BooLEAN CSPs AND DIRECTED
FLOW-AUGMENTATION

Eunjung Kim

CNRS, LAMSADE, Paris-Dauphine University

Joint works with Stefan Kratsch, Marcin Pilipczuk and Magnus Wahlstrém

17 November 2023, 2nd Workshop on Logic, Graphs and Algorithms, Warsaw, Poland

MiN SaT(T)

CSPs (Constraint Satisfaction Problems)
o A CSP problem defined by fixing a domain D and a constraint language I over D.
o An instance of CSP(I) is given as a set of constraints (X, R) over I'.

MiN SaT(T)

CSPs (Constraint Satisfaction Problems)
o A CSP problem defined by fixing a domain D and a constraint language I over D.
o An instance of CSP(I) is given as a set of constraints (X, R) over I'.

Constraint language I over a domain D

@ a set of relations R over D, each relation R C D" for finite r (arity).

MiN SaT(T)

CSPs (Constraint Satisfaction Problems)
o A CSP problem defined by fixing a domain D and a constraint language I over D.
o An instance of CSP(I) is given as a set of constraints (X, R) over I'.

Constraint language I over a domain D

@ a set of relations R over D, each relation R C D" for finite r (arity).

A constraint (X, R) over a constraint language I’

@ X =(x1,...,xr) is an r-tuple of variables (scope of the constraint)
e Rel

o satisfied by an assignment o : X — D if (a(x1),...,a(x)) € R

CSP(I'), EXAMPLES

CSP 3-COLORING 2-SAT
domain D {1,2,3} {0,1}
Problem constraint language I, {0,112\ (a,b) :
R C D" for each R €T of {#} ’ T
. a,be{0,1}}
arity r
14 vertices variables
Instance X,R), ReT,
(X R) {(u,v), #)}wee(e) clauses

CSP(I'), EXAMPLES

CSP 3-COLORING 2-SAT
domain D {1,2,3} {0,1}
Problem constraint language I, {0,112\ (a,b) :
R C D" for each R €T of {#} ’ T
arity r a,be{0,1}}
14 vertices variables
Instance X,R), ReT,
X(e V’) {(u,v), #)}wee(e) clauses

We focus on boolean constraint languages, where CSP(T') is now called SAT(T).

A NATURAL VARIANT OF SAT(I): MiIN SAT(I)

MIN Sat(l)

Input: A formula (i.e. a set of constraints) F over I, where the domain of I is boolean, a
non-negative integer k.

Question: is there a set of at most k constraints Z C F such that F — Z is satisfiable?

Alternative formulation of st-MIN-CUT: Given G = (V, E) with s,t € V and integer k,
e Variables V.
o (s=1) and (t = 0) as crisp constraints (i.e. k+ 1 copies).
o For every edge e = (s,v) € E, a constraint (v = 1).
o For every edge e = (u, t) € E, a constraint (v = 0).
o For every other edge e = (u, v) € E, a constraint (u = v).

e Find a boolean assignment ¢ : V — {0, 1} such that all but at most k constraints are
satisfied.

This is a formula of MiN SAT(I") over ' = {0,1,=}.

st-MIN-CUT AS MIN SaT(I')

Alternative formulation of st-MIN-CUT: Given G = (V, E) with s,t € V and integer k,
@ Variables V.

st-MIN-CUT AS MIN SaT(I')

Alternative formulation of st-MIN-CUT: Given G = (V, E) with s,t € V and integer k,
@ Variables V.
e (s=1) and (t = 0) as crisp constraints (i.e. k + 1 copies).

st-MIN-CUT AS MIN SaT(I')

Alternative formulation of st-MIN-CUT: Given G = (V, E) with s,t € V and integer k,
@ Variables V.
e (s=1) and (t = 0) as crisp constraints (i.e. k + 1 copies).

o For every edge e = (s,v) € E, a constraint (v = 1).

st-MIN-CUT AS MIN SaT(I')

Alternative formulation of st-MIN-CUT: Given G = (V, E) with s,t € V and integer k,
@ Variables V.
(s =1) and (t = 0) as crisp constraints (i.e. k + 1 copies).

