Approximate Evaluation of Quantitative Second Order Queries

Jan Dreier, Robert Ganian, Thekla Hamm

Informatics ac III ALGORITHMS AND COMPLEXITY GROUP

Motivation

- Many **NP**-hard problems are known to be fixedparameter tractable parameterized by treewidth
 - Minimum Vertex Cover, Maximum Independent Set, Hamiltonian Cycle, 3-Coloring...
 - "Standard" dynamic programming
- But what if we want to show that some new problem is fixed-parameter tractable w.r.t. treewidth?
 - Solve it via dynamic programming, or...
 - use an algorithmic meta-theorem: Courcelle's Theorem

Courcelle's Theorem

Given a LinCMSO₂ query (ϕ , t) and a graph G, we can compute an answer to (ϕ , t) on G in time at most f(ϕ ,tw(G)) $\cdot |V(G)|$ where f is some computable function and tw(G) is the treewidth of G

- Why is this useful?
 - Instead of doing dynamic programming, we just need to encode problems as bounded-size "LinCMSO₂ queries"
 - Can be much, much easier

Courcelle's Theorem

Given a LinCMSO₂ query (ϕ , t) and a graph G, we can compute an answer to (ϕ , t) on G in time at most f(ϕ ,tw(G)) $\cdot |V(G)|$ where f is some computable function and tw(G) is the treewidth of G

- **G** can be edge- and vertex-colored and weighted
- φ is a formula in CMSO₂ logic with some (optional) free vertex and/or edge set variables
 - Can quantify over single and set vertex/edge variables
 - Can count modulo some fixed constant
 - Can use usual logical connectives, query incidence etc.
- t is some linear function over the free variables in ϕ
- Answer: assignment which maximizes t or "No"

Courcelle's Theorem for Cliquewidth

Given a LinCMSO₁ query (ϕ , t) and a graph G, we can compute an answer to (ϕ , t) on G in time at most $f(\phi, cw(G)) \cdot |V(G)|^2$ where f is some computable function and cw(G) is the cliquewidth of G

- **G** can be edge-and vertex-colored and weighted
- φ is a formula in MSO₁ logic with some (optional) free vertex and/or edge set variables
 - Can quantify over single and set vertex/edge variables
 - Can count modulo some fixed constant
 - Can use usual logical connectives, query incidence etc.
- t is some linear function over the free variables in ϕ
- Answer: assignment which maximizes t or "No"

Our Goal

Courcelle's Theorem(s) = best meta-theorem(s) for
<u>exact</u> fixed-parameter tractability w.r.t. tw and cw

– Not "tight": Vertex Disjoint Paths par. by treewidth

Our Goal

Courcelle's Theorem(s) = best meta-theorem(s) for
<u>exact</u> fixed-parameter tractability w.r.t. tw and cw

But what about <u>approximate</u> fixed-parameter tractability w.r.t. tw and cw?

• Could capture many problems which are not **FPT**, but are **FPT**-approximable w.r.t. tw and cw (Lampis 2014)

Model Problems

- Equitable k-Coloring / k-Connected Partition
 - Partition graph into k equal-size parts
- Bounded-Degree
 - Delete a smalles •
- What are we approximating?
- Not only optimization problems
- Capacitated Vert

Cover/dominate vertices w.r.t. given capacity bounds

- Graph Motif
 - Find a connected subgraph in a vertex-colored graph where each color occurs precisely a given number of times

Model Problems

- Equitable k-Coloring / k-Connected Partition
 - Partition graph into k equal-size parts
- Bounded-Degree
 - Delete a smalles •
- Capacitated Vert "Size constraints"

What are we approximating?

Not only optimization problems "Size constraints"

Cover/dominate vertices w.r.t. given capacity bounds

- Graph Motif
 - Find a connected subgraph in a vertex-colored graph where each color occurs precisely a given number of times

First Step: Enriching the Logic

- Goal: extend LinCMSO by allowing it to "count"
- But can't LinCMSO already count?
 - It can count modulo some fixed constant
 - Useful for, e.g., vertex minor detection. Not here.
- How can we let LinCMSO count?

