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DEFINITIONS AND EXAMPLES

Definition
A class C of finite structures is stable if it does not encode the
class of all finite linear orders.
C is NIP if it does not encode the class of all finite graphs.
C is monadically stable/NIP if it remains stable/NIP under
arbitrary vertex colorings.

Theorem ( [AA14], [PZ78])
Let C be a monotone graph class. Then C is nowhere dense ⇐⇒ C is
(monadically) stable ⇐⇒ C is (monadically) NIP.

Theorem ( [BGdM+21])
Let C be a hereditary class of ordered graphs. Then C has bounded
twin-width ⇐⇒ C is (monadically) NIP.
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A MAP [NODMRS21]
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MOTIVATION

Meta-conjecture: Monadic stability/NIP provide the “right”
generalizations of nowhere denseness to hereditary classes.

Conjecture
Let C be a hereditary class of relational structures. Then first-order
model checking is FPT on C ⇐⇒ C is monadically NIP.

Baldwin-Shelah [BS85] gave model-theoretic
characterizations of infinite monadically stable structures,
hinging on forking dependence.
Understanding forking dependence in monadically stable
graph classes, and finitizing the Baldwin-Shelah theory, has
been crucial to progress on the meta-conjecture.
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CHARACTERIZATIONS

Building on results of Baldwin-Shelah on monadic
stability [BS85] and Shelah on monadic NIP [She86].
We characterize monadically NIP theories in the following
ways.

1 The behavior of independence
2 A forbidden configuration
3 Decompositions of models
4 Type counting/width
5 The behavior of indiscernibles

These are all characterizations of the theory T itself rather
than its vertex colorings.
An intuition is that models of monadically NIP theories are
1-dimensional, or alternatively are order-like (or tree-like).
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INDEPENDENCE: THE F.S. DICHOTOMY

Finite satisfiability gives a (possibly asymmetric) notion of
independence in any theory.

Definition ( [She86])

Let A |⌣
fs
M

B mean that tp(A/MB) is finitely satisfiable in M.

A theory T has the f.s.-dichotomy if given A |⌣
fs
M

B, then for any c,

cA |⌣
fs
M

B or A |⌣
fs
M

Bc.

Intuitively, dependence reduces to singletons and is
transitive on singletons.

So f.s.-dependence induces a quasi-order (a ≺ b if a ̸ |⌣
fs
M

b).
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FORBIDDEN CONFIGURATION: AN INFINITE GRID

Lemma (mostly [She86])
If T does not have the f.s. dichotomy, then some model of T codes an
infinite grid (on tuples).

M |= ϕ(āi, b̄j, ck,ℓ) ⇐⇒ (i, j) = (k, ℓ)
(e.g. ϕ(x, y, z) := E(x, z) ∧ E(y, z))
So monadically NIP ⇒ f.s. dichotomy
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DECOMPOSABILITY: M-F.S. SEQUENCES

Definition

Given a model M, (Ai : i ∈ I) is an M-f.s. sequence if Ai |⌣
fs
M
{A<i}.

A linear decomposition of N is a partition N = ⊔iAi and a model M
(not necessarily in N) such that (Ai : i ∈ I) is an M-f.s. sequence.

Lemma ( [She86])
If T has the f.s. dichotomy, then any partial linear decomposition of
N |= T can be extended to a full linear decomposition of N.

The f.s. dichotomy is exactly what is needed to extend one
point at a time.
Alternatively, use the quasi-order decomposition into
f.s.-dependence classes.
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TYPE-COUNTING/WIDTH: “BLOBBY LINEAR

NEIGHBORHOOD-WIDTH”

Lemma
If T has the f.s. dichotomy, then the “blobby linear neighborhood-width”
of every model is bounded by some λ (in fact, by 2ℵ0).

If T is not monadically NIP, “blobby linear neighborhood-width” can
be made arbitrarily large.

So f.s. dichotomy ⇒ monadically NIP
Blumensath [Blu11] showed that T is monadically NIP
⇐⇒ the “rank-width” of models is cardinal-bounded.
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INDISCERNIBLES: DP-MINIMALITY AND

INDISCERNIBLE TRIVIALITY

Lemma
T has the f.s. dichotomy ⇐⇒ T is dp-minimal and indiscernible
trivial.

Definition
T is dp-minimal if for every dense indiscernible I, any new
parameter a splits I into at most two mutually indiscernible
sequences.
(Roughly, T does not have two independent dimensions.)

Definition
T is indiscernible trivial if whenever endpointless I is
indiscernible over each a ∈ A, then I is indiscernible over A.
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MAIN THEOREM

Theorem ( [BL21])
The following are equivalent for a complete theory T.

1 T is monadically NIP.
2 T has the f.s. dichotomy.
3 T does not code an infinite grid on tuples.
4 Partial linear decompositions of models of T extend to full linear

decompositions.
5 Models of T have cardinal-bounded “blobby linear

neighborhood-width”.
6 T is dp-minimal and indiscernible trivial.
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COLLAPSE OF DIVIDING LINES

Why do monadic stability/NIP appear as dividing lines in
combinatorial problems about hereditary classes?

Theorem ( [BL22])
Let C be a hereditary class in a relational language. Then C is stable
⇐⇒ C is monadically stable, and C is NIP ⇐⇒ C is monadically
NIP.

A sharp dichotomy: either C is tree-like (monadically NIP)
or totally chaotic (not even NIP).
Key point: If T is not monadically NIP, then T codes a
“pre-grid” by an existential formula.
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INFINITE AND FINITE

What does the infinitary viewpoint bring?
Dependence is easier to understand and manipulate.
Allows for asymptotic analysis at the scale of cardinals.

There are two sides to finitizing the theory.
The non-structure results finitize directly by compactness.
The structure results seem to require coming up with a
“localized” notion of dependence and then re-developing
the theory.
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Jaroslav Nešetřil, Patrice Ossona de Mendez, Roman
Rabinovich, and Sebastian Siebertz, Classes of graphs with low
complexity: the case of classes with bounded linear rankwidth,
European Journal of Combinatorics 91 (2021), 103223.

Klaus-Peter Podewski and Martin Ziegler, Stable graphs,
Fund. Math 100 (1978), no. 2, 101–107.



Introduction Monadic NIP In hereditary classes References

REFERENCES III

Saharon Shelah, Monadic logic: Hanf numbers, Around
classification theory of models, Springer, 1986, pp. 203–223.


	Introduction
	Monadic NIP
	In hereditary classes
	References

