aggregation and Combination:

ζ(t)(v) = combt

(
ζ(t−1)(v), aggt

({{
msgt(ζ

(t−1)(v), ζ(t−1)(w))
∣∣ w ∈ NG (v)

}})
,

agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}}))

Read-out: ΦN

Notation: Index N refers to GNN N

(G , v) := ro(ζ(d)(v)) (node level)

ϕN(G ) := ro(agg({{ζ(d)(v)) | v ∈ V (G )}})) (graph level)

17



GNNs Revisited

v2

v1

v3

v4

v5

v6

ζ(1)(v1)

ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

m(1)
1

m(1)
4m(1)

1m(1)
2

m(1)
1m(1)

3

m(1)
2

m(1)
3

m(1)
3

m(1)
4

m(1)
4

m(1)
5

m(1)
4

m(1)
6

m(1)
5m(1)

6

Initialisation: ζ(0)(v) encodes node label of v
Aggregation and Combination:

ζ(t)(v) = combt

(
ζ(t−1)(v), aggt

({{
msgt(ζ

(t−1)(v), ζ(t−1)(w))
∣∣ w ∈ NG (v)

}})
,

agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}}))

Read-out: ΦN(G , v) := ro(ζ(d)(v)) (node level)
ϕN(G ) := ro(agg({{ζ(d)(v)) | v ∈ V (G )}})) (graph level)

17



Distinguishing Graphs

Theorem (Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, G. 2019, Xu, Hu,
Leskovec, Jegelka 2019)
For all graphs G ,H, the following are equivalent:

1. G and H are distinguishable by a GNN, that is, there is a GNN N such that
ϕN(G ) ̸= ϕN(H);

2. 1-WL distinguishes G and H.

18



Expressing Graph Properties

Theorem (Barceló, Kostylev, Monet, Pérez, Reutter, Silva 2019)
Let Q be a query expressible in the logic C2. Then there is a GNN computing Q.

Remarks
▶ Barceló et al. also prove a converse of the theorem for queries expressible in

first-order logic.
▶ This is a uniform expressibility result: the property can be expressed by a single

GNN across input graphs of all sizes.
▶ The proof assumes activation functions like ReLU or linearised sigmoid. It is

open whether the theorem also holds for GNNs with logistic (sigmoid) or tanh
activations.

19



Expressing Graph Properties

Theorem (Barceló, Kostylev, Monet, Pérez, Reutter, Silva 2019)
Let Q be a query expressible in the logic C2. Then there is a GNN computing Q.

Remarks
▶ Barceló et al. also prove a converse of the theorem for queries expressible in

first-order logic.

▶ This is a uniform expressibility result: the property can be expressed by a single
GNN across input graphs of all sizes.

▶ The proof assumes activation functions like ReLU or linearised sigmoid. It is
open whether the theorem also holds for GNNs with logistic (sigmoid) or tanh
activations.

19



Expressing Graph Properties

Theorem (Barceló, Kostylev, Monet, Pérez, Reutter, Silva 2019)
Let Q be a query expressible in the logic C2. Then there is a GNN computing Q.

Remarks
▶ Barceló et al. also prove a converse of the theorem for queries expressible in

first-order logic.
▶ This is a uniform expressibility result: the property can be expressed by a single

GNN across input graphs of all sizes.

▶ The proof assumes activation functions like ReLU or linearised sigmoid. It is
open whether the theorem also holds for GNNs with logistic (sigmoid) or tanh
activations.

19



Expressing Graph Properties

Theorem (Barceló, Kostylev, Monet, Pérez, Reutter, Silva 2019)
Let Q be a query expressible in the logic C2. Then there is a GNN computing Q.

Remarks
▶ Barceló et al. also prove a converse of the theorem for queries expressible in

first-order logic.
▶ This is a uniform expressibility result: the property can be expressed by a single

GNN across input graphs of all sizes.
▶ The proof assumes activation functions like ReLU or linearised sigmoid. It is

open whether the theorem also holds for GNNs with logistic (sigmoid) or tanh
activations.

19



Higher-Order Graph Neural Networks

We also proposed a model of higher-order GNNs passing messages between tuples of
vertices.

