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Graph Neural Networks

▶ Graph neural networks (GNNs) are deep learning architectures for machine
learning problems on graphs.

▶ They can be viewed as a generalisation of convolutional neural networks from a
rigid grid structure to more flexibly structured data.

▶ GNNs have a wide range of applications, for example, in computational biology,
chemical engineering, physics, etc.

▶ By now, there is a large variety of GNN architectures.
In this talk, we focus on the core GNN architecture known as message passing
graph neural network or aggregate-combine graph neural network.
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Feedforward Neural Networks

x1 x2 x3 x4

y1 y2 y3

▶ Nodes and edges are weighted.
▶ Node with weight b ∈ R and

incoming edges with weights
w1, . . . ,wk ∈ R computes function

x1, . . . , xk 7→ σ

(
b +

k∑
i=1

wixi

)
,

where σ : R→ R is the activation
function.

Typical activation functions are:
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rectified linear unit (ReLU)
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Universal Approximation Theorem

Theorem (Cybenko 1989, Hornik 1991)
Let
▶ σ : R→ R be be continuous and not polynomial,
▶ f : K → Rn continuous, where K ⊆ Rm is a compact set,
▶ ϵ > 0.

Then there is a depth-2 feedforward neural network N with activation functions
▶ σ on layer 1,
▶ the identity on layer 2

computing a function fN such that

sup
x∈K
∥f (x)− fN(x)∥ < ϵ.
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Computation of GNNs

GNN N with d layers maps graph G to sequence of signals

ζ(t) : V (G )→ Rp for t = 0, . . . , d

Initialisation: ζ(0)(v) ∈ Rp encodes node labels of v

Aggregation: α(t)(v) := aggt

({{
msgt

(
ζ(t−1)(v), ζ(t−1)(w)

) ∣∣∣ w ∈ NG (v)
}})

▶ msgt : R2p → Rp′ message function computed by a feedforward neural network
▶ aggt aggregation function: sum, mean or max

Global readout: γ(t) := agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}})

▶ agg′t aggregation function: sum, mean or max

Combination: ζ(t)(v) := combt
(
ζ(t−1)(v), α(t)(v), γ(t)

)
▶ combt : R2p+p′ → Rp function computed by a feedforward neural network
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Functions Computed by GNNs

Node-Level Functions
To compute a function Φ that maps each graph G to a signal Φ(G , ·) : V (G )→ Rq,
we apply a readout function ro such that

Φ(G , v) = ro
(
ζ(d)(v)

)
.

▶ ro : Rp → Rq is computed by a feedforward neural network

Graph-Level Functions
To compute a function ϕ that maps graphs to Rq, we apply an aggregate readout
function aggro such that

ϕ(G ) = ro
(
agg
({{

ζ(d)(v)
∣∣∣ v ∈ V (G )

}})
.

▶ agg aggregation function: sum, mean or max

▶ ro : Rp → Rq is computed by a feedforward neural network
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Invariance and Equivariance

Invariance of Graph-Level Functions
Let ϕ be a graph-level function computed by a GNN. Then for all isomorphic graphs
G ,H,

ϕ(G ) = ϕ(H).

Equivariance of Node-Level Functions
Let Φ be a node-level function computed by a GNN. Then for all isomorphic graphs
G ,H, all isomorphisms h from G to H, and all vertices v ∈ V (G ):

Φ(G , v) = Φ(H, h(v)).

We are mainly interested in Boolean queries and unary queries, that is, invariant graph
level functions G 7→ {0, 1} and equivariant node-level functions G 7→ {0, 1}V (G).
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Recurrent GNNs

As described so far, GNNs have a fixed number d of layers, and each layer t has its
own aggregation function aggt and combination function combt .

Recurrent GNNs
Instead, we can take a single layer and apply it repeatedly. That is, we have a single
aggregation function agg and combination function comb and let:

ζ(t)(v) = comb
(
ζ(t−1)(v), agg

({{
ζ(t−1)(w)

∣∣ w ∈ NG (v)
}}))

for all t ≥ 1.

We determine the number d of iterations at runtime (maybe depending on the size of
the input graph, or even depending on the evolution of the sequence

(
ζ(t)
)
t≥0). We

do not require any kind of convergence.

As before, we apply the readout function to the dth layer.
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Digression: The Weisfeiler-Leman Algorithm

11



A Simple Combinatorial Algorithm

The Colour Refinement algorithm iteratively computes a colouring of the vertices of
graph G .

Initialisation All vertices get the same colour.

Refinement Step Two nodes v ,w get different colours if there is some colour c
such that v and w have different numbers of neighbours of colour c .

Refinement is repeated until colouring stays stable.

Run Colour Refinement (Demo by Holger Dell)

Remark
Colour Refinement is essentially the same as the 1-dimensional Weisfeiler-Leman
algorithm. There is a subtle difference that is actually relevant here (but we ignore it
in the talk).

12

https://www2.lics.rwth-aachen.de/grohe/Dell-Colour-Refinement/
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Colour Refinement as an Isomorphism Test

Colour Refinement distinguishes two graphs G ,H if their colour histograms differ,
that is, some colour appears a different number of times in G and H.

