FLIP-WIDTH

COPS AND ROBBER ON DENSE GRAPHS

Szymon Toruńczyk
University of Warsaw

Theorem (Courcelle 1990)
Model checking Monadic Second Order logic is fpt
on exirery class of bounded treewidth
algorithmic,
combinatorial,
\& logical behavior
Theorem (Grohe, Kreutzer, Siebertz, 2017)
Model checking First-Order logic is fpt on every nowhere dense class.

Furthermore, for a monotone graph class C , model checking FO is fpt \Leftrightarrow C is nowhere dense

BEYOND SPARSE

Example: treewidth \rightarrow cliquewith/rankwidth

- retain many good properties of treewidth
- applicable to dense graphs

Theorem (Courcelle, Rotics, Makowsky 2000+Oum,Seymour 2006)
Model checking MSO is fpt on classes of bounded rankwidth

BEYOND SPARSITY

Project: extend from monotone classes to hereditary classes

Quest (Grohe): which hereditary classes have fpt model checking?

TWIN-WIDTH

GRAND UNIFICATION

Common generalization of Sparsity theory and Twin-width

WANTED

Analogues of the fundamental parameters studied in Sparsity Theory:

degeneracy
generalized coloring numbers:
star-chromatic number, weak coloring numbers

CONTRIBUTION

- flip-width parameters
- dense analogues of the fundamental parameters studied in sparsity theory
- include degeneracy, twin-width, and clique-width as a special cases.
- notion of classes of bounded flip-width and almost bounded flip-width

GRAND UNIFICATION?

HOWTO DEFINE GRAPH PARAMETERS

- through decompositions
- through obstructions

DEGENERACY

> A graph is d-degenerate
> if every subgraph has a vertex of degree $\leq d$

Or: there is an ordering such that every vertex has $\leq d$ neighbors before it

HOWTO DEFINE GRAPH PARAMETERS

- through decompositions
- through obstructions
- through games

COPS AND ROBBER

SPEED LIMIT

robber moves at speed r
copwidthr$_{r}(G):=$ number of cops needed to capture robber

Fact. $\operatorname{copwidth}_{1}(G)=$ degeneracy $(G)+1$
[\approx Richerby \& Thilikos 2008]

$$
\text { copwidth। }(G) \leq \text { degeneracy }(G)+\text { I }
$$

$$
\text { copwidth. }_{(}(G) \geq \text { degeneracy }(G)+\text { I }
$$

G is not d-degenerate $\rightarrow d+1$ cops do not suffice

Theorem. Let C be a graph class. Then:
C has bounded expansion
I
for all $r \in \mathbf{N}$, copwidth $(C)<\infty$

$$
\int_{G \in C} \operatorname{copwidth}_{r}(G)
$$

GOING DENSE

blocking a vertex

$=$ isolating a vertex

\rightarrow
flip X and Y in G

GOING DENSE

blocking k vertices

k-flip of G :
partition $V(G)=A_{ı} \cup \ldots \cup A_{k}$
For each pair $A_{i} A_{j}$ flip or not

FLIPPER GAME

With radius r and flip power k
In each round:

- Flipper announces next k-flip G_{k} of G
- Then runner runs at speed r in previous k-flip G_{k-1} of G
- Runner looses if new position is isolated in G_{k}
flipwidth $_{r}(G)$:= minimum k needed to capture runner

EXAMPLE

4-flip

EXAMPLE

speed $r=\infty$, flip power $k=4$

next flip:

EXAMPLE

next flip:

4

EXAMPLE

speed $r=\infty$, flip power $k=4$

next flip:

4

EXAMPLE

speed $r=\infty$, flip power $k=4$

next 4-flip:

EXAMPLE

speed $r=\infty$, flip power $k=4$

next 4-flip:

EXAMPLE

speed $r=\infty$, flip power $k=4$

next 4-flip:

EXAMPLE

speed $r=\infty$, flip power $k=4$

flip-width ($) \leq 4$

RADIUS ∞

Theorem flip-widtho(G) \approx clique-width(G)

characterization of clique-width via games

Corollary A class C has bounded clique-width \Leftrightarrow
flip-width ${ }_{\infty}(C)<\infty$

$$
\text { rank-width }(G) \leq \text { flip-width }_{\infty}(G) \leq O\left(2^{\text {rank-width }(G)}\right)
$$

rank-width (G) $\leq k$ \Downarrow
exists cubic tree T :

- $V(G)=\operatorname{Leaves}(T)$
- For every edge e of T $V(G)=A_{e} \cup B_{e}$
$\operatorname{Adj} G\left[A_{e}, B_{e}\right]$ has rank $\leq k$
$\Rightarrow \exists \bigcirc\left(2^{k}\right)$-flip G of G separating A_{e} from B_{e}
flip-width $\infty(G) \leq O\left(2^{\text {rank-width }(G)}\right)$
rank-width $(G) \leq k$ \Downarrow

For every node $v \in V(T)$
\exists O(2k)-flip G of G
pairwise separating A_{v}, B_{v}, C_{v}

flip-width $_{\infty}(G) \leq 0\left(2^{\text {rank-width }}(G)\right)$

rank-width $(G) \leq k$

\Downarrow

next flip:

flip-width $_{\infty}(G) \leq 0\left(2^{\text {rank-width }}(G)\right)$

rank-width $(G) \leq k$

\Downarrow

next flip:

flip-width $_{\infty}(G) \leq 0\left(2^{\text {rank-width }}(G)\right)$
rank-width $(G) \leq k$
\Downarrow
flip-width $\omega_{(G)} \leq O\left(2^{k}\right)$

next flip:

*Oum, private communication

BOUNDED FLIP-WIDTH

Definition A graph class C has bounded flip-width if for all $r \in \mathbf{N}$, flip-width ${ }_{r}(C)<\infty$

BOUNDED FLIP-WIDTH

Examples:

- Classes of bounded expansion
- Classes of bounded clique-width
- Classes of bounded twin-width

FLIP-WIDTH OF ORDERED GRAPHS

Variant of flip-width for ordered graphs $G=(V, E,<)$

Flipper performs k-flip on (V,E) and cuts < into k intervals
Runner moves along edges at speed I or within intervals at speed ∞
Theorem flip-width<(G) \approx twin-width (G)
Game characterization of twin-width

TWIN-WIDTH

- Klazar 2000, Marcus\&Tardos 2004, Guillemot\&Marx 2014 (dichotomy for permutations)
- Bonnet, Kim, Thomassé, Watrigant 2020 (twin-width)
-Bonnet, Giocanti, O. de Mendez,Thomassé, Simon, T. 2022 (dichotomy for ordered graphs)

Questions:
-FPT Model checking
-FPT approximation
-Decompositions

- Obstructions
-Dense variant of excluding a minor

THANK YOU!

Looking for students, postdocs - starting from 2024!

