Factorising Pattern-Free Permutations

Edouard Bonnet Romain Bourneuf
Colin Geniet Stéphan Thomassé

ENS Lyon

LoGAlg 2023

Teaser for LoGAlg

Theorem (Folklore)

A class C has bounded cliquewidth iff C is CMSO transduction of
trees.

1/13

Teaser for LoGAlg

Theorem (Folklore)

A class C has bounded cliquewidth iff C is CMSO transduction of
graphs of cliquewidth 1.

1/13

Teaser for LoGAlg

Theorem (Folklore)

A class C has bounded cliquewidth iff C is CMSO transduction of
graphs of cliquewidth 1.

We prove:

Theorem

A class C has bounded twin-width iff C is FO transduction of
graphs of twin-width c, for some universal constant c.

1/13

And Now for Something Completely Different

Permutation = two linear orders on the same set: (X, <1, <2)

<1
<2

2/13

And Now for Something Completely Different

Permutation = two linear orders on the same set: (X, <1, <2)

<2
<1

—
inverse

2/13

And Now for Something Completely Different

Permutation = two linear orders on the same set: (X, <1, <2)

—
composition

2/13

And Now for Something Completely Different

Permutation = two linear orders on the same set: (X, <1, <2)

<1
<2

Theorem (BNdMST '21)

For any class C of bounded twin-width, there exists C' class of

permutations of bounded twin-width such that C' transduces C.

2/13

Patterns in permutations

Permutation (X, <1, <2)

<1
<2

3/13

Patterns in permutations

Permutation (X, <1, <2)

Pattern = induced substructure

™ (Ya<17<2)7 YCX
V

<1

g

TS

3/13

Patterns in permutations

Permutation (X, <1, <2)

Pattern = induced substructure

(Y,<1,<2), YCX

<1
<2

/ !

~ Pattern-free permutation class:

F(r)y={oc : 7L o}

3/13

Separable permutations

Separable permutations = F(3142,2413) Forbidden patterns:

4/13

Separable permutations

Separable permutations = F(3142,2413)
= permutations created by direct/skew sum

ffffffff

,,,,,,,,

ffffffff

,,,,,,,,

Forbidden patterns:

4/13

Pattern-free classes are nice

Theorem (Marcus—Tardos '04)

For any T, there is a constant ¢ such that F(7) has < c"
permutations of size n.

5/13

Pattern-free classes are nice

Theorem (Marcus—Tardos '04)

For any T, there is a constant ¢ such that F(7) has < c"
permutations of size n.

Recognition algorithm:

Theorem (Guillemot—Marx '14)

One can test if T is a pattern of o in time f(7) - |o|.

5/13

Twin-width

Twin-width of (X, <1, <2):
o iteratively merge elements of X

@ error between A, B C X if they
interleave for either < or <9

@ minimize the error degree

6/13

Twin-width

Twin-width of (X, <1, <2):
o iteratively merge elements of X

@ error between A, B C X if they
interleave for either < or <9

@ minimize the error degree

6/13

Twin-width

Twin-width of (X, <1, <2):
o iteratively merge elements of X

@ error between A, B C X if they
interleave for either < or <9

@ minimize the error degree

6/13

Twin-width

Twin-width of (X, <1, <2):
o iteratively merge elements of X

@ error between A, B C X if they
interleave for either < or <9

@ minimize the error degree

6/13

Twin-width

Twin-width of (X, <1, <2):
o iteratively merge elements of X

@ error between A, B C X if they
interleave for either < or <9

@ minimize the error degree

]
)

=

S

S

6/13

Twin-width

Twin-width of (X, <1, <2):
o iteratively merge elements of X

@ error between A, B C X if they
interleave for either < or <9

@ minimize the error degree

)

Y

R

6/13

Guillemot—Marx Algorithm

Theorem (Guillemot—Marx '14)

One can test if T is a pattern of o in time f(7) - |o|.

Win-win argument:

Lemma
A class C avoids a pattern if and only if it has bounded twin-width.

Lemma

One can test if T is a pattern of o in time f(1,tww(o)) - |o].

