BOOLEAN CSPs AND DIRECTED FLOW-AUGMENTATION

Eunjung Kim

CNRS, LAMSADE, Paris-Dauphine University

Joint works with Stefan Kratsch, Marcin Pilipczuk and Magnus Wahlström

17 November 2023, 2nd Workshop on Logic, Graphs and Algorithms, Warsaw, Poland

CSPs (Constraint Satisfaction Problems)

- A CSP problem defined by fixing a domain D and a constraint language Γ over D.
- An instance of $CSP(\Gamma)$ is given as a set of constraints (X, R) over Γ .

Constraint language Γ over a domain D

• a set of relations R over D, each relation $R \subseteq D^r$ for finite r (arity).

A constraint (X, R) over a constraint language Γ

- X = (x₁,...,x_r) is an *r*-tuple of variables (*scope* of the constraint)
 R ∈ Γ
- satisfied by an assignment $\alpha: X \to D$ if $(\alpha(x_1), \dots, \alpha(x_r)) \in R$

CSPs (Constraint Satisfaction Problems)

- A CSP problem defined by fixing a domain D and a constraint language Γ over D.
- An instance of $CSP(\Gamma)$ is given as a set of constraints (X, R) over Γ .

Constraint language Γ over a domain D

• a set of relations R over D, each relation $R \subseteq D^r$ for finite r (arity).

A constraint (X, R) over a constraint language Γ

- X = (x₁,...,x_r) is an r-tuple of variables (scope of the constraint)
 R ∈ Γ
- satisfied by an assignment $\alpha: X \to D$ if $(\alpha(x_1), \ldots, \alpha(x_r)) \in R$

CSPs (Constraint Satisfaction Problems)

- A CSP problem defined by fixing a domain D and a constraint language Γ over D.
- An instance of $CSP(\Gamma)$ is given as a set of constraints (X, R) over Γ .

Constraint language Γ over a domain D

• a set of relations R over D, each relation $R \subseteq D^r$ for finite r (arity).

A constraint (X, R) over a constraint language Γ

- X = (x₁,...,x_r) is an *r*-tuple of variables (*scope* of the constraint)
 R ∈ Γ
- satisfied by an assignment $\alpha: X \to D$ if $(\alpha(x_1), \ldots, \alpha(x_r)) \in R$

	CSP	3-Coloring	2-Sat
Problem	domain D	$\{1, 2, 3\}$	$\{0, 1\}$
	constraint language Γ , $R \subseteq D^r$ for each $R \in \Gamma$ of arity r	{≠}	$\{\{0,1\}^2 \setminus (a,b):\ a,b \in \{0,1\}\}$
Instance	variables V	vertices	variables
	$\begin{array}{l} \text{constraints } (X,R), \ R\in \Gamma, \\ X\in V^r \end{array}$	$\{(u,v),\neq\}_{uv\in E(G)}$	clauses

We focus on boolean constraint languages, where $CSP(\Gamma)$ is now called $SAT(\Gamma)$.

	CSP	3-Coloring	2-Sat
Problem	domain D	$\{1, 2, 3\}$	$\{0,1\}$
	constraint language Γ , $R \subseteq D^r$ for each $R \in \Gamma$ of arity r	{≠}	$\{\{0,1\}^2 \setminus (a,b):\ a,b \in \{0,1\}\}$
Instance	variables V	vertices	variables
	$ \begin{array}{c} \text{constraints } (X,R), \ R \in \Gamma, \\ X \in V' \end{array} $	$\{(u,v),\neq\}_{uv\in E(G)}$	clauses

We focus on boolean constraint languages, where $\mathrm{CSP}(\Gamma)$ is now called $\mathrm{Sat}(\Gamma)$.

Min $\operatorname{Sat}(\Gamma)$

Input: A formula (i.e. a set of constraints) \mathcal{F} over Γ , where the domain of Γ is boolean, a non-negative integer k.

Question: is there a set of at most k constraints $Z \subseteq \mathcal{F}$ such that $\mathcal{F} - Z$ is satisfiable?

- Variables V.
- (s = 1) and (t = 0) as crisp constraints (i.e. k + 1 copies).
- For every edge $e = (s, v) \in E$, a constraint (v = 1).
- For every edge $e = (u, t) \in E$, a constraint (u = 0).
- For every other edge $e = (u, v) \in E$, a constraint (u = v).
- Find a boolean assignment $\phi: V \to \{0,1\}$ such that all but at most k constraints are satisfied.

