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Model checking first-order formulas (on graphs)

FO Model Checking
Input: a first-order formula φ and a graph G
Question: G satisfies φ?

FPT: solvable in time f (|φ|, C) · |G |c ,
for some function f and c ≥ 1.

On general graphs, the problem is AW[*].

bounded degree [Seese, 1996]

locally bounded treewidth [Frick & Grohe, 2001]

excluding a minor [Flum & Grohe, 2001]

locally excluding a minor [Dawar, Grohe, & Kreutzer, 2007]

bounded expansion [Dvǒrák, Krá̌l, & Thomas, 2011]

nowhere dense [Grohe, Kreutzer, & Siebertz, 2017]

bounded twinwidth [Bonnet, Kim, Thomassé, & Watrigant, 2022]

structurally bounded degree [Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]

structurally bounded expansion [Gajarský, Kreutzer, Nešeťril, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]

structurally nowhere dense [Dreier, Mählmann, Siebertz, 2023]

structurally bounded local cliquewidth [Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022]

monadically stable [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]
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The three components of the model checking question

FO model checking is FPT on C.
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“Elementarily-FPT” programme

What is the (parametric) dependence on |φ| in the running time of a model checking algorithm?

22
··
2|φ|︸ ︷︷ ︸

height g(|φ|)

·|G |c , for some constant c ≥ 1,

even for the class T of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on |φ| in the running time.

FO Model Checking (on C)
Input: a first-order formula φ and a graph G ∈ C
Question: G satisfies φ?

Meta-parameter: hC

Elementarily-FPT: running time 22
··
2|φ|︸ ︷︷ ︸

height g(hC)

·|G |c
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The map of the elementarily-FPT universe

Bounded pathwidth
[Lampis, 2023]

Bounded treedepth
[Gajarský & Hlinený, 2015]

Bounded degree
[Frick & Grohe, 2002]

?
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Tree rank of a class

Td := class of all trees of depth d . has depth 2.

The tree rank of a graph class C is defined as

max{d ∈ N | ∃r ∈ N : Td ⊆ TopMinorsr (C)}.

∗ TopMinorsr (C) := {H | ∃G ∈ C : H is an r -shallow topological minor of G}
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What is bounded tree rank?

The class T of all trees has unbounded tree rank.

Td has tree rank d .

If C excludes some tree T as a topological minor, it has tree rank smaller than the depth of T .

C has bounded degree if and only if C has tree rank 1.

The class C of graphs of pathwidth d has tree rank exactly d + 1.
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Is this just excluding a tree as a topological minor?

. . .

. . .

Every tree as a topological minor and tree rank 2

7 / 16



Is this just excluding a tree as a topological minor?

. . .

. . .

Every tree as a topological minor and tree rank 2

7 / 16



Is this just excluding a tree as a topological minor?

. . .

. . .

Every tree as a topological minor and tree rank 2

7 / 16



Is this just excluding a tree as a topological minor?

. . .

. . .

Every tree as a topological minor and tree rank 2

7 / 16



excluding a tree as a topological minor

bounded tree rank

Fact: A graph of minimum degree δ contains every tree on δ vertices as a subgraph.

bounded tree rank =⇒ bounded degeneracy
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bounded expansion
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T d
k := tree of depth d and branching k .

Tree rank of C:
the least number d ∈ N such that
for every r ∈ N there is k ∈ N s.t. no graph in C contains T d+1

k as an r -shallow topological minor.

Tree rank of C:
the least number d ∈ N such that there is a function f : N → N such that
for every r ∈ N, no graph in C contains T d+1

f (r) as an r -shallow topological minor.

Elementary tree rank of C:
the least number d ∈ N such that there is an elementary function f : N → N such that

for every r ∈ N, no graph in C contains T d+1
f (r) as an r -shallow topological minor.
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Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Soko lowski, S., Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Soko lowski, S., Toruńczyk, 2023]

Assume AW[*] ̸=FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.
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Assume AW[*] ̸=FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

10 / 16



Elementary FO model checking on sparse classes
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Collapse of FO alternation hierarchy

Lemma

Let C be a graph class of tree rank d .
Every formula φ is equivalent on C to a formula ψ of alternation rank 3d .

Also, if C has elementary tree rank d , then |ψ| is elementary in |φ|.

Theorem [Gajarský, Pilipczuk, Soko lowski, S., Toruńczyk, 2023]

Let C be a monotone graph class. The following are equivalent:

C has bounded tree rank

∃k ∈ N such that for every formula φ, there is an equivalent (on C) formula ψ of alternation rank k.
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Structural characterization of bounded tree rank

m-batched splitter game of radius r :

Two players: Splitter and Localizer. In each round of the game:

Localizer picks a v ∈ V (G ) and restricts the arena to G ′ := B r
G (v).

Splitter deletes at most m vertices from G ′ and the game continues on the obtained graph.

If no vertices remain, Splitter wins the game.

Lemma

Let d ∈ N. The following conditions are equivalent:

(1) C has (elementary) tree rank d ,

(2) There is an (elementary) function f : N → N such that for every r ∈ N
Splitter wins the f (r)-batched splitter game of radius r in at most d rounds, on every G ∈ C.

(2) =⇒ (1) How can the Localiser survive d +1 rounds in T d+1
f (r) (for a slightly larger radius)?

(1) =⇒ (2) small # of “candidate roots” for T i
ki
as an r -shallow topological minor in B r

G (v).
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How to do elementary FO model checking?

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same “constant alternation rank”-type, then they have the same q-type.

&
FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014]

This algorithm is elementarily-FPT for sentences of constant alternation rank.
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This algorithm is elementarily-FPT for sentences of constant alternation rank.

13 / 16



How to do elementary FO model checking?

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same “constant alternation rank”-type, then they have the same q-type.

&
FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014]
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Conclusion

Theorem [Gajarský, Pilipczuk, Soko lowski, S., Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Soko lowski, S., Toruńczyk, 2023]

Assume AW[*] ̸=FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

Elementary query enumeration, query answering, or counting answers to queries?
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Towards dense graph classes

Tree rank of C:
the largest number d ∈ N such that there is an r ∈ N such that Td ⊆ TopMinorsr (C).

Rank of C:
the largest number d ∈ N such that C transduces Td .

Conjecture:
A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:
Let C be a hereditary graph class.
C has bounded rank ⇐⇒ ∃k ∈ N such that every φ is equivalent on C to a ψ of alternation rank k.
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A graph class C is weakly sparse if it avoids some biclique as a subgraph.
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