Boolean CSPs and Directed FLOW-AUGMENTATION

Eunjung Kim

CNRS, LAMSADE, Paris-Dauphine University

Joint works with Stefan Kratsch, Marcin Pilipczuk and Magnus Wahlström

17 November 2023, 2nd Workshop on Logic, Graphs and Algorithms, Warsaw, Poland

Min Sat(Г)

CSPs (Constraint Satisfaction Problems)

- A CSP problem defined by fixing a domain D and a constraint language Γ over D.
- An instance of $\operatorname{CSP}(\Gamma)$ is given as a set of constraints (X, R) over Γ.

Constraint language Γ over a domain D

- a set of relations R over D, each relation $R \subseteq D^{\prime}$ for finite r (arity).

A constraint (X, R) over a constraint language Γ

- $X=\left(x_{1}, \ldots, x_{r}\right)$ is an r-tuple of variables (scope of the constraint)
- $R \in \Gamma$
- satisfied by an assignment $\alpha: X \rightarrow D$ if $\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{r}\right)\right) \in R$

Min $\operatorname{Sat}(\Gamma)$

CSPs (Constraint Satisfaction Problems)

- A CSP problem defined by fixing a domain D and a constraint language Γ over D.
- An instance of $\operatorname{CSP}(\Gamma)$ is given as a set of constraints (X, R) over Γ.

Constraint language Γ over a domain D

- a set of relations R over D, each relation $R \subseteq D^{r}$ for finite r (arity).

A constraint (X, R) over a constraint language Γ

- $X=\left(x_{1}, \ldots, x_{r}\right)$ is an r-tuple of variables (scope of the constraint)
- satisfied by an assignment $\alpha: X \rightarrow D$ if $\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{r}\right)\right) \in R$

Min Sat(Г)

CSPs (Constraint Satisfaction Problems)

- A CSP problem defined by fixing a domain D and a constraint language Γ over D.
- An instance of $\operatorname{CSP}(\Gamma)$ is given as a set of constraints (X, R) over Γ.

Constraint language Γ over a domain D

- a set of relations R over D, each relation $R \subseteq D^{r}$ for finite r (arity).

A constraint (X, R) over a constraint language Γ

- $X=\left(x_{1}, \ldots, x_{r}\right)$ is an r-tuple of variables (scope of the constraint)
- $R \in \Gamma$
- satisfied by an assignment $\alpha: X \rightarrow D$ if $\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{r}\right)\right) \in R$

CSP (Γ), EXAMPLES

	CSP	3 -Coloring	2 -SAT
Problem	domain D	$\{1,2,3\}$	$\{0,1\}$
	constraint language Γ, $R \subseteq D^{r}$ for each $R \in \Gamma$ of arity r	$\{\neq\}$	$\begin{gathered} \left\{\{0,1\}^{2} \backslash(a, b):\right. \\ a, b \in\{0,1\}\} \end{gathered}$
Instance	variables V	vertices	variables
	$\begin{gathered} \text { constraints }(X, R), R \in \Gamma \text {, } \\ X \in V^{r} \end{gathered}$	$\{(u, v), \neq)\}_{u v \in E(G)}$	clauses

CSP (Γ), EXAMPLES

	CSP	3-Coloring	2-SAT
Problem	domain D	$\{1,2,3\}$	$\{0,1\}$
	constraint language Γ, $R \subseteq D^{r}$ for each $R \in \Gamma$ of arity r	$\{\neq\}$	$\left\{\{0,1\}^{2} \backslash(a, b):\right.$ $a, b \in\{0,1\}\}$
	variables V	vertices	variables
	constraints $(X, R), R \in \Gamma$, $X \in V^{r}$	$\{(u, v), \neq)\}_{u v \in E(G)}$	clauses

We focus on boolean constraint languages, where $\operatorname{CSP}(\Gamma)$ is now called $\operatorname{Sat}(\Gamma)$.

A natural variant of $\operatorname{Sat}(\Gamma): \operatorname{Min} \operatorname{Sat}(\Gamma)$

Min Sat(Г)

Input: A formula (i.e. a set of constraints) \mathcal{F} over Γ, where the domain of Γ is boolean, a non-negative integer k. Question: is there a set of at most k constraints $Z \subseteq \mathcal{F}$ such that $\mathcal{F}-Z$ is satisfiable?

Alternative formulation of $s t$-Min-Cut: Given $G=(V, E)$ with $s, t \in V$ and integer k,

- Variables V.
- $(s=1)$ and $(t=0)$ as crisp constraints (i.e. $k+1$ copies)
- For every edge $e=(s, v) \in E$, a constraint $(v=1)$.
- For every edge $e=(u, t) \in E$, a constraint $(u=0)$.
- For every other edge $e=(u, v) \in E$, a constraint $(u=v)$.
- Find a boolean assignment $\phi: V \rightarrow\{0,1\}$ such that all but at most k constraints are satisfied.