Theorem (Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, G. 2019)
For all graphs G ,H, the following are equivalent:

1. G and H are distinguishable by a GNN, that is, there is a order (k + 1)-GNN N
such that ϕN(G ) ̸= ϕN(H);

2. k-WL distinguishes G and H.

20



Higher-Order Graph Neural Networks

We also proposed a model of higher-order GNNs passing messages between tuples of
vertices.

Theorem (Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, G. 2019)
For all graphs G ,H, the following are equivalent:

1. G and H are distinguishable by a GNN, that is, there is a order (k + 1)-GNN N
such that ϕN(G ) ̸= ϕN(H);

2. k-WL distinguishes G and H.

20



Random Node Initialisation
Suppose we initialise the states of the nodes of a GNN randomly:

ζ(0)(v) ∼ N(0, 1).

▶ In GNNs with RI, we also assume that the GNNs use a global readout on each
layer.

▶ A GNN with random initialisation (RI) computes a random variable and no
longer a deterministic function.

▶ This random variable is invariant/equivariant.
▶ GNNs with RI are substantially more expressive than GNNs with constant

initialisation. This has been experimentally demonstrated by (Sato, Yamada,
Kashima 2020) and (Abboud et al 2020)

▶ (Sato et al. 2020) proved that many interesting combinatorial problems can be
expressed by GNNs with RI.

21



Random Node Initialisation
Suppose we initialise the states of the nodes of a GNN randomly:

ζ(0)(v) ∼ N(0, 1).

▶ In GNNs with RI, we also assume that the GNNs use a global readout on each
layer.

▶ A GNN with random initialisation (RI) computes a random variable and no
longer a deterministic function.

▶ This random variable is invariant/equivariant.
▶ GNNs with RI are substantially more expressive than GNNs with constant

initialisation. This has been experimentally demonstrated by (Sato, Yamada,
Kashima 2020) and (Abboud et al 2020)

▶ (Sato et al. 2020) proved that many interesting combinatorial problems can be
expressed by GNNs with RI.

21



Random Node Initialisation
Suppose we initialise the states of the nodes of a GNN randomly:

ζ(0)(v) ∼ N(0, 1).

▶ In GNNs with RI, we also assume that the GNNs use a global readout on each
layer.

▶ A GNN with random initialisation (RI) computes a random variable and no
longer a deterministic function.

▶ This random variable is invariant/equivariant.
▶ GNNs with RI are substantially more expressive than GNNs with constant

initialisation. This has been experimentally demonstrated by (Sato, Yamada,
Kashima 2020) and (Abboud et al 2020)

▶ (Sato et al. 2020) proved that many interesting combinatorial problems can be
expressed by GNNs with RI.

21



Random Node Initialisation
Suppose we initialise the states of the nodes of a GNN randomly:

ζ(0)(v) ∼ N(0, 1).

▶ In GNNs with RI, we also assume that the GNNs use a global readout on each
layer.

▶ A GNN with random initialisation (RI) computes a random variable and no
longer a deterministic function.

▶ This random variable is invariant/equivariant.

▶ GNNs with RI are substantially more expressive than GNNs with constant
initialisation. This has been experimentally demonstrated by (Sato, Yamada,
Kashima 2020) and (Abboud et al 2020)

▶ (Sato et al. 2020) proved that many interesting combinatorial problems can be
expressed by GNNs with RI.

21



Random Node Initialisation
Suppose we initialise the states of the nodes of a GNN randomly:

ζ(0)(v) ∼ N(0, 1).

▶ In GNNs with RI, we also assume that the GNNs use a global readout on each
layer.

▶ A GNN with random initialisation (RI) computes a random variable and no
longer a deterministic function.

▶ This random variable is invariant/equivariant.
▶ GNNs with RI are substantially more expressive than GNNs with constant

initialisation. This has been experimentally demonstrated by (Sato, Yamada,
Kashima 2020) and (Abboud et al 2020)

▶ (Sato et al. 2020) proved that many interesting combinatorial problems can be
expressed by GNNs with RI.

21



Random Node Initialisation
Suppose we initialise the states of the nodes of a GNN randomly:

ζ(0)(v) ∼ N(0, 1).

