Characterizations of monadic NIP/dependence

Samuel Braunfeld (Charles University) Joint work with Chris Laskowski

November 15, 2023 LoGAlg

OVERVIEW

Introduction

2 Monadic NIP

3 In hereditary classes

DEFINITIONS AND EXAMPLES

Definition

A class C of finite structures is *stable* if it does not encode the class of all finite linear orders.

C is *NIP* if it does not encode the class of all finite graphs. *C* is *monadically stable/NIP* if it remains stable/NIP under arbitrary vertex colorings.

Theorem ([AA14], [PZ78])

Let C be a monotone graph class. Then C is nowhere dense \iff *C is (monadically) stable* \iff *C is (monadically) NIP.*

Theorem ([BGdM⁺21])

Let C be a hereditary class of ordered graphs. Then C has bounded twin-width \iff *C is (monadically) NIP.*

A MAP [NODMRS21]

Introduction ○○●	Monadic NIP 0000000	In hereditary classes 00	References 000

MOTIVATION

• Meta-conjecture: Monadic stability/NIP provide the "right" generalizations of nowhere denseness to hereditary classes.

Conjecture

Let C be a hereditary class of relational structures. Then first-order model checking is FPT on $C \iff C$ *is monadically NIP.*

- Baldwin-Shelah [BS85] gave model-theoretic characterizations of infinite monadically stable structures, hinging on *forking dependence*.
- Understanding forking dependence in monadically stable graph classes, and finitizing the Baldwin-Shelah theory, has been crucial to progress on the meta-conjecture.

Introduction 000	Monadic NIP ●000000	In hereditary classes 00	References 000

CHARACTERIZATIONS

- Building on results of Baldwin-Shelah on monadic stability [BS85] and Shelah on monadic NIP [She86].
- We characterize monadically NIP theories in the following ways.
- The behavior of independence
- A forbidden configuration
- O Decompositions of models
- Type counting/width
- The behavior of indiscernibles
 - These are all characterizations of the theory *T* itself rather than its vertex colorings.
 - An intuition is that models of monadically NIP theories are 1-dimensional, or alternatively are order-like (or tree-like).

Introduction	Monadic NIP	In hereditary classes	References
000	o●ooooo	00	000

INDEPENDENCE: THE F.S. DICHOTOMY

• Finite satisfiability gives a (possibly asymmetric) notion of independence in any theory.

Definition ([She86])

Let $A
ightharpoonup_{M}^{fs} B$ mean that tp(A/MB) is finitely satisfiable in M. A theory T has the f.s.-dichotomy if given $A
ightharpoonup_{M}^{fs} B$, then for any c, $cA
ightharpoonup_{M}^{fs} B$ or $A
ightharpoonup_{M}^{fs} Bc$.

- Intuitively, dependence reduces to singletons and is transitive on singletons.
- So f.s.-dependence induces a quasi-order ($a \prec b$ if $a \bigvee_{M}^{f_s} b$).

Introduction	Monadic NIP	In hereditary classes	References
000	000000	00	000

FORBIDDEN CONFIGURATION: AN INFINITE GRID

Lemma (mostly [She86])

If T does not have the f.s. dichotomy, then some model of T codes an infinite grid (on tuples).

- $M \models \phi(\bar{a}_i, \bar{b}_j, c_{k,\ell}) \iff (i, j) = (k, \ell)$ (e.g. $\phi(x, y, z) := E(x, z) \land E(y, z))$
- So monadically NIP \Rightarrow f.s. dichotomy

DECOMPOSABILITY: *M*-F.S. SEQUENCES

Definition

Given a model *M*, $(A_i : i \in I)$ is an *M*-*f.s.* sequence if $A_i \, \bigcup_{M}^{f_s} \{A_{< i}\}$.

A *linear decomposition* of *N* is a partition $N = \bigsqcup_i A_i$ and a model *M* (not necessarily in *N*) such that $(A_i : i \in I)$ is an *M*-f.s. sequence.

Lemma ([She86])

If T has the *f.s.* dichotomy, then any partial linear decomposition of $N \models T$ can be extended to a full linear decomposition of *N*.