This is a formula of $\operatorname{Min} \operatorname{SAT}(\Gamma)$ over $\Gamma=\{0,1,=\}$.

st-Min-Cut as Min Sat(Г)

Alternative formulation of $s t$-Min-CuT: Given $G=(V, E)$ with $s, t \in V$ and integer k,

- Variables V.
- $(s=1)$ and $(t=0)$ as crisp constraints (i.e. $k+1$ copies)
- For every edge $e=(s, v) \in E$, a constraint $(v=1)$.
- For every edge $e=(u, t) \in E$, a constraint ($u=0$).
- For every other edge $e=(u, v) \in E$, a constraint $(u=v)$.
- Find a boolean assignment $\phi: V \rightarrow\{0,1\}$ such that all but at most k constraints are satisfied.

This is a formula of $\operatorname{Min} \operatorname{SAT}(\Gamma)$ over $\Gamma=\{0,1,=\}$

$s t-M i n-C u t ~ a s ~ M i n ~ S a t(\Gamma) ~$

Alternative formulation of $s t$-Min-CuT: Given $G=(V, E)$ with $s, t \in V$ and integer k,

- Variables V.
- $(s=1)$ and $(t=0)$ as crisp constraints (i.e. $k+1$ copies).
- For every edge $e=(s, v) \in E$, a constraint $(v=1)$.
- For every edge $e=(u, t) \in E$, a constraint $(u=0)$.
- For every other edge $e=(u, v) \in E$, a constraint $(u=v)$.
- Find a boolean assignment $\phi: V \rightarrow\{0,1\}$ such that all but at most k constraints are satisfied.

This is a formula of $\operatorname{Min} \operatorname{SAT}(\Gamma)$ over $\Gamma=\{0,1,=\}$

st-Min-Cut as Min Sat(Г)

Alternative formulation of $s t$-Min-CuT: Given $G=(V, E)$ with $s, t \in V$ and integer k,

- Variables V.
- $(s=1)$ and $(t=0)$ as crisp constraints (i.e. $k+1$ copies).
- For every edge $e=(s, v) \in E$, a constraint $(v=1)$.
- For every edge $e=(u, t) \in E$, a constraint $(u=0)$.
- For every other edge $e=(u, v) \in E$, a constraint $(u=v)$.
- Find a boolean assignment $\phi: V \rightarrow\{0,1\}$ such that all but at most k constraints are satisfied.

st-Min-Cut as Min Sat(Г)

Alternative formulation of $s t$-Min-CuT: Given $G=(V, E)$ with $s, t \in V$ and integer k,

- Variables V.
- $(s=1)$ and $(t=0)$ as crisp constraints (i.e. $k+1$ copies).
- For every edge $e=(s, v) \in E$, a constraint $(v=1)$.
- For every edge $e=(u, t) \in E$, a constraint $(u=0)$.
- For every other edge $e=(u, v) \in E$, a constraint $(u=v)$.
- Find a boolean assignment $\phi: V \rightarrow\{0,1\}$ such that all but at most k constraints are satisfied.

st-Min-Cut as Min Sat(Г)

Alternative formulation of $s t$-Min-CuT: Given $G=(V, E)$ with $s, t \in V$ and integer k,

- Variables V.
- $(s=1)$ and $(t=0)$ as crisp constraints (i.e. $k+1$ copies).
- For every edge $e=(s, v) \in E$, a constraint $(v=1)$.
- For every edge $e=(u, t) \in E$, a constraint $(u=0)$.
- For every other edge $e=(u, v) \in E$, a constraint $(u=v)$.
- Find a boolean assignment $\phi: V \rightarrow\{0,1\}$ such that all but at most k constraints are satisfied.

st-Min-Cut as Min Sat(Г)

Alternative formulation of $s t$-Min-CuT: Given $G=(V, E)$ with $s, t \in V$ and integer k,

- Variables V.
- $(s=1)$ and $(t=0)$ as crisp constraints (i.e. $k+1$ copies).
- For every edge $e=(s, v) \in E$, a constraint $(v=1)$.
- For every edge $e=(u, t) \in E$, a constraint $(u=0)$.
- For every other edge $e=(u, v) \in E$, a constraint $(u=v)$.
- Find a boolean assignment $\phi: V \rightarrow\{0,1\}$ such that all but at most k constraints are satisfied.

st-Min-Cut as Min Sat(Г)

Alternative formulation of $s t$-Min-CuT: Given $G=(V, E)$ with $s, t \in V$ and integer k,

- Variables V.
- $(s=1)$ and $(t=0)$ as crisp constraints (i.e. $k+1$ copies).
- For every edge $e=(s, v) \in E$, a constraint $(v=1)$.
- For every edge $e=(u, t) \in E$, a constraint $(u=0)$.
- For every other edge $e=(u, v) \in E$, a constraint $(u=v)$.
- Find a boolean assignment $\phi: V \rightarrow\{0,1\}$ such that all but at most k constraints are satisfied.

