Elementary first-order model checking for sparse graphs

Jakub Gajarský Michał Pilipczuk Marek Sokołowski *Giannos Stamoulis* Szymon Toruńczyk

Institute of Informatics, University of Warsaw, Poland

16.XI.2023 2nd Workshop on Logic, Graphs, and Algorithms

FO MODEL CHECKING Input: a first-order formula φ and a graph GQuestion: G satisfies φ ?

FO MODEL CHECKING Input: a first-order formula φ and a graph GQuestion: G satisfies φ ?

On general graphs, the problem is AW[*].

FO MODEL CHECKING Input: a first-order formula φ and a graph GQuestion: G satisfies φ ?

On general graphs, the problem is AW[*].

bounded degree [Seese, 1996] locally bounded treewidth [Frick & Grohe, 2001] excluding a minor [Flum & Grohe, 2001] locally excluding a minor [Dawar, Grohe, & Kreutzer, 2007] bounded expansion [Dvořák, Kráľ, & Thomas, 2011] nowhere dense [Grohe, Kreutzer, & Siebertz, 2017] bounded twinwidth [Bonnet, Kim, Thomassé, & Watrigant, 2022] structurally bounded degree [Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016] structurally bounded expansion [Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018] structurally nowhere dense [Dreier, Mählmann, Siebertz, 2023] structurally bounded local cliquewidth [Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022] monadically stable [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

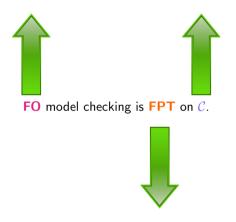
FO MODEL CHECKING Input: a first-order formula φ and a graph GQuestion: G satisfies φ ?

FPT: solvable in time $f(|\varphi|, C) \cdot |G|^c$, for some function f and $c \ge 1$.

On general graphs, the problem is AW[*].

bounded degree [Seese, 1996] locally bounded treewidth [Frick & Grohe, 2001] excluding a minor [Flum & Grohe, 2001] locally excluding a minor [Dawar, Grohe, & Kreutzer, 2007] bounded expansion [Dvořák, Kráľ, & Thomas, 2011] nowhere dense [Grohe, Kreutzer, & Siebertz, 2017] bounded twinwidth [Bonnet, Kim, Thomassé, & Watrigant, 2022] structurally bounded degree [Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016] structurally bounded expansion [Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018] structurally nowhere dense [Dreier, Mählmann, Siebertz, 2023] structurally bounded local cliquewidth [Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022] monadically stable [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

FO model checking is **FPT** on C.



What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$\underbrace{2^{2^{|\varphi|}}}_{\text{height }g(|\varphi|)} \cdot |G|^c, ext{ for some constant } c \geq 1,$$

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\cdot}} g(|\varphi|) \cdot |G|^c$$
, for some constant $c \ge 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\frac{c^{2^{|\varphi|}}}{c}}} \cdot |G|^{c}$$
, for some constant $c \geq 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

```
FO MODEL CHECKING (ON C)
Input: a first-order formula \varphi and a graph G \in C
Question: G satisfies \varphi?
```

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\frac{c^{2^{|\varphi|}}}{c}}} \cdot |G|^{c}$$
, for some constant $c \geq 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

```
FO MODEL CHECKING (ON C)
Input: a first-order formula \varphi and a graph G \in C
Question: G satisfies \varphi?
```

Meta-parameter: $h_{\mathcal{C}}$

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\frac{c^{2^{|\varphi|}}}{c}}} \cdot |G|^{c}$$
, for some constant $c \geq 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

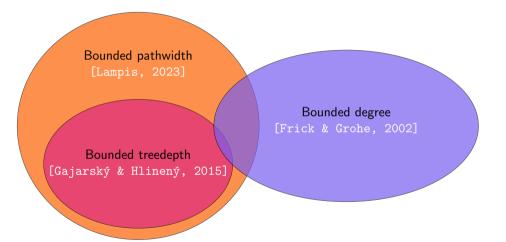
Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

```
FO MODEL CHECKING (ON C)
Input: a first-order formula \varphi and a graph G \in C
Question: G satisfies \varphi?
```

Meta-parameter: $h_{\mathcal{C}}$

Elementarily-FPT: running time
$$2^{2^{-2^{|\varphi|}}}_{\text{height } g(h_C)} \cdot |G|^c$$

The map of the elementarily-FPT universe



The map of the elementarily-FPT universe

Bounded pathwidth [Lampis, 2023]

Bounded degree [Frick & Grohe, 2002]

Bounded treedepth [Gajarský & Hlinený, 2015] Tree rank of a class

 $\mathcal{T}_d :=$ class of all trees of depth d.