- Variables V.
- (s = 1) and (t = 0) as crisp constraints (i.e. k + 1 copies).
- For every edge $e = (s, v) \in E$, a constraint (v = 1).
- For every edge $e = (u, t) \in E$, a constraint (u = 0).
- For every other edge $e = (u, v) \in E$, a constraint (u = v).
- Find a boolean assignment $\phi: V \to \{0, 1\}$ such that all but at most k constraints are satisfied.

- Variables V.
- (s = 1) and (t = 0) as crisp constraints (i.e. k + 1 copies).
- For every edge $e = (s, v) \in E$, a constraint (v = 1).
- For every edge $e = (u, t) \in E$, a constraint (u = 0).
- For every other edge $e = (u, v) \in E$, a constraint (u = v).
- Find a boolean assignment $\phi: V \to \{0, 1\}$ such that all but at most k constraints are satisfied.

- Variables V.
- (s = 1) and (t = 0) as *crisp* constraints (i.e. k + 1 copies).
- For every edge $e = (s, v) \in E$, a constraint (v = 1).
- For every edge $e = (u, t) \in E$, a constraint (u = 0).
- For every other edge $e = (u, v) \in E$, a constraint (u = v).
- Find a boolean assignment $\phi: V \to \{0, 1\}$ such that all but at most k constraints are satisfied.

- Variables V.
- (s = 1) and (t = 0) as crisp constraints (i.e. k + 1 copies).
- For every edge $e = (s, v) \in E$, a constraint (v = 1).
- For every edge $e = (u, t) \in E$, a constraint (u = 0).
- For every other edge $e = (u, v) \in E$, a constraint (u = v).
- Find a boolean assignment $\phi: V \to \{0,1\}$ such that all but at most k constraints are satisfied.

- Variables V.
- (s = 1) and (t = 0) as crisp constraints (i.e. k + 1 copies).
- For every edge $e = (s, v) \in E$, a constraint (v = 1).
- For every edge $e = (u, t) \in E$, a constraint (u = 0).
- For every other edge $e = (u, v) \in E$, a constraint (u = v).
- Find a boolean assignment $\phi: V \to \{0, 1\}$ such that all but at most k constraints are satisfied.

- Variables V.
- (s = 1) and (t = 0) as crisp constraints (i.e. k + 1 copies).
- For every edge $e = (s, v) \in E$, a constraint (v = 1).
- For every edge $e = (u, t) \in E$, a constraint (u = 0).
- For every other edge $e = (u, v) \in E$, a constraint (u = v).
- Find a boolean assignment $\phi: V \to \{0,1\}$ such that all but at most k constraints are satisfied.

- Variables V.
- (s = 1) and (t = 0) as crisp constraints (i.e. k + 1 copies).
- For every edge $e = (s, v) \in E$, a constraint (v = 1).
- For every edge $e = (u, t) \in E$, a constraint (u = 0).
- For every other edge $e = (u, v) \in E$, a constraint (u = v).
- Find a boolean assignment $\phi: V \to \{0, 1\}$ such that all but at most k constraints are satisfied.

k-MULTICOLORED CLIQUE (equivalent to *k*-CLIQUE):

- Input: $G = (V_1 \uplus V_2 \uplus \cdots \lor V_k, E)$ with each V_i stable, integer k.
- Task: find a *k*-clique *K* (report No if none exists).

Alternative formulation as ${\rm Min}~{\rm Sat}(\Gamma)$ with $\Gamma=\{=,0,1,{\rm DOUBLE~EQUALITY}\}$ (Marx and Razgon 2009)

k-CLIQUE AS MIN SAT(Γ)

Does the following instance of MIN SAT(Γ), where $\Gamma = \{=, 0, 1, \text{DOUBLE EQUALITY}\}$, admit a boolean assignment violating at most $\binom{k}{2}$ constraints?

k-CLIQUE AS MIN SAT(Γ)

Does the following instance of MIN SAT(Γ), where $\Gamma = \{=, 0, 1, \text{DOUBLE EQUALITY}\}$, admit a boolean assignment violating at most $\binom{k}{2}$ constraints?

constraint type		Feasibility in P-time (Schaefer'78)	<i>c</i> -approx in FPT-time (BELM'18)	FPT
0/1-valid		trivially satisfiable		
bijunctive (2CNF)			Ver	Something
weakly neg/pos (horn/dual horn)	IHS-B	Vec	103	happens here
	o/w	165	No	No
affine			NO	NO
o/w		No		

Theorem

Let Γ be a finite boolean constraint language. Then parameterize by the number of unsatisfied constraints, one of the following holds.

