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Teaser for LoGAlg

Theorem (Folklore)
A class C has bounded cliquewidth iff C is CMSO transduction of
trees.

We prove:

Theorem
A class C has bounded twin-width iff C is FO transduction of
graphs of twin-width c, for some universal constant c.
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And Now for Something Completely Different
Permutation = two linear orders on the same set: (X , <1, <2)
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Theorem (BNdMST ’21)
For any class C of bounded twin-width, there exists C′ class of
permutations of bounded twin-width such that C′ transduces C.
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Patterns in permutations
<
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<
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Permutation (X , <1, <2)

Pattern = induced substructure

(Y , <1, <2), Y ⊂ X

Pattern-free permutation class:

F(τ) = {σ : τ 6⊆ σ}
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Separable permutations

Separable permutations = F(3142, 2413)

= permutations created by direct/skew sum
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Pattern-free classes are nice

Theorem (Marcus–Tardos ’04)
For any τ , there is a constant c such that F(τ) has ≤ cn

permutations of size n.

Recognition algorithm:

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.
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Twin-width

Twin-width of (X , <1, <2):
iteratively merge elements of X
error between A,B ⊂ X if they
interleave for either <1 or <2

minimize the error degree
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Guillemot–Marx Algorithm

Theorem (Guillemot–Marx ’14)
One can test if τ is a pattern of σ in time f (τ) · |σ|.

Win–win argument:

Lemma
A class C avoids a pattern if and only if it has bounded twin-width.

Lemma
One can test if τ is a pattern of σ in time f (τ, tww(σ)) · |σ|.
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Factorisation

Theorem
For any t ∈ N, there is a constant k such that any σ with
tww(σ) ≤ t factorises as σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Fact
For any σ1, σ2, tww(σ1 ◦ σ2) ≤ f (tww(σ1), tww(σ2)).
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Transducing classes of bounded twin-width
Path representation of the factorisation:

σ1 σ2 σ3

If σ1, . . . , σk are separable, the path representation has
twin-width O(1) (independent of k).

For any k, there is a FO transduction
reconstructing σ1 ◦ · · · ◦ σk from the path decomposition.

path
representation permutation graph
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Proof overview (from very far away)

Theorem
For any t ∈ N, there is a constant k such that any σ with
tww(σ) ≤ t factorises as σ = σ1 ◦ · · · ◦ σk , with tww(σi) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokołowski, Bourneuf, Thomassé, ’23)
Classes of graphs with bounded twin-width are polynomially
χ-bounded.

Behind this theorem: decomposition of graphs of twin-width k into
graphs of twin-width k − 1.
For permutations, this decomposition can be expressed with direct
and skew sums, and a bounded number of products.
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The Decomposition
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Open Questions

What is the smallest c such that tww = c transduces all of
bounded twin-width (conjecture: c = 4).
Applications of this factorisation?
Computing shortest factorisations into separable
permutations? (is it FPT? approximation?)
Generalisation to matrices?
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