For every edge e = (s,v) € E, a constraint (v = 1).

o For every edge e = (u, t) € E, a constraint (v = 0).

st-MIN-CUT AS MIN SaT(I')

Alternative formulation of st-MIN-CUT: Given G = (V, E) with s,t € V and integer k,
@ Variables V.
(s =1) and (t = 0) as crisp constraints (i.e. k + 1 copies).

For every edge e = (s,v) € E, a constraint (v = 1).

o For every edge e = (u, t) € E, a constraint (v = 0).

For every other edge e = (u, v) € E, a constraint (u = v).

st-MIN-CUT AS MIN SaT(I')

Alternative formulation of st-MIN-CUT: Given G = (V, E) with s,t € V and integer k,
@ Variables V.

(s =1) and (t = 0) as crisp constraints (i.e. k + 1 copies).

For every edge e = (s,v) € E, a constraint (v = 1).

o For every edge e = (u, t) € E, a constraint (v = 0).

For every other edge e = (u, v) € E, a constraint (u = v).

Find a boolean assignment ¢ : V — {0, 1} such that all but at most k constraints are
satisfied.

st-MIN-CUT AS MIN SaT(I')

Alternative formulation of st-MIN-CUT: Given G = (V, E) with s,t € V and integer k,
@ Variables V.

(s =1) and (t = 0) as crisp constraints (i.e. k + 1 copies).

For every edge e = (s,v) € E, a constraint (v = 1).

o For every edge e = (u, t) € E, a constraint (v = 0).

For every other edge e = (u, v) € E, a constraint (u = v).

Find a boolean assignment ¢ : V — {0, 1} such that all but at most k constraints are
satisfied.

This is a formula of MIN SAT(T") over ' = {0,1,=}.

k-CLIQUE As MIN SAT(I')

k-MULTICOLORED CLIQUE (equivalent to k-CLIQUE):
o Input: G =(ViwW Vo--- Vi, E) with each V; stable, integer k.
e Task: find a k-clique K (report NO if none exists).

Alternative formulation as MIN SAT(I") with I = {=,0,1, DOUBLE EQUALITY}
(Marx and Razgon 2009)

Does the following instance of MIN SAT(I'), where ' = {=, 0,1, DOUBLE EQUALITY}, admit a
boolean assignment violating at most (‘2() constraints?

k-CLIQUE As MIN SAT(I')

Does the following instance of MIN SAT(I), where [= {=,0, 1, DOUBLE EQUALITY}, admit a
boolean assignment violating at most (g) constraints?

Ul Vk
dy —
o, ® A
1}-} . Lh L
Py Uy ©
. »
5 ’
» L
o ’
Un & Vn ¢

TowARrD FPT picHOTOMY FOR MIN SAT(I)

i Feasibility c-approx
constraint type in P-time in FPT-time FPT
(Schaefer'78) (BELM'18)
0/1-valid trivially satisfiable
bijunctive (2CNF) Something
Yes interesting
happens here
weakly neg/pos IHS-B Y.
(horn/dual horn) es
o/w
No No
affine
o/w No

FPT picHOTOMY FOR MIN SAT(I)
K. KrATscH, PiLiPczUk, WAHLSTROM 2021,22,23

THEOREM

Let I be a finite boolean constraint language. Then parameterize by the number of
unsatisfied constraints, one of the following holds.

@ WEIGHTED MIN SAT(T) is FPT.
@ MiN SatT(T) is FPT, but WEIGHTED MIN SAT(I) is W[1]-hard.
@ MiN Sat(l) is W[1]-hard.

FPT picHOTOMY FOR MIN SAT(I)
K. KrATscH, PiLiPczUk, WAHLSTROM 2021,22,23

THEOREM

Let I be a finite boolean constraint language. Then parameterize by the number of
unsatisfied constraints, one of the following holds.