- Weighted Min $Sat(\Gamma)$ is FPT.
- **2** Min Sat(Γ) is FPT, but Weighted Min Sat(Γ) is W[1]-hard.
- MIN SAT(Γ) is W[1]-hard.

The hard gist of the tractable cases critically relay on the flow-augmentation technique.

Theorem

Let Γ be a finite boolean constraint language. Then parameterize by the number of unsatisfied constraints, one of the following holds.

- Weighted Min $Sat(\Gamma)$ is FPT.
- **2** MIN SAT(Γ) is FPT, but WEIGHTED MIN SAT(Γ) is W[1]-hard.
- **3** MIN SAT(Γ) is W[1]-hard.

The hard gist of the tractable cases critically relay on the flow-augmentation technique.

FPT DICHOTOMY FOR MIN $SAT(\Gamma)$

K. KRATSCH, PILIPCZUK, WAHLSTRÖM 2021,22,23

constraint type			Feasibility in P-time (S'78)	<i>c</i> -approx in FPT-time (BELM'18)	FPT
	0/1-valid		trivially satisfiable		
bijunctive (2CNF)		2 <i>K</i> ₂ -free Gaifman graph		Yes	Yes (even weighted)
		o/w			No
weakly	IHS-B	2 <i>K</i> ₂ -free arrow graph	Yes		Yes
neg/pos (horn/ dual horn)		o/w			No
	, o/w			No	No
affine			.10		
o/w			No		

ℓ -Chain Sat

 $\bullet\,$ Input: a formula Φ as a set of constraints of the following form.

•
$$(x_1 \rightarrow x_2) \land (x_2 \rightarrow x_3) \land \cdots (x_{\ell-1} \rightarrow x_\ell),$$

• or unary clauses, i.e. (x) or $(\neg x)$

each constraint C has weight $\omega(C)$. Two integers k and W.

Task: find a truth assignment V(Φ) → {1,0} violating at most k constraints of weight at most W.

$$\Phi = \bigwedge_{i=1}^{4} (x_i) \land \bigwedge_{i=1}^{4} (\neg y_i) \land \bigwedge_{i=1}^{4} C_i,$$
$$C_i = (x_i \to w_i) \land (w_i \to y_i) \land (y_i \to w_{i+1})$$

ℓ -Chain Sat

 $\bullet\,$ Input: a formula Φ as a set of constraints of the following form.

•
$$(x_1 \rightarrow x_2) \land (x_2 \rightarrow x_3) \land \cdots (x_{\ell-1} \rightarrow x_\ell),$$

• or unary clauses, i.e. (x) or $(\neg x)$

each constraint C has weight $\omega(C)$. Two integers k and W.

• Task: find a truth assignment $V(\Phi) \rightarrow \{1, 0\}$ violating at most k constraints of weight at most W.

$$\Phi = \bigwedge_{i=1}^{4} (x_i) \land \bigwedge_{i=1}^{4} (\neg y_i) \land \bigwedge_{i=1}^{4} C_i,$$

$$C_i = (x_i \to w_i) \land (w_i \to y_i) \land (y_i \to w_{i+1})$$

ℓ -Chain Sat

 $\bullet\,$ Input: a formula Φ as a set of constraints of the following form.

•
$$(x_1 \rightarrow x_2) \land (x_2 \rightarrow x_3) \land \cdots (x_{\ell-1} \rightarrow x_\ell),$$

• or unary clauses, i.e. (x) or $(\neg x)$

each constraint C has weight $\omega(C)$. Two integers k and W.

• Task: find a truth assignment $V(\Phi) \rightarrow \{1, 0\}$ violating at most k constraints of weight at most W.

$$\begin{split} \Phi &= \bigwedge_{i=1}^4 (x_i) \land \bigwedge_{i=1}^4 (\neg y_i) \land \bigwedge_{i=1}^4 C_i, \\ C_i &= (x_i \to w_i) \land (w_i \to y_i) \land (y_i \to w_{i+1}) \end{split}$$

ℓ -Chain Sat

 $\bullet\,$ Input: a formula Φ as a set of constraints of the following form.

•
$$(x_1 \rightarrow x_2) \land (x_2 \rightarrow x_3) \land \cdots (x_{\ell-1} \rightarrow x_\ell),$$

• or unary clauses, i.e. (x) or $(\neg x)$

each constraint C has weight $\omega(C)$. Two integers k and W.

