Factorising Pattern-Free Permutations

Édouard Bonnet Romain Bourneuf
Colin Geniet Stéphan Thomassé
ENS Lyon
LoGAlg 2023

Teaser for LoGAlg

Theorem (Folklore)
A class \mathcal{C} has bounded cliquewidth iff \mathcal{C} is CMSO transduction of trees.

Teaser for LoGAlg

Theorem (Folklore)
A class \mathcal{C} has bounded cliquewidth iff \mathcal{C} is CMSO transduction of graphs of cliquewidth 1.

Teaser for LoGAlg

Theorem (Folklore)

A class \mathcal{C} has bounded cliquewidth iff \mathcal{C} is CMSO transduction of graphs of cliquewidth 1.

We prove:
Theorem
A class \mathcal{C} has bounded twin-width iff \mathcal{C} is FO transduction of graphs of twin-width c, for some universal constant c.

And Now for Something Completely Different

Permutation $=$ two linear orders on the same set: $\left(X,<_{1},<_{2}\right)$

And Now for Something Completely Different

Permutation $=$ two linear orders on the same set: $\left(X,<_{1},<_{2}\right)$

And Now for Something Completely Different

Permutation $=$ two linear orders on the same set: $\left(X,<_{1},<_{2}\right)$

And Now for Something Completely Different

Permutation $=$ two linear orders on the same set: $\left(X,<_{1},<_{2}\right)$

Theorem (BNdMST '21)

For any class \mathcal{C} of bounded twin-width, there exists \mathcal{C}^{\prime} class of permutations of bounded twin-width such that \mathcal{C}^{\prime} transduces \mathcal{C}.

Patterns in permutations

Permutation $\left(X,<_{1},<_{2}\right)$

Patterns in permutations

Permutation $\left(X,<_{1},<_{2}\right)$
Pattern $=$ induced substructure

$$
\left(Y,<_{1},<_{2}\right), \quad Y \subset X
$$

Patterns in permutations

Permutation $\left(X,<_{1},<_{2}\right)$
Pattern $=$ induced substructure

$$
\left(Y,<_{1},<_{2}\right), \quad Y \subset X
$$

Pattern-free permutation class:

$$
\mathcal{F}(\tau)=\{\sigma: \tau \nsubseteq \sigma\}
$$

Separable permutations

Separable permutations $=\mathcal{F}(3142,2413)$ Forbidden patterns:

Separable permutations

Separable permutations $=\mathcal{F}(3142,2413)$
$=$ permutations created by direct/skew sum

Forbidden patterns:

Pattern-free classes are nice

Theorem (Marcus-Tardos '04)

For any τ, there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^{n}$ permutations of size n.

Pattern-free classes are nice

Theorem (Marcus-Tardos '04)

For any τ, there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^{n}$ permutations of size n.

Recognition algorithm:
Theorem (Guillemot-Marx '14)
One can test if τ is a pattern of σ in time $f(\tau) \cdot|\sigma|$.

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Twin-width

Twin-width of $\left(X,<_{1},<_{2}\right)$:

- iteratively merge elements of X
- error between $A, B \subset X$ if they interleave for either $<_{1}$ or $<_{2}$
- minimize the error degree

Guillemot-Marx Algorithm

Theorem (Guillemot-Marx '14)
One can test if τ is a pattern of σ in time $f(\tau) \cdot|\sigma|$.

Win-win argument:

Lemma

A class \mathcal{C} avoids a pattern if and only if it has bounded twin-width.

Lemma

One can test if τ is a pattern of σ in time $f(\tau, \operatorname{tww}(\sigma)) \cdot|\sigma|$.

Pattern-free classes are nice

Theorem (Marcus-Tardos '04)

For any τ, there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^{n}$ permutations of size n.

Recognition algorithm:
Theorem (Guillemot-Marx '14)
One can test if τ is a pattern of σ in time $f(\tau) \cdot|\sigma|$.
We give a 'decomposition':
Theorem (BBGT)
For any pattern τ, there is a constant k such that any $\sigma \in \mathcal{F}(\tau)$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with σ_{i} separable.

Pattern-free classes are nice

Theorem (Marcus-Tardos '04)

For any τ, there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^{n}$ permutations of size n.

Recognition algorithm:
Theorem (Guillemot-Marx '14)
One can test if τ is a pattern of σ in time $f(\tau) \cdot|\sigma|$.
We give a 'decomposition':
Theorem (BBGT)
For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Factorisation

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Factorisation

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Fact

For any σ_{1}, σ_{2}, $\operatorname{tww}\left(\sigma_{1} \circ \sigma_{2}\right) \leq f\left(\operatorname{tww}\left(\sigma_{1}\right), \operatorname{tww}\left(\sigma_{2}\right)\right)$.

Transducing classes of bounded twin-width

Path representation of the factorisation:

- If $\sigma_{1}, \ldots, \sigma_{k}$ are separable, the path representation has twin-width $O(1)$ (independent of k).

Transducing classes of bounded twin-width

Path representation of the factorisation:

- If $\sigma_{1}, \ldots, \sigma_{k}$ are separable, the path representation has twin-width $O(1)$ (independent of k).
- For any k, there is a FO transduction reconstructing $\sigma_{1} \circ \cdots \circ \sigma_{k}$ from the path decomposition.

Transducing classes of bounded twin-width

Path representation of the factorisation:

- If $\sigma_{1}, \ldots, \sigma_{k}$ are separable, the path representation has twin-width $O(1)$ (independent of k).
- For any k, there is a FO transduction reconstructing $\sigma_{1} \circ \cdots \circ \sigma_{k}$ from the path decomposition.

Transducing classes of bounded twin-width

Path representation of the factorisation:

- If $\sigma_{1}, \ldots, \sigma_{k}$ are separable, the path representation has twin-width $O(1)$ (independent of k).
- For any k, there is a FO transduction reconstructing $\sigma_{1} \circ \cdots \circ \sigma_{k}$ from the path decomposition.

Proof overview (from very far away)

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Main tool for the proof:
Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, '23)
Classes of graphs with bounded twin-width are polynomially χ-bounded.

Proof overview (from very far away)

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Main tool for the proof:
Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, '23)
Classes of graphs with bounded twin-width are polynomially χ-bounded.

Behind this theorem: decomposition of graphs of twin-width k into graphs of twin-width $k-1$.

Proof overview (from very far away)

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Main tool for the proof:
Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, '23)
Classes of graphs with bounded twin-width are polynomially χ-bounded.

Behind this theorem: decomposition of graphs things of twin-width k into things of twin-width $k-1$.

Proof overview (from very far away)

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma=\sigma_{1} \circ \cdots \circ \sigma_{k}$, with $\operatorname{tww}\left(\sigma_{i}\right)=0$.

Main tool for the proof:
Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, '23)
Classes of graphs with bounded twin-width are polynomially χ-bounded.

Behind this theorem: decomposition of graphs things of twin-width k into things of twin-width $k-1$.
For permutations, this decomposition can be expressed with direct and skew sums, and a bounded number of products.

The Decomposition

Open Questions

- What is the smallest c such that tww $=c$ transduces all of bounded twin-width (conjecture: $c=4$).
- Applications of this factorisation?
- Computing shortest factorisations into separable permutations? (is it FPT? approximation?)
- Generalisation to matrices?