@ WEIGHTED MIN SAT(T) is FPT.

@ MiN SatT(T) is FPT, but WEIGHTED MIN SAT(I) is W[1]-hard.

@ MiN Sat(l) is W[1]-hard.

The hard gist of the tractable cases critically relay on the flow-augmentation technique.

FPT picHoTOMY FOR MIN SAT(I)

K. KrATscH, PiLiPczUk, WAHLSTROM 2021,22,23

i Feasibility c-approx
constraint type in P-time in FPT-time FPT
(5'78) (BELM'18)
0/1-valid trivially satisfiable
bijunctive (2CNF) 2HK-free Yes
Gaifman graph Yes (even weighted)
o/w No
2K,-free Yes
weakly arrow graph Yes

neg/pos

(horn/ o/w No
dual horn)

o/w
No No

EXAMPLE OF A TRACTABLE CASE: (-CHAIN SAT

{-CHAIN SAT
@ Input: a formula ® as a set of constraints of the following form.

° (X1 — X2) A (X2 — X3) JARER (Xg,l — Xg),
o or unary clauses, i.e. (x) or (—x)

each constraint C has weight w(C). Two integers k and W.

@ Task: find a truth assignment V(®) — {1,0} violating at most k constraints of weight at
most W.

EXAMPLE OF A TRACTABLE CASE: (-CHAIN SAT

{-CHAIN SAT
@ Input: a formula ® as a set of constraints of the following form.

° (X1 — X2) A (X2 — X3) JARER (Xg,l — Xg),
o or unary clauses, i.e. (x) or (—x)

each constraint C has weight w(C). Two integers k and W.

@ Task: find a truth assignment V(®) — {1,0} violating at most k constraints of weight at
most W.
S

X, x X3 4

® = AL (30 A AL (i) A AL G

G =(xi = w)A(wi = yi)A(yi = wit1)

i Y2 Y3 Y4

EXAMPLE OF A TRACTABLE CASE: (-CHAIN SAT

{-CHAIN SAT
@ Input: a formula ® as a set of constraints of the following form.
o (x1 > x2) A (2 = x3) A (Xe—1 — Xe),
o or unary clauses, i.e. (x) or (—x)
each constraint C has weight w(C). Two integers k and W.

@ Task: find a truth assignment V(®) — {1,0} violating at most k constraints of weight at
most W.

S

X X X3 4
@ = AL () A AL (i) A AL G
= = = W. w [] w. []
C = (X,‘ — W,‘) A (W,‘ — y,') AN (y,' — W,'+1) 1 2 3 Wa
i Y2 Y3 Y4

FPT in k + ¢? Was THE bottleneck cut problem.

EXAMPLE OF A TRACTABLE CASE: (-CHAIN SAT

{-CHAIN SAT
@ Input: a formula ® as a set of constraints of the following form.
o (x1 > x2) A (2 = x3) A (Xe—1 — Xe),
o or unary clauses, i.e. (x) or (—x)
each constraint C has weight w(C). Two integers k and W.
@ Task: find a truth assignment V(®) — {1,0} violating at most k constraints of weight at

most W.
S

X X X3 4
@ = AL () A AL (i) A AL G
= = = W. w [] w. []
C = (X,‘ — W,‘) A (W,‘ — y,') AN (y,' — W,'+1) 1 2 3 Wa
i Y2 Y3 Y4

FPT in k + ¢? Was THE bottleneck cut problem.
Tractable case in both bijunctive and IHS-B languages.

EXAMPLE OF A TRACTABLE CASE: (-CHAIN SAT

{-CHAIN SAT
@ Input: a formula ® as a set of constraints of the following form.