This is a formula of $\operatorname{Min} \operatorname{SAT}(\Gamma)$ over $\Gamma=\{0,1,=\}$.

k-Clique as Min Sat(Г)

k-Multicolored Clique (equivalent to k-Clique):

- Input: $G=\left(V_{1} \uplus V_{2} \uplus \cdots V_{k}, E\right)$ with each V_{i} stable, integer k.
- Task: find a k-clique K (report No if none exists).

Alternative formulation as $\operatorname{Min} \operatorname{Sat}(\Gamma)$ with $\Gamma=\{=, 0,1$, double equality $\}$ (Marx and Razgon 2009)

k-Clique as Min Sat(Г)

Does the following instance of $\operatorname{Min} \operatorname{Sat}(\Gamma)$, where $\Gamma=\{=, 0,1$, double equality $\}$, admit a boolean assignment violating at most $\binom{k}{2}$ constraints?

k-Clique as Min Sat(Г)

Does the following instance of $\operatorname{Min} \operatorname{Sat}(\Gamma)$, where $\Gamma=\{=, 0,1$, double equality $\}$, admit a boolean assignment violating at most $\binom{k}{2}$ constraints?

Toward FPT dichotomy for Min Sat(Г)

constraint type		Feasibility in P-time (Schaefer'78)	c-approx in FPT-time (BELM'18)	FPT
0/1-valid		trivially satisfiable		
bijunctive (2CNF)		Yes	Yes	Something interesting happens here
weakly neg/pos (horn/dual horn)	IHS-B			
	o/w		No	No
affine				
o/w		No		

FPT dichotomy for Min Sat(Г)

K. Kratsch, Pilipczuk, Wahlström 2021,22,23

Theorem

Let Γ be a finite boolean constraint language. Then parameterize by the number of unsatisfied constraints, one of the following holds.
(1) Weighted Min $\operatorname{Sat(\Gamma)~is~FPT.~}$
(2) Min $\operatorname{Sat}(\Gamma)$ is $F P T$, but Weighted Min $\operatorname{Sat}(\Gamma)$ is $W[1]$-hard.
(3) Min $\operatorname{Sat}(\Gamma)$ is $W[1]$-hard.

FPT dichotomy for Min Sat(Г)

K. Kratsch, Pilipczuk, Wahlström 2021,22,23

Theorem

Let 「 be a finite boolean constraint language. Then parameterize by the number of unsatisfied constraints, one of the following holds.
(1) Weighted Min $\operatorname{Sat}(\Gamma)$ is FPT.
(2) Min $\operatorname{Sat}(\Gamma)$ is $F P T$, but Weighted Min $\operatorname{Sat}(\Gamma)$ is $W[1]$-hard.
(3) Min $\operatorname{Sat}(\Gamma)$ is $W[1]$-hard.

The hard gist of the tractable cases critically relay on the flow-augmentation technique.

FPT dichotomy for Min Sat(Г)

K. Kratsch, Pilipczuk, Wahlström 2021,22,23

constraint type			Feasibility in P-time (S'78)	c-approx in FPT-time (BELM'18)	FPT
0/1-valid			trivially satisfiable		
bijunctive (2CNF)		$2 K_{2}$-free Gaifman graph	Yes	Yes	$\begin{gathered} \text { Yes } \\ \text { (even weighted) } \end{gathered}$
		o/w			No
weakly neg/pos (horn/ dual horn)	IHS-B	$2 K_{2}$-free arrow graph			Yes
		o/w			No
o/w				No	No
affine					
o/w			No		

Example of a tractable case: ℓ-Chain Sat

ℓ-Chain Sat

- Input: a formula Φ as a set of constraints of the following form.
- $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(x_{2} \rightarrow x_{3}\right) \wedge \cdots\left(x_{\ell-1} \rightarrow x_{\ell}\right)$,
- or unary clauses, i.e. (x) or $(\neg x)$
each constraint C has weight $\omega(C)$. Two integers k and W.
- Task: find a truth assignment $V(\Phi) \rightarrow\{1,0\}$ violating at most k constraints of weight at most W.