▶ In GNNs with RI, we also assume that the GNNs use a global readout on each
layer.

▶ A GNN with random initialisation (RI) computes a random variable and no
longer a deterministic function.

▶ This random variable is invariant/equivariant.
▶ GNNs with RI are substantially more expressive than GNNs with constant

initialisation. This has been experimentally demonstrated by (Sato, Yamada,
Kashima 2020) and (Abboud et al 2020)

▶ (Sato et al. 2020) proved that many interesting combinatorial problems can be
expressed by GNNs with RI.

21



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].

Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.
▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn

Graphs of order n

→ [0, 1].

Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.
▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].
Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.
▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].
Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.

▶ These approximation results are non-uniform, that is, for each size of the input
graph we need a separate GNN.

▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].
Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.

▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].
Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.
▶ The size of the GNN N can be exponential in n.

22



The Descriptive Complexity of GNNs

23



Goal
Understand the power of GNNs to compute queries and compare it to
classical models of complexity theory and logic.

24



Circuits with Threshold Gates
We consider Boolean circuits with threshold gates. For all t ∈ N, a t-threshold gate
evaluates to 1 if at least t of its inputs are 1.

Example
The following threshold circuit evaluates to 1 if an even number of input bits is 1.

X1 X2 X3 X4 X5 X6

≥1 ≥2 ≥3 ≥4 ≥5 ≥6

¬ ¬ ¬
∧ ∧

∨

TC0 is the class of all languages in {0, 1}∗ decidable by a polynomial-size,
bounded-depth family of threshold circuits.

25



Circuits with Threshold Gates
We consider Boolean circuits with threshold gates. For all t ∈ N, a t-threshold gate
evaluates to 1 if at least t of its inputs are 1.

Example
The following threshold circuit evaluates to 1 if an even number of input bits is 1.

X1 X2 X3 X4 X5 X6

≥1 ≥2 ≥3 ≥4 ≥5 ≥6

¬ ¬ ¬
∧ ∧

∨

TC0 is the class of all languages in {0, 1}∗ decidable by a polynomial-size,
bounded-depth family of threshold circuits.

25



Circuits with Threshold Gates
We consider Boolean circuits with threshold gates. For all t ∈ N, a t-threshold gate
evaluates to 1 if at least t of its inputs are 1.

Example
The following threshold circuit evaluates to 1 if an even number of input bits is 1.

X1 X2 X3 X4 X5 X6

≥1 ≥2 ≥3 ≥4 ≥5 ≥6

¬ ¬ ¬
∧ ∧

∨

TC0 is the class of all languages in {0, 1}∗ decidable by a polynomial-size,
bounded-depth family of threshold circuits.

25



Boolean Complexity of Feedforward Neural Networks

Theorem (Maass 1997)
Let f = (fn)n≥1 be a family of Boolean functions fn : {0, 1}n → {0, 1}. Then the
following are equivalent.

1. f is in TC0.

2. f is computable by a bounded-depth polynomial-size family of feedforward
neural networks with piecewise polynomial activation functions.

26



First-Order Logic with Counting

▶ FO+C is first-order logic with counting in a 2-sorted framework with number
variables ranging over N and arithmetic.

▶ Difference between C and FO+C: both allow counting, but C only has numerical
constants k in formulas ∃≥kx . . ., whereas FO+C has numerical variables.

Theorem (Barrington, Immerman, Straubing 1990)

Uniform Version: A language L ⊆ {0, 1}∗ is in dlogtime-uniform TC0 if and only if it
is definable in FO+C.

Nonuniform Version: A language L ⊆ {0, 1}∗ is in (nonuniform) TC0 if and only if it
is definable in FO+C with built-in relations.

27



First-Order Logic with Counting

▶ FO+C is first-order logic with counting in a 2-sorted framework with number
variables ranging over N and arithmetic.

▶ Difference between C and FO+C: both allow counting, but C only has numerical
constants k in formulas ∃≥kx . . ., whereas FO+C has numerical variables.

Theorem (Barrington, Immerman, Straubing 1990)

Uniform Version: A language L ⊆ {0, 1}∗ is in dlogtime-uniform TC0 if and only if it
is definable in FO+C.

