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Teaser for LoGAlg

Theorem (Folklore)

A class C has bounded cliquewidth iff C is CMSO transduction of
trees.
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Theorem (Folklore)

A class C has bounded cliquewidth iff C is CMSO transduction of
graphs of cliquewidth 1.

We prove:

Theorem

A class C has bounded twin-width iff C is FO transduction of
graphs of twin-width c, for some universal constant c.
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And Now for Something Completely Different

Permutation = two linear orders on the same set: (X, <1, <2)
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And Now for Something Completely Different

Permutation = two linear orders on the same set: (X, <1, <2)
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Theorem (BNdMST '21)

For any class C of bounded twin-width, there exists C' class of

permutations of bounded twin-width such that C' transduces C.
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Patterns in permutations

Permutation (X, <1, <2)
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Patterns in permutations

Permutation (X, <1, <2)

Pattern = induced substructure

(Y,<1,<2), YCX
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/ !

~ Pattern-free permutation class:

F(r)y={oc : 7L o}
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Separable permutations

Separable permutations = F(3142,2413) Forbidden patterns:
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Separable permutations

Separable permutations = F(3142,2413)
= permutations created by direct/skew sum

ffffffff

,,,,,,,,

ffffffff

,,,,,,,,

Forbidden patterns:
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Pattern-free classes are nice

Theorem (Marcus—Tardos '04)

For any T, there is a constant ¢ such that F(7) has < c"
permutations of size n.
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Pattern-free classes are nice

Theorem (Marcus—Tardos '04)

For any T, there is a constant ¢ such that F(7) has < c"
permutations of size n.

Recognition algorithm:

Theorem (Guillemot—Marx '14)

One can test if T is a pattern of o in time f(7) - |o|.
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Twin-width

Twin-width of (X, <1, <2):
o iteratively merge elements of X

@ error between A, B C X if they
interleave for either < or <9

@ minimize the error degree
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Twin-width

Twin-width of (X, <1, <2):
o iteratively merge elements of X

@ error between A, B C X if they
interleave for either < or <9

@ minimize the error degree
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Twin-width

Twin-width of (X, <1, <2):
o iteratively merge elements of X

@ error between A, B C X if they
interleave for either < or <9

@ minimize the error degree
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Guillemot—Marx Algorithm

Theorem (Guillemot—Marx '14)

One can test if T is a pattern of o in time f(7) - |o|.

Win-win argument:

Lemma
A class C avoids a pattern if and only if it has bounded twin-width.

Lemma

One can test if T is a pattern of o in time f(1,tww(o)) - |o].
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Pattern-free classes are nice

Theorem (Marcus—Tardos '04)

For any T, there is a constant ¢ such that F(7) has < c"
permutations of size n.

Recognition algorithm:

Theorem (Guillemot—Marx '14)

One can test if T is a pattern of o in time f(7) - |o|.

We give a ‘decomposition’:
Theorem (BBGT)

For any pattern T, there is a constant k such that any o € F(7)
factorises as 0 = o1 o - - - 0 0, with o; separable.
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Pattern-free classes are nice

Theorem (Marcus—Tardos '04)

For any T, there is a constant ¢ such that F(7) has < c"
permutations of size n.

Recognition algorithm:

Theorem (Guillemot—Marx '14)

One can test if T is a pattern of o in time f(7) - |o|.

We give a ‘decomposition’:
Theorem (BBGT)

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as 0 = 01 0 - - - 0 0, with tww(o;) = 0.
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Factorisation

Theorem

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as ¢ = 01 o - - - 0 o, with tww(o;) = 0.
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Factorisation

Theorem

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as ¢ = 01 o - - - 0 o, with tww(o;) = 0.

Fact

For any 01,09, tww(oy 0 02) < f(tww(o1), tww(o2)).
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Transducing classes of bounded twin-width

Path representation of the factorisation:

o If o1,...,0x are separable, the path representation has
twin-width O(1) (independent of k).
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Transducing classes of bounded twin-width

Path representation of the factorisation:

o If o1,...,0x are separable, the path representation has
twin-width O(1) (independent of k).

@ For any k, there is a FO transduction
reconstructing o1 o - - - 0 o from the path decomposition.

path

. —————— permutation ——— graph
representation
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Proof overview (from very far away)

Theorem
For any t € N, there is a constant k such that any o with
tww(o) < t factorises as o = 01 o - - - 0 o, with tww(o;) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokotowski, Bourneuf, Thomassé, '23)

Classes of graphs with bounded twin-width are polynomially
x-bounded.
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Proof overview (from very far away)

Theorem

For any t € N, there is a constant k such that any o with
tww(o) < t factorises as o = 01 o - - - 0 o, with tww(o;) = 0.

Main tool for the proof:

Theorem (Pilipczuk, Sokotowski, Bourneuf, Thomassé, '23)
Classes of graphs with bounded twin-width are polynomially
x-bounded.

Behind this theorem: decomposition of graphs things of
twin-width k into things of twin-width k — 1.

For permutations, this decomposition can be expressed with direct
and skew sums, and a bounded number of products.
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The Decomposition
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Open Questions

@ What is the smallest ¢ such that tww = ¢ transduces all of
bounded twin-width (conjecture: ¢ = 4).

@ Applications of this factorisation?

@ Computing shortest factorisations into separable
permutations? (is it FPT? approximation?)

@ Generalisation to matrices?

13/13



