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Min Sat(Γ)

CSPs (Constraint Satisfaction Problems)

A CSP problem defined by fixing a domain D and a constraint language Γ over D.

An instance of CSP(Γ) is given as a set of constraints (X ,R) over Γ.

Constraint language Γ over a domain D

a set of relations R over D, each relation R ⊆ D r for finite r (arity).

A constraint (X ,R) over a constraint language Γ

X = (x1, . . . , xr ) is an r -tuple of variables (scope of the constraint)

R ∈ Γ

satisfied by an assignment α : X → D if (α(x1), . . . , α(xr )) ∈ R
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CSP(Γ), examples

CSP 3-Coloring 2-Sat

Problem

domain D {1, 2, 3} {0, 1}

constraint language Γ,
R ⊆ D r for each R ∈ Γ of

arity r
{6=} {{0, 1}2 \ (a, b) :

a, b ∈ {0, 1}}

Instance

variables V vertices variables

constraints (X ,R), R ∈ Γ,
X ∈ V r {(u, v), 6=)}uv∈E(G) clauses

We focus on boolean constraint languages, where CSP(Γ) is now called Sat(Γ).
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A natural variant of Sat(Γ): Min Sat(Γ)

Min Sat(Γ)

Input: A formula (i.e. a set of constraints) F over Γ, where the domain of Γ is boolean, a
non-negative integer k.

Question: is there a set of at most k constraints Z ⊆ F such that F − Z is satisfiable?



st-Min-Cut as Min Sat(Γ)

Alternative formulation of st-Min-Cut: Given G = (V ,E) with s, t ∈ V and integer k,

Variables V .

(s = 1) and (t = 0) as crisp constraints (i.e. k + 1 copies).

For every edge e = (s, v) ∈ E , a constraint (v = 1).

For every edge e = (u, t) ∈ E , a constraint (u = 0).

For every other edge e = (u, v) ∈ E , a constraint (u = v).

Find a boolean assignment φ : V → {0, 1} such that all but at most k constraints are
satisfied.

This is a formula of Min Sat(Γ) over Γ = {0, 1,=}.
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k-Clique as Min Sat(Γ)

k-Multicolored Clique (equivalent to k-Clique):

Input: G = (V1 ] V2 ] · · ·Vk ,E) with each Vi stable, integer k.

Task: find a k-clique K (report No if none exists).

Alternative formulation as Min Sat(Γ) with Γ = {=, 0, 1,double equality}
(Marx and Razgon 2009)



k-Clique as Min Sat(Γ)

Does the following instance of Min Sat(Γ), where Γ = {=, 0, 1,double equality}, admit a

boolean assignment violating at most
(k

2

)
constraints?
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k-Clique as Min Sat(Γ)

Does the following instance of Min Sat(Γ), where Γ = {=, 0, 1,double equality}, admit a

boolean assignment violating at most
(k

2
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Toward FPT dichotomy for Min Sat(Γ)

constraint type
Feasibility
in P-time

(Schaefer’78)

c-approx
in FPT-time
(BELM’18)

FPT

0/1-valid trivially satisfiable

bijunctive (2CNF)

Yes

Yes
Something
interesting

happens here
weakly neg/pos

(horn/dual horn)

IHS-B

o/w
No No

affine

o/w No



FPT dichotomy for Min Sat(Γ)
K. Kratsch, Pilipczuk, Wahlström 2021,22,23

Theorem

Let Γ be a finite boolean constraint language. Then parameterize by the number of
unsatisfied constraints, one of the following holds.

1 Weighted Min Sat(Γ) is FPT.

2 Min Sat(Γ) is FPT, but Weighted Min Sat(Γ) is W[1]-hard.

3 Min Sat(Γ) is W[1]-hard.

The hard gist of the tractable cases critically relay on the flow-augmentation technique.
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FPT dichotomy for Min Sat(Γ)
K. Kratsch, Pilipczuk, Wahlström 2021,22,23

constraint type
Feasibility
in P-time

(S’78)

c-approx
in FPT-time
(BELM’18)

FPT

0/1-valid trivially satisfiable

bijunctive (2CNF) 2K2-free
Gaifman graph

Yes

Yes
Yes

(even weighted)

o/w No

weakly
neg/pos
(horn/

dual horn)

IHS-B

2K2-free
arrow graph

Yes

o/w No

o/w
No No

affine

o/w No



Example of a tractable case: `-Chain Sat

`-Chain Sat

Input: a formula Φ as a set of constraints of the following form.