Nonuniform Version: A language L ⊆ {0, 1}∗ is in (nonuniform) TC0 if and only if it
is definable in FO+C with built-in relations.

27



First-Order Logic with Counting

▶ FO+C is first-order logic with counting in a 2-sorted framework with number
variables ranging over N and arithmetic.

▶ Difference between C and FO+C: both allow counting, but C only has numerical
constants k in formulas ∃≥kx . . ., whereas FO+C has numerical variables.

Theorem (Barrington, Immerman, Straubing 1990)

Uniform Version: A language L ⊆ {0, 1}∗ is in dlogtime-uniform TC0 if and only if it
is definable in FO+C.

Nonuniform Version: A language L ⊆ {0, 1}∗ is in (nonuniform) TC0 if and only if it
is definable in FO+C with built-in relations.

27



First-Order Logic with Counting

▶ FO+C is first-order logic with counting in a 2-sorted framework with number
variables ranging over N and arithmetic.

▶ Difference between C and FO+C: both allow counting, but C only has numerical
constants k in formulas ∃≥kx . . ., whereas FO+C has numerical variables.

Theorem (Barrington, Immerman, Straubing 1990)

Uniform Version: A language L ⊆ {0, 1}∗ is in dlogtime-uniform TC0 if and only if it
is definable in FO+C.

Nonuniform Version: A language L ⊆ {0, 1}∗ is in (nonuniform) TC0 if and only if it
is definable in FO+C with built-in relations.

27



Upper Bound for the Logical Expressivity of GNNs

FO2+C is the 2-variable fragment of FO+C

Theorem (G. 2023)
Let Q be a unary query computable by a GNN with rational weights and piecewise
linear activations. Then Q is expressible in in FO2+C.

Corollary
Combined with Barcelo et al. (2019), we get

C2 ⊆ GNN ⊆ FO2+C.

Both inclusions are strict.

28



Upper Bound for the Logical Expressivity of GNNs

FO2+C is the 2-variable fragment of FO+C

Theorem (G. 2023)
Let Q be a unary query computable by a GNN with rational weights and piecewise
linear activations. Then Q is expressible in in FO2+C.

Corollary
Combined with Barcelo et al. (2019), we get

C2 ⊆ GNN ⊆ FO2+C.

Both inclusions are strict.

28



Upper Bound for the Logical Expressivity of GNNs

FO2+C is the 2-variable fragment of FO+C

Theorem (G. 2023)
Let Q be a unary query computable by a GNN with rational weights and piecewise
linear activations. Then Q is expressible in in FO2+C.

Corollary
Combined with Barcelo et al. (2019), we get

C2 ⊆ GNN ⊆ FO2+C.

Both inclusions are strict.

28



Logical Expressivity of GNN Families

Rational piecewise linear (rpl) approximable functions include all common activation
functions.

Theorem (G. 2023)
For all queries Q, the following are equivalent.

1. Q is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with arbitrary real weights and rpl approximable
activations.

2. Q is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with rational weights and ReLU activations, using only
sum aggregation.

3. Q is expressible in FO2+C with built-in relations.

4. Q is in TC0.

29



Logical Expressivity of GNN Families

Rational piecewise linear (rpl) approximable functions include all common activation
functions.

Theorem (G. 2023)
For all queries Q, the following are equivalent.

1. Q is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with arbitrary real weights and rpl approximable
activations.

2. Q is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with rational weights and ReLU activations, using only
sum aggregation.

3. Q is expressible in FO2+C with built-in relations.

4. Q is in TC0.

29



From GNNs to Logic

Lemma
Let Q be a query that is computable by a polynomial-size bounded-depth family of
graph neural networks with random initialisation and with arbitrary real weights and
rpl approximable activation functions.
Then Q is expressible in FO2+C with built-in relations.

Proof Ideas

▶ Simulate GNNs with rational weights and piecewise linear activations in FO2+C
(previous theorem).

▶ Use built-in relations to simulate families of GNNs.
▶ Approximate families of arbitrary GNNs by families of rational-weight

piecwise-linear GNNs.
▶ Trade randomness for non-uniformity.