• Task: find a truth assignment $V(\Phi) \rightarrow \{1, 0\}$ violating at most k constraints of weight at most W.

$$\begin{split} \Phi &= \bigwedge_{i=1}^4 (x_i) \land \bigwedge_{i=1}^4 (\neg y_i) \land \bigwedge_{i=1}^4 C_i, \\ C_i &= (x_i \to w_i) \land (w_i \to y_i) \land (y_i \to w_{i+1}) \end{split}$$

ℓ -Chain Sat

 $\bullet\,$ Input: a formula Φ as a set of constraints of the following form.

•
$$(x_1 \rightarrow x_2) \land (x_2 \rightarrow x_3) \land \cdots (x_{\ell-1} \rightarrow x_\ell),$$

• or unary clauses, i.e. (x) or $(\neg x)$

each constraint C has weight $\omega(C)$. Two integers k and W.

• Task: find a truth assignment $V(\Phi) \rightarrow \{1, 0\}$ violating at most k constraints of weight at most W.

$$\begin{split} \Phi &= \bigwedge_{i=1}^4 (x_i) \land \bigwedge_{i=1}^4 (\neg y_i) \land \bigwedge_{i=1}^4 C_i, \\ C_i &= (x_i \to w_i) \land (w_i \to y_i) \land (y_i \to w_{i+1}) \end{split}$$

FLOW AUGMENTATION THEOREM (SIMPLE VERSION)

There exists a polynomial-time algorithm that, given

• a directed graph G with $s, t \in V(G)$ and an integer k,

returns

• a set $A \subseteq V(G) \times V(G)$

such that for every minimal st-cut Z of size at most k, with probability $2^{-\mathcal{O}(k^4 \log k)}$

• Z is an st-cut of minimum cardinality in G + A.

When a sought solution Z is a minimal st-cut, then FLOW-AUGMENTATION lifts st-mincut size to match |Z| by adding (unbreakable) arcs in a way not messing the solution, with high enough probability.

FLOW AUGMENTATION THEOREM (SIMPLE VERSION)

There exists a polynomial-time algorithm that, given

• a directed graph G with $s, t \in V(G)$ and an integer k,

returns

• a set $A \subseteq V(G) \times V(G)$

such that for every minimal st-cut Z of size at most k, with probability $2^{-\mathcal{O}(k^4 \log k)}$

• Z is an st-cut of minimum cardinality in G + A.

When a sought solution Z is a minimal *st*-cut, then FLOW-AUGMENTATION lifts *st*-mincut size to match |Z| by adding (unbreakable) arcs in a way not messing the solution, with high enough probability.

- Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise disjoint path of length at most b with weights ω : B → Z₊, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup B$ violating at most k bundles of weight at most W.

1. Invoke flow-augmentation; now Z is an st-mincut. Note $\lambda(s, t) \leq bk$

- Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise disjoint path of length at most b with weights ω : B → Z₊, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup B$ violating at most k bundles of weight at most W.

2. Guess how violated bundles overlay the flow paths.

- Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise disjoint path of length at most b with weights ω : B → Z₊, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup B$ violating at most k bundles of weight at most W.

3. Consider (only) the bundles conforming the guess.

- Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise disjoint path of length at most b with weights ω : B → Z₊, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup B$ violating at most k bundles of weight at most W.

4. A bundle *crossed* by another bundle cannot be violated.

- Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise disjoint path of length at most b with weights ω : B → Z₊, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup B$ violating at most k bundles of weight at most W.

5. Bundles are linearly ordered.

- Input: a directed graph G = (V, E) with s, t, a collection B (bundles) of pairwise disjoint path of length at most b with weights ω : B → Z₊, integers k and W.
- Task: find a minimal st-cut $Z \subseteq \bigcup B$ violating at most k bundles of weight at most W.

6. *Compress* the bundles, obtain (Weighted) *st*-MINCUT instance.

- $2K_2$ -freeness allows one to use a similar argument in the more general cases.
- The presence of 2K₂ leads to a reduction in the spirit of the previous one (k-CLIQUE to MIN SAT({=,0,1, DOUBLE EQUALITY}).
- Flow-augmentation looks like the missing tool in directed graph separation problems.
- It closed some dichotomies and long-standing open problems.
- Key open problemArgh...it's closed recently by George Osipov and Marcin Pilipczuk: SYMMETRIC MULTICUT. Directed graph G, unordered pairs of terminals T, integer k. Delete k edges so that for every st ∈ T, s and t are not in the same strong component.