- The f.s. dichotomy is exactly what is needed to extend one point at a time.
- Alternatively, use the quasi-order decomposition into f.s.-dependence classes.

Type-counting/width: "Blobby linear neighborhood-width"

Lemma

If T has the f.s. dichotomy, then the "blobby linear neighborhood-width" of every model is bounded by some λ (in fact, by 2^{\aleph_0}).

If T is not monadically NIP, "blobby linear neighborhood-width" can be made arbitrarily large.

- So f.s. dichotomy \Rightarrow monadically NIP
- Blumensath [Blu11] showed that *T* is monadically NIP ⇔ the "rank-width" of models is cardinal-bounded.

INDISCERNIBLES: DP-MINIMALITY AND INDISCERNIBLE TRIVIALITY

Lemma

T has the f.s. dichotomy \iff *T* is dp-minimal and indiscernible trivial.

Definition

T is *dp-minimal* if for every dense indiscernible \mathcal{I} , any new parameter *a* splits \mathcal{I} into at most two mutually indiscernible sequences.

(Roughly, *T* does not have two independent dimensions.)

Definition

T is *indiscernible trivial* if whenever endpointless \mathcal{I} is indiscernible over each $a \in A$, then \mathcal{I} is indiscernible over *A*.

MAIN THEOREM

Theorem ([BL21])

The following are equivalent for a complete theory T.

- **1** *T is monadically NIP.*
- **2** *T* has the f.s. dichotomy.
- T does not code an infinite grid on tuples.
- Partial linear decompositions of models of T extend to full linear decompositions.
- Models of T have cardinal-bounded "blobby linear neighborhood-width".
- T is dp-minimal and indiscernible trivial.

Introduction	Monadic NIP	In hereditary classes	References
000	0000000	•0	000

COLLAPSE OF DIVIDING LINES

• Why do monadic stability/NIP appear as dividing lines in combinatorial problems about hereditary classes?

Theorem ([BL22])

Let C be a hereditary class in a relational language. Then C is stable $\iff C$ *is monadically stable, and C is NIP* $\iff C$ *is monadically NIP.*

- A sharp dichotomy: either *C* is tree-like (monadically NIP) or totally chaotic (not even NIP).
- Key point: If *T* is not monadically NIP, then *T* codes a "pre-grid" by an *existential* formula.

INFINITE AND FINITE

- What does the infinitary viewpoint bring?
- Dependence is easier to understand and manipulate.
- Allows for asymptotic analysis at the scale of cardinals.
- There are two sides to finitizing the theory.
- The non-structure results finitize directly by compactness.
- The structure results seem to require coming up with a "localized" notion of dependence and then re-developing the theory.

References I

- Hans Adler and Isolde Adler, *Interpreting nowhere dense graph classes as a classical notion of model theory*, European Journal of Combinatorics **36** (2014), 322–330.
- Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé, and Szymon Toruńczyk, *Twin-width IV: low complexity matrices*, arXiv preprint arXiv:2102.03117 (2021).
- Samuel Braunfeld and Michael C Laskowski, Characterizations of monadic NIP, Transactions of the AMS, Series B 8 (2021), 948–970.

_____, *Existential characterizations of monadic NIP*, arXiv preprint arXiv:2209.05120 (2022).

References II

- Achim Blumensath, *Simple monadic theories and partition width*, Mathematical Logic Quarterly **57** (2011), no. 4, 409–431.
- John T Baldwin and Saharon Shelah, *Second-order quantifiers and the complexity of theories.*, Notre Dame Journal of Formal Logic **26** (1985), no. 3, 229–303.
- Jaroslav Nešetřil, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian Siebertz, *Classes of graphs with low complexity: the case of classes with bounded linear rankwidth*, European Journal of Combinatorics **91** (2021), 103223.
- Klaus-Peter Podewski and Martin Ziegler, *Stable graphs*, Fund. Math **100** (1978), no. 2, 101–107.

Introduction 000	Monadic NIP 0000000	In hereditary classes 00	References

REFERENCES III

Saharon Shelah, *Monadic logic: Hanf numbers*, Around classification theory of models, Springer, 1986, pp. 203–223.