30



From GNNs to Logic

Lemma
Let Q be a query that is computable by a polynomial-size bounded-depth family of
graph neural networks with random initialisation and with arbitrary real weights and
rpl approximable activation functions.
Then Q is expressible in FO2+C with built-in relations.

Proof Ideas
▶ Simulate GNNs with rational weights and piecewise linear activations in FO2+C

(previous theorem).

▶ Use built-in relations to simulate families of GNNs.
▶ Approximate families of arbitrary GNNs by families of rational-weight

piecwise-linear GNNs.
▶ Trade randomness for non-uniformity.

30



From GNNs to Logic

Lemma
Let Q be a query that is computable by a polynomial-size bounded-depth family of
graph neural networks with random initialisation and with arbitrary real weights and
rpl approximable activation functions.
Then Q is expressible in FO2+C with built-in relations.

Proof Ideas
▶ Simulate GNNs with rational weights and piecewise linear activations in FO2+C

(previous theorem).
▶ Use built-in relations to simulate families of GNNs.

▶ Approximate families of arbitrary GNNs by families of rational-weight
piecwise-linear GNNs.

▶ Trade randomness for non-uniformity.

30



From GNNs to Logic

Lemma
Let Q be a query that is computable by a polynomial-size bounded-depth family of
graph neural networks with random initialisation and with arbitrary real weights and
rpl approximable activation functions.
Then Q is expressible in FO2+C with built-in relations.

Proof Ideas
▶ Simulate GNNs with rational weights and piecewise linear activations in FO2+C

(previous theorem).
▶ Use built-in relations to simulate families of GNNs.
▶ Approximate families of arbitrary GNNs by families of rational-weight

piecwise-linear GNNs.

▶ Trade randomness for non-uniformity.

30



From GNNs to Logic

Lemma
Let Q be a query that is computable by a polynomial-size bounded-depth family of
graph neural networks with random initialisation and with arbitrary real weights and
rpl approximable activation functions.
Then Q is expressible in FO2+C with built-in relations.

Proof Ideas
▶ Simulate GNNs with rational weights and piecewise linear activations in FO2+C

(previous theorem).
▶ Use built-in relations to simulate families of GNNs.
▶ Approximate families of arbitrary GNNs by families of rational-weight

piecwise-linear GNNs.
▶ Trade randomness for non-uniformity.

30



From Logic to GNNs

Lemma
Let Q be a query that is expressible in FO2+C with built-in relations.
Then Q is computable by a polynomial-size bounded-depth family of graph neural
networks with random initialisation and with rational weights, piecewise linear
activation functions, and sum aggregation.

Proof Ideas

▶ Transform FO2+C-formula into a guarded (local) form.
▶ Simulate guarded logic on graphs by message passing and arithmetic by

feedforward neural network.
▶ Random initialisation is used to obtain linear order.

31



From Logic to GNNs

Lemma
Let Q be a query that is expressible in FO2+C with built-in relations.
Then Q is computable by a polynomial-size bounded-depth family of graph neural
networks with random initialisation and with rational weights, piecewise linear
activation functions, and sum aggregation.

Proof Ideas
▶ Transform FO2+C-formula into a guarded (local) form.

▶ Simulate guarded logic on graphs by message passing and arithmetic by
feedforward neural network.

▶ Random initialisation is used to obtain linear order.

31



From Logic to GNNs

Lemma
Let Q be a query that is expressible in FO2+C with built-in relations.
Then Q is computable by a polynomial-size bounded-depth family of graph neural
networks with random initialisation and with rational weights, piecewise linear
activation functions, and sum aggregation.

Proof Ideas
▶ Transform FO2+C-formula into a guarded (local) form.
▶ Simulate guarded logic on graphs by message passing and arithmetic by

feedforward neural network.

▶ Random initialisation is used to obtain linear order.

31



From Logic to GNNs

Lemma
Let Q be a query that is expressible in FO2+C with built-in relations.
Then Q is computable by a polynomial-size bounded-depth family of graph neural
networks with random initialisation and with rational weights, piecewise linear
activation functions, and sum aggregation.