Example of a TRACTABLE CASE: ℓ-CHAIN SAT

ℓ-Chain Sat

- Input: a formula Φ as a set of constraints of the following form.
- $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(x_{2} \rightarrow x_{3}\right) \wedge \cdots\left(x_{\ell-1} \rightarrow x_{\ell}\right)$,
- or unary clauses, i.e. (x) or $(\neg x)$
each constraint C has weight $\omega(C)$. Two integers k and W.
- Task: find a truth assignment $V(\Phi) \rightarrow\{1,0\}$ violating at most k constraints of weight at most W.

$$
\begin{aligned}
& \Phi=\bigwedge_{i=1}^{4}\left(x_{i}\right) \wedge \bigwedge_{i=1}^{4}\left(\neg y_{i}\right) \wedge \bigwedge_{i=1}^{4} c_{i} \\
& C_{i}=\left(x_{i} \rightarrow w_{i}\right) \wedge\left(w_{i} \rightarrow y_{i}\right) \wedge\left(y_{i} \rightarrow w_{i+1}\right)
\end{aligned}
$$

Example of a Tractable case: ℓ-Chain Sat

ℓ-Chain Sat

- Input: a formula Φ as a set of constraints of the following form.
- $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(x_{2} \rightarrow x_{3}\right) \wedge \cdots\left(x_{\ell-1} \rightarrow x_{\ell}\right)$,
- or unary clauses, i.e. (x) or $(\neg x)$
each constraint C has weight $\omega(C)$. Two integers k and W.
- Task: find a truth assignment $V(\Phi) \rightarrow\{1,0\}$ violating at most k constraints of weight at most W.

$$
\begin{aligned}
& \Phi=\bigwedge_{i=1}^{4}\left(x_{i}\right) \wedge \bigwedge_{i=1}^{4}\left(\neg y_{i}\right) \wedge \bigwedge_{i=1}^{4} c_{i} \\
& C_{i}=\left(x_{i} \rightarrow w_{i}\right) \wedge\left(w_{i} \rightarrow y_{i}\right) \wedge\left(y_{i} \rightarrow w_{i+1}\right)
\end{aligned}
$$

FPT in $k+\ell$? Was THE bottleneck cut problem.

Example of a TRACTABLE CASE: ℓ-CHAIN SAT

ℓ-Chain Sat

- Input: a formula Φ as a set of constraints of the following form.
- $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(x_{2} \rightarrow x_{3}\right) \wedge \cdots\left(x_{\ell-1} \rightarrow x_{\ell}\right)$,
- or unary clauses, i.e. (x) or $(\neg x)$
each constraint C has weight $\omega(C)$. Two integers k and W.
- Task: find a truth assignment $V(\Phi) \rightarrow\{1,0\}$ violating at most k constraints of weight at most W.

$$
\begin{aligned}
& \Phi=\bigwedge_{i=1}^{4}\left(x_{i}\right) \wedge \bigwedge_{i=1}^{4}\left(\neg y_{i}\right) \wedge \bigwedge_{i=1}^{4} C_{i} \\
& C_{i}=\left(x_{i} \rightarrow w_{i}\right) \wedge\left(w_{i} \rightarrow y_{i}\right) \wedge\left(y_{i} \rightarrow w_{i+1}\right)
\end{aligned}
$$

FPT in $k+\ell$? Was THE bottleneck cut problem.
Tractable case in both bijunctive and IHS-B languages.

Example of a TRACTABLE CASE: ℓ-CHAIN SAT

ℓ-Chain Sat

- Input: a formula Φ as a set of constraints of the following form.
- $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(x_{2} \rightarrow x_{3}\right) \wedge \cdots\left(x_{\ell-1} \rightarrow x_{\ell}\right)$,
- or unary clauses, i.e. (x) or $(\neg x)$
each constraint C has weight $\omega(C)$. Two integers k and W.
- Task: find a truth assignment $V(\Phi) \rightarrow\{1,0\}$ violating at most k constraints of weight at most W.

$$
\begin{aligned}
& \Phi=\bigwedge_{i=1}^{4}\left(x_{i}\right) \wedge \bigwedge_{i=1}^{4}\left(\neg y_{i}\right) \wedge \bigwedge_{i=1}^{4} C_{i} \\
& C_{i}=\left(x_{i} \rightarrow w_{i}\right) \wedge\left(w_{i} \rightarrow y_{i}\right) \wedge\left(y_{i} \rightarrow w_{i+1}\right)
\end{aligned}
$$

FPT in $k+\ell$? Was THE bottleneck cut problem. Tractable case in both bijunctive and IHS-B languages. $\ell=1,2$ is $s t-M i n-C u t$.

