
Factorising Pattern-Free Permutations

Édouard Bonnet Romain Bourneuf
Colin Geniet Stéphan Thomassé

ENS Lyon

LoGAlg 2023

Teaser for LoGAlg

Theorem (Folklore)
A class C has bounded cliquewidth iff C is CMSO transduction of
trees.

We prove:

Theorem
A class C has bounded twin-width iff C is FO transduction of
graphs of twin-width c, for some universal constant c.

1 / 13

Teaser for LoGAlg

Theorem (Folklore)
A class C has bounded cliquewidth iff C is CMSO transduction of
graphs of cliquewidth 1.

We prove:

Theorem
A class C has bounded twin-width iff C is FO transduction of
graphs of twin-width c, for some universal constant c.

1 / 13

Teaser for LoGAlg

Theorem (Folklore)
A class C has bounded cliquewidth iff C is CMSO transduction of
graphs of cliquewidth 1.

We prove:

Theorem
A class C has bounded twin-width iff C is FO transduction of
graphs of twin-width c, for some universal constant c.

1 / 13

And Now for Something Completely Different
Permutation = two linear orders on the same set: (X , <1, <2)

<
1

<
2

<
2

<
1

Theorem (BNdMST ’21)
For any class C of bounded twin-width, there exists C′ class of
permutations of bounded twin-width such that C′ transduces C.

2 / 13

And Now for Something Completely Different
Permutation = two linear orders on the same set: (X , <1, <2)

<
1

<
2

<
2

<
1

inverse

Theorem (BNdMST ’21)
For any class C of bounded twin-width, there exists C′ class of
permutations of bounded twin-width such that C′ transduces C.

2 / 13

And Now for Something Completely Different
Permutation = two linear orders on the same set: (X , <1, <2)

<
1

<
2

<
2

<
1

composition

Theorem (BNdMST ’21)
For any class C of bounded twin-width, there exists C′ class of
permutations of bounded twin-width such that C′ transduces C.

2 / 13

And Now for Something Completely Different
Permutation = two linear orders on the same set: (X , <1, <2)

<
1

<
2

<
2

<
1

Theorem (BNdMST ’21)
For any class C of bounded twin-width, there exists C′ class of
permutations of bounded twin-width such that C′ transduces C.

2 / 13

Patterns in permutations
<

1

<
2

Permutation (X , <1, <2)

Pattern = induced substructure

(Y , <1, <2), Y ⊂ X

Pattern-free permutation class:

F(τ) = {σ : τ 6⊆ σ}

3 / 13

Patterns in permutations
<

1

<
2

Permutation (X , <1, <2)

Pattern = induced substructure

(Y , <1, <2), Y ⊂ X

Pattern-free permutation class:

F(τ) = {σ : τ 6⊆ σ}

3 / 13

Patterns in permutations
<

1

<
2

Permutation (X , <1, <2)

Pattern = induced substructure

(Y , <1, <2), Y ⊂ X

Pattern-free permutation class:

F(τ) = {σ : τ 6⊆ σ}

3 / 13

Separable permutations

Separable permutations = F(3142, 2413)

= permutations created by direct/skew sum

σ1

σ2

σ2

σ1

Forbidden patterns:

4 / 13

Separable permutations

Separable permutations = F(3142, 2413)
= permutations created by direct/skew sum

σ1

σ2

σ2

σ1

Forbidden patterns:

4 / 13

Pattern-free classes are nice

Theorem (Marcus–Tardos ’04)
For any τ , there is a constant c such that F(τ) has ≤ cn

permutations of size n.

Recognition algorithm:

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.

5 / 13

Pattern-free classes are nice

Theorem (Marcus–Tardos ’04)
For any τ , there is a constant c such that F(τ) has ≤ cn

permutations of size n.

Recognition algorithm:

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.

5 / 13

Twin-width

Twin-width of (X , <1, <2):
iteratively merge elements of X
error between A,B ⊂ X if they
interleave for either <1 or <2

minimize the error degree

6 / 13

Twin-width

Twin-width of (X , <1, <2):
iteratively merge elements of X
error between A,B ⊂ X if they
interleave for either <1 or <2

minimize the error degree

6 / 13

Twin-width

Twin-width of (X , <1, <2):
iteratively merge elements of X
error between A,B ⊂ X if they
interleave for either <1 or <2

minimize the error degree

6 / 13

Twin-width

Twin-width of (X , <1, <2):
iteratively merge elements of X
error between A,B ⊂ X if they
interleave for either <1 or <2

minimize the error degree

6 / 13

Twin-width

Twin-width of (X , <1, <2):
iteratively merge elements of X
error between A,B ⊂ X if they
interleave for either <1 or <2

minimize the error degree

6 / 13

Twin-width

Twin-width of (X , <1, <2):
iteratively merge elements of X
error between A,B ⊂ X if they
interleave for either <1 or <2

minimize the error degree

6 / 13

Guillemot–Marx Algorithm

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.