Proof Ideas
▶ Transform FO2+C-formula into a guarded (local) form.
▶ Simulate guarded logic on graphs by message passing and arithmetic by

feedforward neural network.
▶ Random initialisation is used to obtain linear order.

31



Learning and Generalisation

32



The VC Dimension of GNNs

Uniform?

Bitlength ≤ b?

= b

1-WL colors ≤ u?

≈ poly(d ,L) log(u)

∞= mn,d ,L

Yes

Yes

No

Yes

NoNo

Theorem (Morris, Geerts, G. 2023)

1. In the non-uniform regime, the VC-dimension of GNNs is essentially the number
of of Colour-Refinement equivalence classes.

2. In the uniform regime, the VC-dimension of GNNs is linear in the bitlength of
the GNN’s weights.

33



The VC Dimension of GNNs

Uniform?

Bitlength ≤ b?

= b

1-WL colors ≤ u?

≈ poly(d ,L) log(u)

∞= mn,d ,L

Yes

Yes

No

Yes

NoNo

Theorem (Morris, Geerts, G. 2023)

1. In the non-uniform regime, the VC-dimension of GNNs is essentially the number
of of Colour-Refinement equivalence classes.

2. In the uniform regime, the VC-dimension of GNNs is linear in the bitlength of
the GNN’s weights.

33



Concluding Remarks

34



Concluding Remarks

▶ GNNs are a very flexible learning architecture, which allows us to adapt them to
logical formalisms such as CSPs

▶ We have a good understanding of their expressiveness. Yet many interesting
questions remain open, in particular regarding uniformity (expressiveness results
across input sizes).

For example:
Can all graph queries computable in polynomial time be expressed by a recur-
rent GNN with Random Initialisation?

▶ Expressiveness results only tell half the story, because they ignore learning.
However, most of the results presented here have good experimental support.

35



Concluding Remarks

▶ GNNs are a very flexible learning architecture, which allows us to adapt them to
logical formalisms such as CSPs

▶ We have a good understanding of their expressiveness. Yet many interesting
questions remain open, in particular regarding uniformity (expressiveness results
across input sizes).

For example:
Can all graph queries computable in polynomial time be expressed by a recur-
rent GNN with Random Initialisation?

▶ Expressiveness results only tell half the story, because they ignore learning.
However, most of the results presented here have good experimental support.

35



Concluding Remarks

▶ GNNs are a very flexible learning architecture, which allows us to adapt them to
logical formalisms such as CSPs

▶ We have a good understanding of their expressiveness. Yet many interesting
questions remain open, in particular regarding uniformity (expressiveness results
across input sizes).

For example:
Can all graph queries computable in polynomial time be expressed by a recur-
rent GNN with Random Initialisation?

▶ Expressiveness results only tell half the story, because they ignore learning.
However, most of the results presented here have good experimental support.

35



Concluding Remarks

▶ GNNs are a very flexible learning architecture, which allows us to adapt them to
logical formalisms such as CSPs

▶ We have a good understanding of their expressiveness. Yet many interesting
questions remain open, in particular regarding uniformity (expressiveness results
across input sizes).

For example:
Can all graph queries computable in polynomial time be expressed by a recur-
rent GNN with Random Initialisation?

▶ Expressiveness results only tell half the story, because they ignore learning.
However, most of the results presented here have good experimental support.

35



A Few References

Grohe, M. (2021). The Logic of Graph Neural Networks.
In: Proc. LICS 2021.
arXiv:2104.14624

Grohe, M. (2023). The Descriptive Complexity of Graph Neural Networks.
In: Proc. LICS 2023.
arXiv:2303.04613

Morris, C., Geerts, F., and Grohe, M. (2023). WL meet VC.
In: Proc. ICML 2023.
arXiv:2301.11039

36

https://arxiv.org/abs/2104.14624
https://arxiv.org/abs/2303.04613
https://arxiv.org/abs/2301.11039

	Graph Neural Networks
	Digression: The Weisfeiler-Leman Algorithm
	Weisfeiler and Leman go Neural
	The Descriptive Complexity of GNNs
	Learning and Generalisation
	Concluding Remarks