(x1 → x2) ∧ (x2 → x3) ∧ · · · (x`−1 → x`),
or unary clauses, i.e. (x) or (¬x)

each constraint C has weight ω(C). Two integers k and W .

Task: find a truth assignment V (Φ)→ {1, 0} violating at most k constraints of weight at
most W .

Φ =
∧4

i=1(xi ) ∧
∧4

i=1(¬yi ) ∧
∧4

i=1 Ci ,

Ci = (xi → wi ) ∧ (wi → yi ) ∧ (yi → wi+1)

FPT in k + `? Was THE bottleneck cut problem.
Tractable case in both bijunctive and IHS-B languages.
` = 1, 2 is st-Min-Cut.
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Flow augmentation

Flow Augmentation Theorem (simple version)

There exists a polynomial-time algorithm that, given

a directed graph G with s, t ∈ V (G) and an integer k,

returns

a set A ⊆ V (G)× V (G)

such that for every minimal st-cut Z of size at most k, with probability 2−O(k4 log k)

Z is an st-cut of minimum cardinality in G + A.

When a sought solution Z is a minimal st-cut, then flow-augmentation lifts st-mincut
size to match |Z | by adding (unbreakable) arcs in a way not messing the solution, with
high enough probability.
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Algorithm for `-Chain Sat

Weighted `-Chain Sat

Input: a directed graph G = (V ,E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights ω : B → Z+, integers k and W .

Task: find a minimal st-cut Z ⊆
⋃
B violating at most k bundles of weight at most

W .

1. Invoke flow-augmentation; now Z is an st-mincut. Note λ(s, t) ≤ bk



Algorithm for `-Chain Sat

Weighted `-Chain Sat

Input: a directed graph G = (V ,E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights ω : B → Z+, integers k and W .

Task: find a minimal st-cut Z ⊆
⋃
B violating at most k bundles of weight at most

W .

2. Guess how violated bundles overlay the flow paths.
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Weighted `-Chain Sat

Input: a directed graph G = (V ,E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights ω : B → Z+, integers k and W .

Task: find a minimal st-cut Z ⊆
⋃
B violating at most k bundles of weight at most

W .

3. Consider (only) the bundles conforming the guess.



Algorithm for `-Chain Sat

Weighted `-Chain Sat

Input: a directed graph G = (V ,E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights ω : B → Z+, integers k and W .

Task: find a minimal st-cut Z ⊆
⋃
B violating at most k bundles of weight at most

W .

4. A bundle crossed by another bundle cannot be violated.



Algorithm for `-Chain Sat

Weighted `-Chain Sat

Input: a directed graph G = (V ,E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights ω : B → Z+, integers k and W .

Task: find a minimal st-cut Z ⊆
⋃
B violating at most k bundles of weight at most

W .

5. Bundles are linearly ordered.



Algorithm for `-Chain Sat

Weighted `-Chain Sat

Input: a directed graph G = (V ,E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights ω : B → Z+, integers k and W .

Task: find a minimal st-cut Z ⊆
⋃
B violating at most k bundles of weight at most

W .

6. Compress the bundles, obtain (Weighted) st-mincut instance.



Concluding remarks

2K2-freeness allows one to use a similar argument in the more general cases.

The presence of 2K2 leads to a reduction in the spirit of the previous one (k-Clique
to Min Sat({=, 0, 1,double equality}).

Flow-augmentation looks like the missing tool in directed graph separation problems.

It closed some dichotomies and long-standing open problems.

Key open problemArgh...it’s closed recently by George Osipov and Marcin Pilipczuk:
Symmetric Multicut.
Directed graph G , unordered pairs of terminals T , integer k. Delete k edges so that
for every st ∈ T , s and t are not in the same strong component.