– Well, it already counts the optimization target t:

$$t(X_1 \dots X_\ell) := a + \sum_{1 \le i, j \le \ell} a_{ij} w_i(X_j),$$

- a, a_{ii} are (large input-specified) numbers, w_i is sum of weights
- What if we add atoms that can compare these? CMSO[S]

CMSO[≶] on Model Problems

- Equitable k-Coloring / k-Connected Partition
 - Partition graph into k equal-size parts
- Bounded-Degree Vertex Deletion
 - Delete a smallest vertex set to achieve a given max degree
- Capacitated Vertex Cover / Dominating Set
 - Cover/dominate vertices w.r.t. given capacity bounds
- Graph Motif 🛛 😪
 - Find a connected subgraph in a vertex-colored graph where each color occurs precisely a given number of times

... But It Is Too Powerful

• W[1]-hard to approximate for any constant ratio α:

 $\forall Y_1 \forall Y_2 (|Y_1| > |Y_2| \cdot \alpha^2 \lor |Y_2| > |Y_1| \cdot \alpha^2 \lor \psi(XY_1Y_2))$

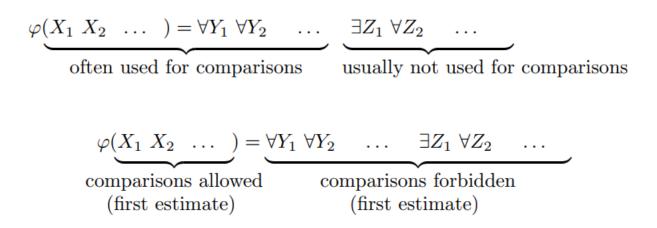
- on vertex-colored paths, parameterized by formula size

• **NP**-hard to find exact answers for:

 $\psi_1(X) \land \forall Y_1 \forall Y_2 \forall Y_3 \forall Y_4 \big((|Y_1| \neq |Y_2|) \lor (|Y_3| = |Y_4|) \lor \psi_2(XY_3Y_4) \big),$

– on vertex-colored bounded-depth trees

Taking a Step Back



- Restricting comparisons only to the first quantifier group would only capture some problems
- Restricting comparisons to the first two quantifier groups is too much
- Solution: only limited comparisons in the 2nd group

(Blocked) VCMSO Formulas

- Block: CMSO[≶] formula with restricted comparisons:
 - Only non-negative coefficients and negation-normalized
 - At most one weight comparison has a weight term which involves variables in the 1st two quantifier groups
 - All other weight comparisons are exclusively for the first quantifier group

Meta-Theorem for Treewidth

What is this?

Theorem 11 (Approximation of $\Theta CMSO_2$). Given a $\Theta CMSO_2$ -query (φ, \hat{t}) , an accuracy $0 < \varepsilon \le 0.5$ and a graph G with matching signature, we can compute a $(1 + \varepsilon)$ -approximate answer to (φ, \hat{t}) on G in time at most

$$\left(\frac{\log(M)}{\varepsilon}\right)^{f_1(|\varphi|, \operatorname{tw}(G))} \cdot |V(G)|^{1.001},$$

useful for exponential numbers encoded in binary

and in particular in time at most

$$\left(\frac{1}{\varepsilon}\right)^{f_2(|\varphi|,\operatorname{tw}(G))} \cdot M^{0.001} \cdot |V(G)|^{1.001}$$

useful for unary-encoded numbers

where f_1 , f_2 are computable functions and M is two plus the highest number that occurs in any weight term of φ or as any weight in G.

Approximate Solutions

- Original constraint: $|X| \leq |Y|$
 - Target value (=optimum): 0, -∞, 50, ...
- Loosened constraint: $|X| \leq (1 + \varepsilon) \cdot |Y|$
 - Optimum could increase but not decrease
- Tightened constraint: $(1 + \varepsilon) \cdot |X| \le |Y|$
 - Optimum could decrease but not increase
- A $(1+\varepsilon)$ -approximate solution contains two solutions:
 - An eager one that is at least as good as the original optimum while satisfying the loosened constraints
 - A conservative one that satisfies the original constraints while being at least as good as the optimum under the tightened constraints

Approximate Solutions

target optimization value

optimum w.r.t tightened constraint	conservative solution	optimum	eager solution	optimum w.r.t loosened constraint
---	--------------------------	---------	-------------------	--

- A $(1+\varepsilon)$ -approximate solution contains two solutions:
 - An eager one that is at least as good as the original optimum while satisfying the loosened constraints
 - A conservative one that satisfies the original constraints while being at least as good as the optimum under the tightened constraints