Win–win argument:

Lemma
A class C avoids a pattern if and only if it has bounded twin-width.

Lemma
One can test if τ is a pattern of σ in time f (τ, tww(σ)) · |σ|.

7 / 13

Pattern-free classes are nice

Theorem (Marcus–Tardos ’04)
For any τ , there is a constant c such that F(τ) has ≤ cn

permutations of size n.

Recognition algorithm:

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.

We give a ‘decomposition’:

Theorem (BBGT)
For any pattern τ , there is a constant k such that any σ ∈ F(τ)
factorises as σ = σ1 ◦ · · · ◦ σk , with σi separable.

8 / 13

Pattern-free classes are nice

Theorem (Marcus–Tardos ’04)
For any τ , there is a constant c such that F(τ) has ≤ cn

permutations of size n.

Recognition algorithm:

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.

We give a ‘decomposition’:

Theorem (BBGT)
For any t ∈ N, there is a constant k such that any σ with
tww(σ) ≤ t factorises as σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

8 / 13

Factorisation

Theorem
For any t ∈ N, there is a constant k such that any σ with
tww(σ) ≤ t factorises as σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Fact
For any σ1, σ2, tww(σ1 ◦ σ2) ≤ f (tww(σ1), tww(σ2)).

9 / 13

Factorisation

Theorem
For any t ∈ N, there is a constant k such that any σ with
tww(σ) ≤ t factorises as σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Fact
For any σ1, σ2, tww(σ1 ◦ σ2) ≤ f (tww(σ1), tww(σ2)).

9 / 13

Transducing classes of bounded twin-width
Path representation of the factorisation:

σ1 σ2 σ3

If σ1, . . . , σk are separable, the path representation has
twin-width O(1) (independent of k).

For any k, there is a FO transduction
reconstructing σ1 ◦ · · · ◦ σk from the path decomposition.

path
representation permutation graph

10 / 13

Transducing classes of bounded twin-width
Path representation of the factorisation:

σ1 σ2 σ3

If σ1, . . . , σk are separable, the path representation has
twin-width O(1) (independent of k).
For any k, there is a FO transduction
reconstructing σ1 ◦ · · · ◦ σk from the path decomposition.

path
representation permutation graph

10 / 13

Transducing classes of bounded twin-width
Path representation of the factorisation:

σ1 σ2 σ3

If σ1, . . . , σk are separable, the path representation has
twin-width O(1) (independent of k).
For any k, there is a FO transduction
reconstructing σ1 ◦ · · · ◦ σk from the path decomposition.

path
representation permutation graph

10 / 13

Transducing classes of bounded twin-width
Path representation of the factorisation:

σ1 σ2 σ3

If σ1, . . . , σk are separable, the path representation has
twin-width O(1) (independent of k).
For any k, there is a FO transduction
reconstructing σ1 ◦ · · · ◦ σk from the path decomposition.

path
representation permutation graph

10 / 13

Proof overview (from very far away)

Theorem
For any t ∈ N, there is a constant k such that any σ with
tww(σ) ≤ t factorises as σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, ’23)
Classes of graphs with bounded twin-width are polynomially
χ-bounded.

Behind this theorem: decomposition of graphs of twin-width k into
graphs of twin-width k − 1.
For permutations, this decomposition can be expressed with direct
and skew sums, and a bounded number of products.

11 / 13

Proof overview (from very far away)

Theorem
For any t ∈ N, there is a constant k such that any σ with
tww(σ) ≤ t factorises as σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, ’23)
Classes of graphs with bounded twin-width are polynomially
χ-bounded.

Behind this theorem: decomposition of graphs of twin-width k into
graphs of twin-width k − 1.

For permutations, this decomposition can be expressed with direct
and skew sums, and a bounded number of products.

11 / 13

Proof overview (from very far away)

Theorem
For any t ∈ N, there is a constant k such that any σ with
tww(σ) ≤ t factorises as σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, ’23)
Classes of graphs with bounded twin-width are polynomially
χ-bounded.

Behind this theorem: decomposition of graphs things of
twin-width k into things of twin-width k − 1.

For permutations, this decomposition can be expressed with direct
and skew sums, and a bounded number of products.

11 / 13

Proof overview (from very far away)

Theorem
For any t ∈ N, there is a constant k such that any σ with
tww(σ) ≤ t factorises as σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, ’23)
Classes of graphs with bounded twin-width are polynomially
χ-bounded.

Behind this theorem: decomposition of graphs things of
twin-width k into things of twin-width k − 1.
For permutations, this decomposition can be expressed with direct
and skew sums, and a bounded number of products.

11 / 13

The Decomposition

3 1 10 5

16

9 8

4 2

6 7

11

17

15

13 12

18 14

12 / 13

Open Questions

What is the smallest c such that tww = c transduces all of
bounded twin-width (conjecture: c = 4).
Applications of this factorisation?
Computing shortest factorisations into separable
permutations? (is it FPT? approximation?)
Generalisation to matrices?

13 / 13

