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bounded degree [Secese, 1996]

locally bounded treewidth [Frick & Grohe, 2001]

excluding a minor [Flum & Grohe, 2001]

locally excluding a minor [Dawar, Grohe, & Kreutzer, 2007]

bounded expansion [Dvorik, Kral, & Thomas, 2011]

nowhere dense [Grohe, Kreutzer, & Siebertz, 2017]

bounded twinwidth [Bonnet, Kim, Thomassé, & Watrigant, 2022]

structurally bounded degree [Gajarsky, Hlinény, Lokshtanov, Obdrzalek, & Ramanujan, 2016]

structura/ly bounded expansion [Gajarsky, Kreutzer, NeSet¥il, Ossona de Mendez, Pilipczuk, Siebertz, & Toruiczyk, 2018]
structurally nowhere dense [Dreier, Mihlmann, Siebertz, 2023]

structurally bounded local cliquewidth [Bonnet, Dreier, Gajarsky, Kreutzer, Mahlmann, Simon, & Toruriczyk, 2022]
monadically stable [Dreier, Eleftheriadis, Mahlmann, McCarty, Pilipczuk, Toruficzyk, 2023]
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Model checking first-order formulas (on graphs)

FO MoDEL CHECKING FPT: solvable in time f(|¢|,C) - |G]€,
Input: a first-order formula ¢ and a graph G for some function f and ¢ > 1.
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The three components of the model checking question
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What is the (parametric) dependence on |p| in the running time of a model checking algorithm?

_2|¥’\
22 |G|, for some constant ¢ > 1,

height g(|¢|)
even for the class T of trees. [Frick & Grohe, 2002]
Task: Improve the (parametric) dependence on || in the running time.
FO MoDEL CHECKING (ON C)

Input: a first-order formula ¢ and a graph G € C
Question: G satisfies ¢?

:hc

_2\4’\
Elementarily-FPT: running time 2% |Gl¢
S—

height g(hc)
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The map of the elementarily-FPT universe

[Lampis, 2023]

[Frick & Grohe, 2002]

[Gajarsky & Hlineny, 2015]
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What is bounded tree rank?

o The class T of all trees has unbounded tree rank.

o T4 has tree rank d.

o If C excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.
o C has bounded degree if and only if C has tree rank 1.

o The class C of graphs of pathwidth d has tree rank exactly d + 1.
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Is this just excluding a tree as a topological minor?
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Every tree as a topological minor and tree rank 2
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Fact: A graph of minimum degree ¢ contains every tree on ¢ vertices as a subgraph.

bounded tree rank = bounded degeneracy
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T,f := tree of depth d and branching k.

Tree rank of C:
the least number d € N such that
for every r € N there is k € N s.t. no graph in C contains T,f“rl as an r-shallow topological minor.
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T,f := tree of depth d and branching k.

Tree rank of C:
the least number d € N such that
for every r € N there is k € N s.t. no graph in C contains T,f“rl as an r-shallow topological minor.

Tree rank of C:

the least number d € N such that there is a function f : N — N such that

for every r € N, no graph in C contains de(f)l as an r-shallow topological minor.

Elementary tree rank of C:

the least number d € N such that there is an elementary function ¥ : N — N such that

for every r € N, no graph in C contains T;’(f)l as an r-shallow topological minor.

9/16



Elementary FO model checking on sparse classes

10/16



Elementary FO model checking on sparse classes

Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Toruriczyk, 2023]
If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C. J

10/16



Elementary FO model checking on sparse classes

Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Toruriczyk, 2023]
If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C. J

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.J

10/16



Elementary FO model checking on sparse classes

Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Toruriczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C. J
Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.J

Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Torunczyk, 2023]

Assume AW[*]#FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

10/16



Elementary FO model checking on sparse classes

Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Toruriczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C. J
Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.J

Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Torunczyk, 2023]

Assume AW[*]#FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

10/16



Collapse of FO alternation hierarchy

11/16



Collapse of FO alternation hierarchy

Lemma

Let C be a graph class of tree rank d.
Every formula ¢ is equivalent on C to a formula ¢ of alternation rank 3d.

Also, if C has elementary tree rank d, then || is elementary in |¢|.

11/16



Collapse of FO alternation hierarchy

Lemma

Let C be a graph class of tree rank d.
Every formula ¢ is equivalent on C to a formula ¢ of alternation rank 3d.

Also, if C has elementary tree rank d, then || is elementary in |¢|.

Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Torunczyk, 2023]
Let C be a monotone graph class. The following are equivalent:
o C has bounded tree rank

o 3k € N such that for every formula ¢, there is an equivalent (on C) formula ¢ of alternation rank k.
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Structural characterization of bounded tree rank

m-batched splitter game of radius r:
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Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every G € C.

(2) = (1) How can the Localiser survive d + 1 rounds in Td+1 (for a slightly larger mdzus}g
1) = (2) small # of “candidate roots” for T) as an r—shallow topological minor in B
ki G
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How to do elementary FO model checking?

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same “constant alternation rank”-type, then they have the same g-type.

&

FO model checking algorithm on bounded expansion classes [Dvorak, Kral, & Thomas, 2014]

This algorithm is elementarily-FPT for sentences of constant alternation rank.
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Conclusion

Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Toruriczyk, 2023]
If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C. J

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.J

Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Torunczyk, 2023]

Assume AW[*]£FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.
Elementary query enumeration, query answering, or counting answers to queries?
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A graph class C is weakly sparse if it avoids some biclique as a subgraph.
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Theorem [Gajarsky, Pilipczuk, Sokotowski, S., Torunczyk, 2023]
Let C be a weakly sparse graph class. C has bounded tree rank <= C has bounded rank. J
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