Meta-Theorem for Cliquewidth

Theorem 10 (Approximation of $\Theta CMSO_1$). Given a $\Theta CMSO_1$ -query (φ, \hat{t}) , an accuracy $0 < \varepsilon \le 0.5$ and a graph G with matching signature, we can compute a $(1 + \varepsilon)$ -approximate answer to (φ, \hat{t}) on G in time at most

$$\left(\frac{\log(M)}{\varepsilon}\right)^{f_1(|\varphi|, \operatorname{cw}(G))} \cdot |V(G)|^2,$$

useful for exponential numbers encoded in binary

and in particular in time at most

$$\left(\frac{1}{\varepsilon}\right)^{f_2(|\varphi|, \mathrm{cw}(G))} \cdot |V(G)|^2 \cdot M^{0.001}$$

useful for unary-encoded numbers

where f_1 , f_2 are computable functions and M is two plus the highest number that occurs in any weight term of φ or as any weight in G.

- Notice that we have a lot of freedom in choosing ε
- What if we set ɛ to be so small that the loosened constraints are integer-equivalent to the original ones?

Exact Meta-Theorem

Theorem 12 (Evaluating Queries Exactly). Given a $\Theta CMSO_1$ -query (or $\Theta CMSO_2$ -query) (φ, \hat{t}) and a graph G with matching signature and cliquewidth (or treewidth) at most k, we can compute an answer to (φ, \hat{t}) on G in time

 $(M + |V(G)|)^{f(|\varphi|,k)}$

where f is some computable function and M is the highest number that occurs in any weight term of φ or as any weight in G.

 Encoding a problem as a ⊘CMSO_{1/2} query yields XPtractability and FPT-time computation of "approximate" (eager/conservative) solutions

Some Examples

- Equitable k-Coloring / k-Connected Partition
 - $\boxtimes CMSO_1$ formula whose size depends on k
 - When parameterizing by treewidth, we can also do:

$$\begin{split} \varphi_{\mathrm{ECP-2}}(X) &:= \Big(\forall Y : (``G[Y] \text{ is not a connected component of } G - X") \lor |Y| \ge \left\lfloor \frac{n}{k} \right\rfloor \Big) \\ &\wedge \Big(\forall Y : (``G[Y] \text{ is not a connected component of } G - X") \lor |Y| \le \left\lceil \frac{n}{k} \right\rceil \Big) \\ &\wedge \Big(\forall Y : (``Y \text{ does not contain precisely one vertex from each} \\ &\quad \text{ connected component of } G - X") \lor |Y| \le k \Big) \\ &\wedge \Big(\forall Y : (``Y \text{ does not contain precisely one vertex from each} \\ &\quad \text{ connected component of } G - X") \lor |Y| \le k \Big), \end{split}$$

where X is an edge set variable, Y is a vertex set variable and n = |V(G)|.

Some Examples

• Equitable k-Coloring / k-Connected Partition

- \forall CMSO₁ formula whose size depends on k

• Bounded-Degree Vertex Deletion

 $\varphi_{\rm BDVD}(X) := \forall A : \left(\neg(``X \cap A = \emptyset'' \land ``A \text{ contains an } A \text{-universal vertex''})\right) \lor |A| \le p+1.$

Graph Motif

 $\varphi_{\rm GM}(X) := \exists X_1, \dots, X_k : (`X \text{ is connected''}) \\ \wedge (`X_1, \dots, X_k \text{ is the partitioning of } X \text{ into colors } 1, \dots, k, \text{ respectively''}) \\ \wedge (\bigwedge_{i \in [k]} |X_i| \le M(i) \land M(i) \le |X_i|).$

Some Examples

- Capacitated Vertex Cover / Capacitated Dom. Set
 - Graph is preprocessed so that we can capture an "assignment" by the formula
- Kidney Exchange
 - Find a maximum-weight collection of vertex-disjoint cycles, each of length at most some given bound p
- Non-graph problems
 - Can capture known dynamic programming approximation algorithms for Subset Sum (incl. multidimensional variant), Knapsack, and other number problems via vertex weights

Last Examples

- Max-Cut and Edge Dominating Set
 - parameterized by cliquewidth
 - i.e., without edge set quantification
 - requires heavy preprocessing of input graph
 - probably harder to encode than to solve directly
 - only works for exact solutions (XP), not approximation
 - ...but still unexpected

Thank you for your attention Here is a "mindmap" for the proof

