Factorising Pattern-Free Permutations

Édouard Bonnet Romain Bourneuf <u>Colin Geniet</u> Stéphan Thomassé

ENS Lyon

LoGAlg 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem (Folklore)

A class ${\mathcal C}$ has bounded cliquewidth iff ${\mathcal C}$ is CMSO transduction of trees.

Theorem (Folklore)

A class C has bounded cliquewidth iff C is CMSO transduction of graphs of cliquewidth 1.

Theorem (Folklore)

A class C has bounded cliquewidth iff C is CMSO transduction of graphs of cliquewidth 1.

We prove:

Theorem

A class C has bounded twin-width iff C is FO transduction of graphs of twin-width c, for some universal constant c.

Permutation = two linear orders on the same set: $(X, <_1, <_2)$

Permutation = two linear orders on the same set: $(X, <_1, <_2)$

Permutation = two linear orders on the same set: $(X, <_1, <_2)$

Permutation = two linear orders on the same set: $(X, <_1, <_2)$

Theorem (BNdMST '21)

For any class C of bounded twin-width, there exists C' class of permutations of bounded twin-width such that C' transduces C.

Patterns in permutations

Permutation $(X, <_1, <_2)$

Patterns in permutations

Permutation $(X, <_1, <_2)$

Pattern = induced substructure

$$(Y, <_1, <_2), \quad Y \subset X$$

Patterns in permutations

Permutation $(X, <_1, <_2)$

Pattern = induced substructure

 $(Y, <_1, <_2), \quad Y \subset X$

Pattern-free permutation class:

$$\mathcal{F}(\tau) = \{ \sigma : \tau \not\subseteq \sigma \}$$

Separable permutations

Separable permutations = $\mathcal{F}(3142, 2413)$

Separable permutations

Separable permutations = $\mathcal{F}(3142, 2413)$ = permutations created by direct/skew sum

Forbidden patterns:

Pattern-free classes are nice

Theorem (Marcus–Tardos '04)

For any τ , there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^n$ permutations of size n.

Pattern-free classes are nice

Theorem (Marcus–Tardos '04)

For any τ , there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^n$ permutations of size n.

Recognition algorithm:

```
Theorem (Guillemot–Marx '14)
```

One can test if τ is a pattern of σ in time $f(\tau) \cdot |\sigma|$.

- iteratively merge elements of X
- error between A, B ⊂ X if they interleave for either <1 or <2
- minimize the error degree

- iteratively merge elements of X
- error between A, B ⊂ X if they interleave for either <1 or <2
- minimize the error degree

イロト 不得 トイヨト イヨト

3

- iteratively merge elements of X
- error between A, B ⊂ X if they interleave for either <1 or <2
- minimize the error degree

- iteratively merge elements of X
- error between A, B ⊂ X if they interleave for either <1 or <2
- minimize the error degree

- iteratively merge elements of X
- error between A, B ⊂ X if they interleave for either <1 or <2
- minimize the error degree

- iteratively merge elements of X
- error between A, B ⊂ X if they interleave for either <1 or <2
- minimize the error degree

Theorem (Guillemot-Marx '14)

One can test if τ is a pattern of σ in time $f(\tau) \cdot |\sigma|$.

Win-win argument:

Lemma

A class C avoids a pattern if and only if it has bounded twin-width.

Lemma

One can test if τ is a pattern of σ in time $f(\tau, \text{tww}(\sigma)) \cdot |\sigma|$.

Pattern-free classes are nice

Theorem (Marcus–Tardos '04)

For any τ , there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^n$ permutations of size n.

Recognition algorithm:

```
Theorem (Guillemot-Marx '14)
```

One can test if τ is a pattern of σ in time $f(\tau) \cdot |\sigma|$.

We give a 'decomposition':

Theorem (BBGT)

```
For any pattern \tau, there is a constant k such that any \sigma \in \mathcal{F}(\tau) factorises as \sigma = \sigma_1 \circ \cdots \circ \sigma_k, with \sigma_i separable.
```

Pattern-free classes are nice

Theorem (Marcus–Tardos '04)

For any τ , there is a constant c such that $\mathcal{F}(\tau)$ has $\leq c^n$ permutations of size n.

Recognition algorithm:

```
Theorem (Guillemot-Marx '14)
```

One can test if τ is a pattern of σ in time $f(\tau) \cdot |\sigma|$.

We give a 'decomposition':

Theorem (BBGT)

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $\operatorname{tww}(\sigma_i) = 0$.

Factorisation

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $\operatorname{tww}(\sigma_i) = 0$.

Factorisation

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $\operatorname{tww}(\sigma_i) = 0$.

Fact

For any σ_1, σ_2 , tww $(\sigma_1 \circ \sigma_2) \leq f(tww(\sigma_1), tww(\sigma_2))$.

Path representation of the factorisation:

 If σ₁,..., σ_k are separable, the path representation has twin-width O(1) (independent of k).

Path representation of the factorisation:

- If σ₁,..., σ_k are separable, the path representation has twin-width O(1) (independent of k).
- For any k, there is a FO transduction reconstructing σ₁ ◦ · · · ◦ σ_k from the path decomposition.

Path representation of the factorisation:

- If σ₁,..., σ_k are separable, the path representation has twin-width O(1) (independent of k).
- For any k, there is a FO transduction reconstructing σ₁ ◦ · · · ◦ σ_k from the path decomposition.

Path representation of the factorisation:

- If σ₁,..., σ_k are separable, the path representation has twin-width O(1) (independent of k).
- For any k, there is a FO transduction reconstructing σ₁ ο···· ο σ_k from the path decomposition.

 $\begin{array}{c} \text{path} \\ \text{representation} \end{array} \longrightarrow \text{permutation} \longrightarrow \text{graph} \end{array}$

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $\operatorname{tww}(\sigma_i) = 0$.

Main tool for the proof:

Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, '23) Classes of graphs with bounded twin-width are polynomially χ -bounded.

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $\operatorname{tww}(\sigma_i) = 0$.

Main tool for the proof:

Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, '23) Classes of graphs with bounded twin-width are polynomially χ -bounded.

Behind this theorem: decomposition of graphs of twin-width k into graphs of twin-width k - 1.

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $\operatorname{tww}(\sigma_i) = 0$.

Main tool for the proof:

Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, '23) Classes of graphs with bounded twin-width are polynomially χ -bounded.

Behind this theorem: decomposition of graphs things of twin-width k into things of twin-width k - 1.

Theorem

For any $t \in \mathbb{N}$, there is a constant k such that any σ with $\operatorname{tww}(\sigma) \leq t$ factorises as $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$, with $\operatorname{tww}(\sigma_i) = 0$.

Main tool for the proof:

Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, '23) Classes of graphs with bounded twin-width are polynomially χ -bounded.

Behind this theorem: decomposition of graphs things of twin-width k into things of twin-width k - 1.

For permutations, this decomposition can be expressed with direct and skew sums, and a bounded number of products.

The Decomposition

- What is the smallest c such that tww = c transduces all of bounded twin-width (conjecture: c = 4).
- Applications of this factorisation?
- Computing shortest factorisations into separable permutations? (is it FPT? approximation?)
- Generalisation to matrices?