Thus Colour Refinement can be used as an incomplete isomorphism test.
▶ works on almost all graphs (Babai, Erdös, Selkow 1980)
▶ fails on some very simple graphs:
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Expressiveness

Theorem (Immerman and Lander 1990, Tinhofer 1991, Dvorak 2010)
For all graphs G ,H, the following are equivalent:

1. colour refinement does not distinguish G and H;

2. G and H satisfy the same sentences of the logic C2, the 2-variable fragment of
first-order logic with counting quantifiers ∃≥nx.

3. G and H are fractionally isomorphic, that is, there is a doubly stochastic matrix
X such that AGX = XAH .

4. For all trees T , the number of homomorphisms from T to G equals the number
of homomorphisms from T to H.
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Higher-Dimensional Weisfeiler-Leman

The k-dimensional Weisfeiler-Leman
algorithm (k-WL) iteratively colours
k-tuples of nodes (Weisfeiler and
Leman 1968, Babai ∼1980)

Running time: O(nk+1 log n)

▶ 1-WL is essentially the same as Colour Refinement.
▶ k-WL is much more powerful, but still not a complete isomorphism test: for

every k there are non-isomorphic graphs Gk ,Hk of size O(k) not distinguished
by k-WL (Cai, Fürer, Immerman 1991).

▶ The characterisations of Colour Refinement in terms of logic, linear
(in)equalities, and homomorphism counts can be generalised to k-WL.
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Weisfeiler and Leman go Neural
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GNNs Revisited

v2

v1

v3

v4

v5

v6

ζ(1)(v1)

ζ(1)(v2)

ζ(1)(v3)

ζ(1)(v4)

ζ(1)(v5)

ζ(1)(v6)

m(1)
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m(1)
4m(1)

1m(1)
2

m(1)
1m(1)

3

m(1)
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m(1)
4
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4

m(1)
5

m(1)
4

m(1)
6

m(1)
5m(1)

6

Initialisation: ζ(0)(v) encodes node label of v
Aggregation and Combination:

ζ(t)(v) = combt

(
ζ(t−1)(v), aggt

({{
msgt(ζ

(t−1)(v), ζ(t−1)(w))
∣∣ w ∈ NG (v)

}})
,

agg′t
({{
ζ(t−1)(w)

∣∣ w ∈ V (G )
}}))

Read-out: ΦN(G , v) := ro(ζ(d)(v)) (node level)
ϕN(G ) := ro(agg({{ζ(d)(v)) | v ∈ V (G )}})) (graph level)
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Distinguishing Graphs

Theorem (Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, G. 2019, Xu, Hu,
Leskovec, Jegelka 2019)
For all graphs G ,H, the following are equivalent:

1. G and H are distinguishable by a GNN, that is, there is a GNN N such that
ϕN(G ) ̸= ϕN(H);

2. 1-WL distinguishes G and H.
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Expressing Graph Properties

Theorem (Barceló, Kostylev, Monet, Pérez, Reutter, Silva 2019)
Let Q be a query expressible in the logic C2. Then there is a GNN computing Q.

Remarks
▶ Barceló et al. also prove a converse of the theorem for queries expressible in

first-order logic.
▶ This is a uniform expressibility result: the property can be expressed by a single

GNN across input graphs of all sizes.
▶ The proof assumes activation functions like ReLU or linearised sigmoid. It is

open whether the theorem also holds for GNNs with logistic (sigmoid) or tanh
activations.
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Higher-Order Graph Neural Networks

We also proposed a model of higher-order GNNs passing messages between tuples of
vertices.

Theorem (Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, G. 2019)
For all graphs G ,H, the following are equivalent:

1. G and H are distinguishable by a GNN, that is, there is a order (k + 1)-GNN N
such that ϕN(G ) ̸= ϕN(H);

2. k-WL distinguishes G and H.
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Random Node Initialisation
Suppose we initialise the states of the nodes of a GNN randomly:

ζ(0)(v) ∼ N(0, 1).

▶ In GNNs with RI, we also assume that the GNNs use a global readout on each
layer.

▶ A GNN with random initialisation (RI) computes a random variable and no
longer a deterministic function.

▶ This random variable is invariant/equivariant.
▶ GNNs with RI are substantially more expressive than GNNs with constant

initialisation. This has been experimentally demonstrated by (Sato, Yamada,
Kashima 2020) and (Abboud et al 2020)

▶ (Sato et al. 2020) proved that many interesting combinatorial problems can be
expressed by GNNs with RI.
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Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].

Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.
▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn

Graphs of order n

→ [0, 1].

Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.
▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].
Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.
▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].
Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.

▶ These approximation results are non-uniform, that is, for each size of the input
graph we need a separate GNN.

▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].
Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.

▶ The size of the GNN N can be exponential in n.

22



Universality of GNNs with RI

Theorem (Abboud, Ceylan, G., Lukasiewicz 2021)
Let ϵ, δ > 0 and n ∈ N and ψ : Gn → [0, 1].
Then there is a GNN with RI N such that for all G ∈ Gn,

Pr
(∣∣ψ(G )− ϕN(G )

∣∣ ≤ ϵ) ≥ 1− δ.