° (X1 — X2) A (X2 — X3) JARER (Xg,l — Xg),
o or unary clauses, i.e. (x) or (—x)
each constraint C has weight w(C). Two integers k and W.
@ Task: find a truth assignment V(®) — {1,0} violating at most k constraints of weight at

most W.
S

X, x X3 4

® = AL (30 A AL (i) A AL G

G =(xi = w)A(wi = yi)A(yi = wit1)

i Y2 Y3 Y4

FPT in k + ¢? Was THE bottleneck cut problem.
Tractable case in both bijunctive and IHS-B languages.

£ =1,2is st-MIN-CUT.

FLOW AUGMENTATION

FLOW AUGMENTATION THEOREM (SIMPLE VERSION)
There exists a polynomial-time algorithm that, given
@ a directed graph G with s, t € V(G) and an integer k,
returns
e aset AC V(G) x V(G)
such that for every minimal st-cut Z of size at most k, with probability 2~ Ok log k)

e Z is an st-cut of minimum cardinality in G + A.

FLOW AUGMENTATION

FLOW AUGMENTATION THEOREM (SIMPLE VERSION)
There exists a polynomial-time algorithm that, given
@ a directed graph G with s, t € V(G) and an integer k,
returns
e aset AC V(G) x V(G)
such that for every minimal st-cut Z of size at most k, with probability 2~ Ok log k)

e Z is an st-cut of minimum cardinality in G + A.

When a sought solution Z is a minimal st-cut, then FLOW-AUGMENTATION lifts st-mincut
size to match |Z| by adding (unbreakable) arcs in a way not messing the solution, with
high enough probability.

ALGORITHM FOR /-CHAIN SAT

WEIGHTED /-CHAIN SAT

o Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights w : B — Z.., integers k and W.

@ Task: find a minimal st-cut Z C | J B violating at most k bundles of weight at most
w.

1. Invoke flow-augmentation; now Z is an st-mincut. Note A(s, t) < bk

ALGORITHM FOR /-CHAIN SAT

WEIGHTED /-CHAIN SAT

o Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights w : B — Z.., integers k and W.

@ Task: find a minimal st-cut Z C | J B violating at most k bundles of weight at most
w.

s
.

2. Guess how violated bundles overlay the flow paths.

ALGORITHM FOR /-CHAIN SAT

WEIGHTED /-CHAIN SAT

o Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights w : B — Z.., integers k and W.

@ Task: find a minimal st-cut Z C | J B violating at most k bundles of weight at most
w.

N
/.

P A
. L

3. Consider (only) the bundles conforming the guess.

ALGORITHM FOR /-CHAIN SAT

WEIGHTED /-CHAIN SAT

o Input: a directed graph G = (V/, E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights w : B — Z.., integers k and W.

@ Task: find a minimal st-cut Z C J B violating at most k bundles of weight at most
w.

N
A

4. A bundle crossed by another bundle cannot be violated.

ALGORITHM FOR /-CHAIN SAT

WEIGHTED /-CHAIN SAT

o Input: a directed graph G = (V/, E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights w : B — Z.., integers k and W.

@ Task: find a minimal st-cut Z C | J B violating at most k bundles of weight at most
w.

5. Bundles are linearly ordered.

ALGORITHM FOR /-CHAIN SAT

WEIGHTED /-CHAIN SAT

o Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise
disjoint path of length at most b with weights w : B — Z.., integers k and W.

@ Task: find a minimal st-cut Z C | J B violating at most k bundles of weight at most

_

6. Compress the bundles, obtain (Weighted) st-MINCUT instance.

CONCLUDING REMARKS

@ 2K,-freeness allows one to use a similar argument in the more general cases.

@ The presence of 2K leads to a reduction in the spirit of the previous one (k-CLIQUE
to MIN SAT({=,0,1, DOUBLE EQUALITY}).

o Flow-augmentation looks like the missing tool in directed graph separation problems.
@ It closed some dichotomies and long-standing open problems.

o Key open problemArgh...it's closed recently by George Osipov and Marcin Pilipczuk:
SYMMETRIC MULTICUT.
Directed graph G, unordered pairs of terminals T, integer k. Delete k edges so that
for every st € T, s and t are not in the same strong component.