Tree rank of a class

```
\mathcal{T}_d := \text{class of all trees of depth } d.
```


The *tree rank* of a graph class C is defined as

 $\max\{d \in \mathbb{N} \mid \exists r \in \mathbb{N} : \mathcal{T}_d \subseteq \mathsf{TopMinors}_r(\mathcal{C})\}.$

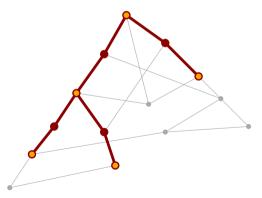
* TopMinors_r(C) := { $H \mid \exists G \in C : H$ is an *r*-shallow topological minor of G}

Tree rank of a class

```
\mathcal{T}_d := class of all trees of depth d.
```

The *tree rank* of a graph class C is defined as

 $\max\{d \in \mathbb{N} \mid \exists r \in \mathbb{N} : \mathcal{T}_d \subseteq \mathsf{TopMinors}_r(\mathcal{C})\}.$



* TopMinors_r(C) := { $H \mid \exists G \in C : H$ is an *r*-shallow topological minor of G}

has depth 2.

What is bounded tree rank?

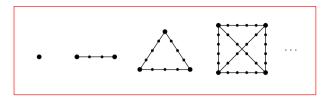
 \bullet The class ${\cal T}$ of all trees has unbounded tree rank.

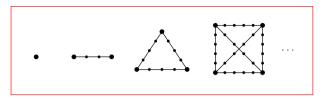
- $\bullet\,$ The class ${\cal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.

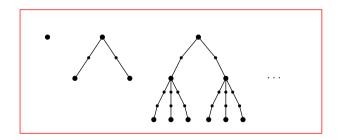
- $\bullet\,$ The class ${\cal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If C excludes some tree T as a *topological minor*, it has tree rank smaller than the depth of T.

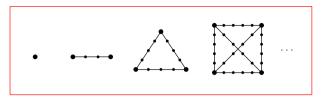
- $\bullet\,$ The class ${\cal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If C excludes some tree T as a *topological minor*, it has tree rank smaller than the depth of T.
- $\bullet \ \mathcal{C}$ has bounded degree if and only if \mathcal{C} has tree rank 1.

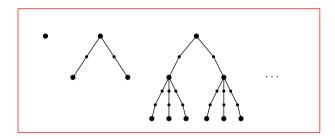
- $\bullet\,$ The class ${\cal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If C excludes some tree T as a *topological minor*, it has tree rank smaller than the depth of T.
- $\bullet \ \mathcal{C}$ has bounded degree if and only if \mathcal{C} has tree rank 1.
- The class C of graphs of pathwidth d has tree rank exactly d + 1.



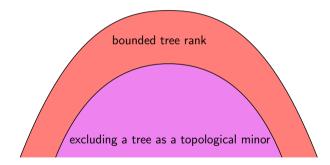


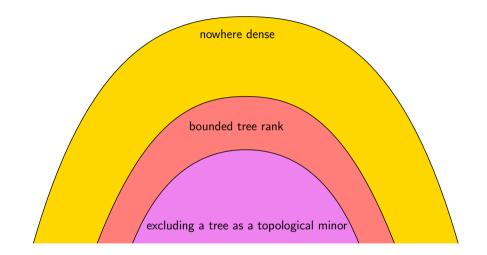


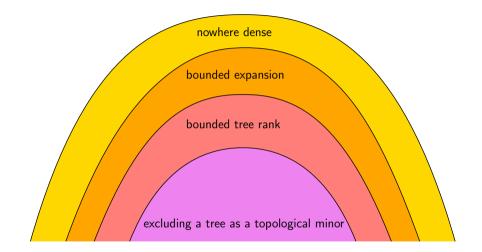


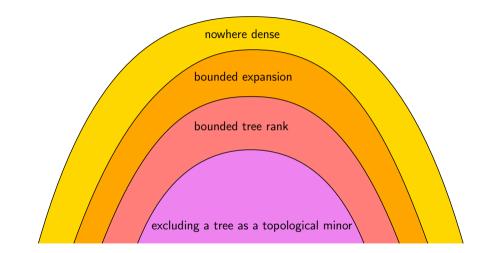


Every tree as a topological minor and tree rank 2









Fact: A graph of minimum degree δ contains every tree on δ vertices as a subgraph. bounded tree rank \implies bounded degeneracy $T_k^d :=$ tree of depth d and branching k.

Tree rank of C: the least number $d \in \mathbb{N}$ such that for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. **no graph** in C contains T_k^{d+1} as an *r*-shallow topological minor. $T_k^d :=$ tree of depth d and branching k.

```
Tree rank of C:
the least number d \in \mathbb{N} such that
for every r \in \mathbb{N} there is k \in \mathbb{N} s.t. no graph in C contains T_k^{d+1} as an r-shallow topological minor.
```

Tree rank of C: the least number $d \in \mathbb{N}$ such that there is a function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, **no graph** in C contains $T_{f(r)}^{d+1}$ as an *r*-shallow topological minor. $T_k^d :=$ tree of depth d and branching k.

```
Tree rank of C:
the least number d \in \mathbb{N} such that
for every r \in \mathbb{N} there is k \in \mathbb{N} s.t. no graph in C contains T_k^{d+1} as an r-shallow topological minor.
```

Tree rank of C: the least number $d \in \mathbb{N}$ such that there is a function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, **no graph** in C contains $T_{f(r)}^{d+1}$ as an *r*-shallow topological minor.