Remarks
▶ There is also a node-level version of this result.
▶ These approximation results are non-uniform, that is, for each size of the input

graph we need a separate GNN.
▶ The size of the GNN N can be exponential in n.

22



The Descriptive Complexity of GNNs
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Goal
Understand the power of GNNs to compute queries and compare it to
classical models of complexity theory and logic.
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Circuits with Threshold Gates
We consider Boolean circuits with threshold gates. For all t ∈ N, a t-threshold gate
evaluates to 1 if at least t of its inputs are 1.

Example
The following threshold circuit evaluates to 1 if an even number of input bits is 1.

X1 X2 X3 X4 X5 X6

≥1 ≥2 ≥3 ≥4 ≥5 ≥6

¬ ¬ ¬
∧ ∧

∨

TC0 is the class of all languages in {0, 1}∗ decidable by a polynomial-size,
bounded-depth family of threshold circuits.
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Boolean Complexity of Feedforward Neural Networks

Theorem (Maass 1997)
Let f = (fn)n≥1 be a family of Boolean functions fn : {0, 1}n → {0, 1}. Then the
following are equivalent.

1. f is in TC0.

2. f is computable by a bounded-depth polynomial-size family of feedforward
neural networks with piecewise polynomial activation functions.
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First-Order Logic with Counting

▶ FO+C is first-order logic with counting in a 2-sorted framework with number
variables ranging over N and arithmetic.

▶ Difference between C and FO+C: both allow counting, but C only has numerical
constants k in formulas ∃≥kx . . ., whereas FO+C has numerical variables.

Theorem (Barrington, Immerman, Straubing 1990)

Uniform Version: A language L ⊆ {0, 1}∗ is in dlogtime-uniform TC0 if and only if it
is definable in FO+C.

Nonuniform Version: A language L ⊆ {0, 1}∗ is in (nonuniform) TC0 if and only if it
is definable in FO+C with built-in relations.
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Upper Bound for the Logical Expressivity of GNNs

FO2+C is the 2-variable fragment of FO+C

Theorem (G. 2023)
Let Q be a unary query computable by a GNN with rational weights and piecewise
linear activations. Then Q is expressible in in FO2+C.

Corollary
Combined with Barcelo et al. (2019), we get

C2 ⊆ GNN ⊆ FO2+C.

Both inclusions are strict.
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Logical Expressivity of GNN Families

Rational piecewise linear (rpl) approximable functions include all common activation
functions.

Theorem (G. 2023)
For all queries Q, the following are equivalent.

1. Q is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with arbitrary real weights and rpl approximable
activations.

2. Q is computable by a polynomial-size bounded-depth family of GNNs with
random initialisation and with rational weights and ReLU activations, using only
sum aggregation.

3. Q is expressible in FO2+C with built-in relations.

4. Q is in TC0.
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From GNNs to Logic

Lemma
Let Q be a query that is computable by a polynomial-size bounded-depth family of
graph neural networks with random initialisation and with arbitrary real weights and
rpl approximable activation functions.
Then Q is expressible in FO2+C with built-in relations.

Proof Ideas

▶ Simulate GNNs with rational weights and piecewise linear activations in FO2+C
(previous theorem).

▶ Use built-in relations to simulate families of GNNs.
▶ Approximate families of arbitrary GNNs by families of rational-weight

piecwise-linear GNNs.
▶ Trade randomness for non-uniformity.
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From Logic to GNNs

Lemma
Let Q be a query that is expressible in FO2+C with built-in relations.
Then Q is computable by a polynomial-size bounded-depth family of graph neural
networks with random initialisation and with rational weights, piecewise linear
activation functions, and sum aggregation.

Proof Ideas

▶ Transform FO2+C-formula into a guarded (local) form.
▶ Simulate guarded logic on graphs by message passing and arithmetic by

feedforward neural network.
▶ Random initialisation is used to obtain linear order.
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Learning and Generalisation
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The VC Dimension of GNNs

Uniform?

Bitlength ≤ b?

= b

1-WL colors ≤ u?

≈ poly(d ,L) log(u)

∞= mn,d ,L

Yes

Yes

No

Yes

NoNo

Theorem (Morris, Geerts, G. 2023)

1. In the non-uniform regime, the VC-dimension of GNNs is essentially the number
of of Colour-Refinement equivalence classes.

2. In the uniform regime, the VC-dimension of GNNs is linear in the bitlength of
the GNN’s weights.
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Concluding Remarks
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Concluding Remarks

▶ GNNs are a very flexible learning architecture, which allows us to adapt them to
logical formalisms such as CSPs

▶ We have a good understanding of their expressiveness. Yet many interesting
questions remain open, in particular regarding uniformity (expressiveness results
across input sizes).

For example:
Can all graph queries computable in polynomial time be expressed by a recur-
rent GNN with Random Initialisation?

▶ Expressiveness results only tell half the story, because they ignore learning.
However, most of the results presented here have good experimental support.
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