Flow augmentation

Flow Augmentation Theorem (simple version)

There exists a polynomial-time algorithm that, given

- a directed graph G with $s, t \in V(G)$ and an integer k, returns
- a set $A \subseteq V(G) \times V(G)$
such that for every minimal st-cut Z of size at most k, with probability $2^{-\mathcal{O}\left(k^{4} \log k\right)}$
- Z is an st-cut of minimum cardinality in $G+A$.

Flow augmentation

Flow Augmentation Theorem (simple version)

There exists a polynomial-time algorithm that, given

- a directed graph G with $s, t \in V(G)$ and an integer k, returns
- a set $A \subseteq V(G) \times V(G)$
such that for every minimal st-cut Z of size at most k, with probability $2^{-\mathcal{O}\left(k^{4} \log k\right)}$
- Z is an st-cut of minimum cardinality in $G+A$.

When a sought solution Z is a minimal st-cut, then FLOW-AUGMENTATION lifts st-mincut size to match $|Z|$ by adding (unbreakable) arcs in a way not messing the solution, with high enough probability.

Algorithm for ℓ-Chain Sat

Weighted ℓ-Chain Sat

- Input: a directed graph $G=(V, E)$ with s, t, a collection \mathcal{B} (bundles) of pairwise disjoint path of length at most b with weights $\omega: \mathcal{B} \rightarrow \mathbb{Z}_{+}$, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup \mathcal{B}$ violating at most k bundles of weight at most W.

1. Invoke flow-augmentation; now Z is an st-mincut. Note $\lambda(s, t) \leq b k$

Algorithm for ℓ-Chain Sat

Weighted ℓ-Chain Sat

- Input: a directed graph $G=(V, E)$ with s, t, a collection \mathcal{B} (bundles) of pairwise disjoint path of length at most b with weights $\omega: \mathcal{B} \rightarrow \mathbb{Z}_{+}$, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup \mathcal{B}$ violating at most k bundles of weight at most W.

2. Guess how violated bundles overlay the flow paths.

Algorithm for ℓ-Chain Sat

Weighted ℓ-Chain Sat

- Input: a directed graph $G=(V, E)$ with s, t, a collection \mathcal{B} (bundles) of pairwise disjoint path of length at most b with weights $\omega: \mathcal{B} \rightarrow \mathbb{Z}_{+}$, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup \mathcal{B}$ violating at most k bundles of weight at most W.

3. Consider (only) the bundles conforming the guess.

Algorithm for ℓ-Chain Sat

Weighted ℓ-Chain Sat

- Input: a directed graph $G=(V, E)$ with s, t, a collection \mathcal{B} (bundles) of pairwise disjoint path of length at most b with weights $\omega: \mathcal{B} \rightarrow \mathbb{Z}_{+}$, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup \mathcal{B}$ violating at most k bundles of weight at most W.

4. A bundle crossed by another bundle cannot be violated.

Algorithm for ℓ-Chain Sat

Weighted ℓ-Chain Sat

- Input: a directed graph $G=(V, E)$ with s, t, a collection \mathcal{B} (bundles) of pairwise disjoint path of length at most b with weights $\omega: \mathcal{B} \rightarrow \mathbb{Z}_{+}$, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup \mathcal{B}$ violating at most k bundles of weight at most W.

5. Bundles are linearly ordered.

Algorithm for ℓ-Chain Sat

Weighted ℓ-Chain Sat

- Input: a directed graph $G=(V, E)$ with s, t, a collection \mathcal{B} (bundles) of pairwise disjoint path of length at most b with weights $\omega: \mathcal{B} \rightarrow \mathbb{Z}_{+}$, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup \mathcal{B}$ violating at most k bundles of weight at most W.

6. Compress the bundles, obtain (Weighted) st-mincut instance.

Concluding remarks

- $2 K_{2}$-freeness allows one to use a similar argument in the more general cases.
- The presence of $2 K_{2}$ leads to a reduction in the spirit of the previous one (k-CliQUE to $\operatorname{Min} \operatorname{Sat}(\{=, 0,1$, Double equality $\})$.
- Flow-augmentation looks like the missing tool in directed graph separation problems.
- It closed some dichotomies and long-standing open problems.
- Key open problemArgh...it's closed recently by George Osipov and Marcin Pilipczuk: Symmetric Multicut.
Directed graph G, unordered pairs of terminals \mathcal{T}, integer k. Delete k edges so that for every $s t \in \mathcal{T}$, s and t are not in the same strong component.