7/13

Pattern-free classes are nice

Theorem (Marcus—Tardos '04)

For any T, there is a constant ¢ such that F(7) has < c"
permutations of size n.

Recognition algorithm:

Theorem (Guillemot—Marx '14)

One can test if T is a pattern of o in time f(7) - |o|.

We give a ‘decomposition’:
Theorem (BBGT)

For any pattern T, there is a constant k such that any o € F(7)
factorises as 0 = o1 o - - - 0 0, with o; separable.

8/13

Pattern-free classes are nice

Theorem (Marcus—Tardos '04)

For any T, there is a constant ¢ such that F(7) has < c"
permutations of size n.

Recognition algorithm:

Theorem (Guillemot—Marx '14)

One can test if T is a pattern of o in time f(7) - |o|.

We give a ‘decomposition’:
Theorem (BBGT)

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as 0 = 01 0 - - - 0 0, with tww(o;) = 0.

8/13

Factorisation

Theorem

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as ¢ = 01 o - - - 0 o, with tww(o;) = 0.

9/13

Factorisation

Theorem

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as ¢ = 01 o - - - 0 o, with tww(o;) = 0.

Fact

For any 01,09, tww(oy 0 02) < f(tww(o1), tww(o2)).

9/13

Transducing classes of bounded twin-width

Path representation of the factorisation:

o If o1,...,0x are separable, the path representation has
twin-width O(1) (independent of k).

10/13

Transducing classes of bounded twin-width

Path representation of the factorisation:

o If o1,...,0x are separable, the path representation has
twin-width O(1) (independent of k).

@ For any k, there is a FO transduction
reconstructing o1 o - - - 0 o from the path decomposition.

10/13

Transducing classes of bounded twin-width

Path representation of the factorisation:

o If o1,...,0x are separable, the path representation has
twin-width O(1) (independent of k).

@ For any k, there is a FO transduction
reconstructing o1 o - - - 0 o from the path decomposition.

10/13

Transducing classes of bounded twin-width

Path representation of the factorisation:

o If o1,...,0x are separable, the path representation has
twin-width O(1) (independent of k).

@ For any k, there is a FO transduction
reconstructing o1 o - - - 0 o from the path decomposition.

path

. —————— permutation ——— graph
representation

10/13

Proof overview (from very far away)

Theorem
For any t € N, there is a constant k such that any o with
tww(o) < t factorises as o = 01 o - - - 0 o, with tww(o;) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokotowski, Bourneuf, Thomassé, '23)

Classes of graphs with bounded twin-width are polynomially
x-bounded.

11/13

Proof overview (from very far away)

Theorem

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as o = 01 o - - - 0 o, with tww(o;) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokotowski, Bourneuf, Thomassé, '23)

Classes of graphs with bounded twin-width are polynomially
x-bounded.

Behind this theorem: decomposition of graphs of twin-width k into
graphs of twin-width k — 1.

11/13

Proof overview (from very far away)

Theorem

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as o = 01 o - - - 0 o, with tww(o;) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokotowski, Bourneuf, Thomassé, '23)

Classes of graphs with bounded twin-width are polynomially
x-bounded.

Behind this theorem: decomposition of graphs things of
twin-width k into things of twin-width k — 1.

11/13

Proof overview (from very far away)

Theorem

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as o = 01 o - - - 0 o, with tww(o;) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokotowski, Bourneuf, Thomassé, '23)
Classes of graphs with bounded twin-width are polynomially
x-bounded.

Behind this theorem: decomposition of graphs things of
twin-width k into things of twin-width k — 1.

For permutations, this decomposition can be expressed with direct
and skew sums, and a bounded number of products.

11/13

The Decomposition

31105 ‘P 11
8

67

17

15

13 12

18

14

12/13

Open Questions

@ What is the smallest ¢ such that tww = ¢ transduces all of
bounded twin-width (conjecture: ¢ = 4).

@ Applications of this factorisation?

@ Computing shortest factorisations into separable
permutations? (is it FPT? approximation?)

@ Generalisation to matrices?

13/13