Elementary tree rank of C: the least number $d \in \mathbb{N}$ such that there is an elementary function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, no graph in C contains $T_{f(r)}^{d+1}$ as an *r*-shallow topological minor.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Assume AW[*] \neq FPT. Let C be a monotone graph class. If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Assume AW[*] \neq FPT. Let C be a monotone graph class. If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

Collapse of FO alternation hierarchy

Collapse of FO alternation hierarchy

Lemma

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank 3d.

Also, if C has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Collapse of FO alternation hierarchy

Lemma

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank 3d.

Also, if C has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Let C be a monotone graph class. The following are equivalent:

- \mathcal{C} has bounded tree rank
- $\exists k \in \mathbb{N}$ such that for every formula φ , there is an equivalent (on \mathcal{C}) formula ψ of alternation rank k.

m-batched splitter game of radius r:

m-batched splitter game of radius r:

Two players: Splitter and Localizer.

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

• Localizer picks a $v \in V(G)$ and restricts the arena to $G' := B_G^r(v)$.

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

- Localizer picks a $v \in V(G)$ and restricts the arena to $G' := B_G^r(v)$.
- Splitter deletes at most m vertices from G' and the game continues on the obtained graph.

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

- Localizer picks a $v \in V(G)$ and restricts the arena to $G' := B_G^r(v)$.
- Splitter deletes at most m vertices from G' and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

- Localizer picks a $v \in V(G)$ and restricts the arena to $G' := B_G^r(v)$.
- Splitter deletes at most m vertices from G' and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in C$.

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

- Localizer picks a $v \in V(G)$ and restricts the arena to $G' := B_G^r(v)$.
- Splitter deletes at most m vertices from G' and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in \mathcal{C}$.

(2) \implies (1) How can the Localiser survive d+1 rounds in $T_{f(r)}^{d+1}$ (for a slightly larger radius)?

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

- Localizer picks a $v \in V(G)$ and restricts the arena to $G' := B_G^r(v)$.
- Splitter deletes at most m vertices from G' and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in C$.

(2) \implies (1) How can the Localiser survive d + 1 rounds in $T_{f(r)}^{d+1}$ (for a slightly larger radius)? (1) \implies (2) small # of "candidate roots" for $T_{k_i}^i$ as an r-shallow topological minor in $B_G^r(v)$.

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same "constant alternation rank"-type, then they have the same q-type.

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same "constant alternation rank"-type, then they have the same q-type.

&

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same "constant alternation rank"-type, then they have the same q-type.

&

FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014]

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same "constant alternation rank"-type, then they have the same q-type.

&

FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014]

This algorithm is elementarily-FPT for sentences of *constant* alternation rank.

Conclusion

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If $\mathcal C$ excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on $\mathcal C$.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Assume AW[*] \neq FPT. Let C be a monotone graph class. If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

Elementary query enumeration, query answering, or counting answers to queries?

Tree rank of C: the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(C)$.

Tree rank of C: the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(C)$.

Rank of C: the largest number $d \in \mathbb{N}$ such that C transduces \mathcal{T}_d .

Tree rank of C: the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(C)$.

Rank of C: the largest number $d \in \mathbb{N}$ such that C transduces \mathcal{T}_d .

Conjecture:

A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Tree rank of C: the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(\mathcal{C})$.

Rank of C: the largest number $d \in \mathbb{N}$ such that C transduces \mathcal{T}_d .

Conjecture:

A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:

Let C be a hereditary graph class. C has bounded rank $\iff \exists k \in \mathbb{N}$ such that every φ is equivalent on C to a ψ of alternation rank k. A graph class $\mathcal C$ is weakly sparse if it avoids some biclique as a subgraph.

A graph class $\mathcal C$ is weakly sparse if it avoids some biclique as a subgraph.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Let C be a weakly sparse graph class. C has bounded tree rank $\iff C$ has bounded rank.

A graph class $\mathcal C$ is weakly sparse if it avoids some biclique as a subgraph.

Theorem [Gajarský, Pilipczuk, Sokołowski, S., Toruńczyk, 2023]

Let C be a weakly sparse graph class. C has bounded tree rank $\iff C$ has bounded rank.

Conjecture:

A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:

Let C be a hereditary graph class.

 \mathcal{C} has bounded rank $\iff \exists k \in \mathbb{N}$ such that every φ is equivalent on \mathcal{C} to a ψ of alternation rank k.