Approximate Evaluation of
Quantitative Second Order Queries

Jan Dreier, Robert Ganian, Thekla Hamm

Bl Informatics ac I oo e

Monadically

Stable \

L ad
ol

Motivation

 Many NP-hard problems are known to be fixed-
parameter tractable parameterized by treewidth

— Minimum Vertex Cover, Maximum Independent Set,
Hamiltonian Cycle, 3-Coloring...

— “Standard” dynamic programming
* But what if we want to show that some new problem
is fixed-parameter tractable w.r.t. treewidth?
— Solve it via dynamic programming, or...
— use an algorithmic meta-theorem: Courcelle’s Theorem

Courcelle’s Theorem

Given a LinCMSO, query (¢, t) and a graph G, we can compute an answer to (¢, t) on
G in time at most f(@,tw(G)) - [V(G)|
where fis some computable function and tw(G) is the treewidth of G

 Why is this useful?

— Instead of doing dynamic programming, we just need to
encode problems as bounded-size “LinCMSO, queries”

* Can be much, much easier

Courcelle’s Theorem

S

Given a LinCMSO, query (¢, t) and a graph G, we can compute an answer to (¢, t) o
G in time at most f(@,tw(G)) - [V(G)|
where fis some computable function and tw(G) is the treewidth of G

G can be edge- and vertex-colored and weighted

* @ isaformulain CMSO, logic with some (optional)
free vertex and/or edge set variables
— Can quantify over single and set vertex/edge variables
— Can count modulo some fixed constant
— Can use usual logical connectives, query incidence etc.
* tis some linear function over the free variables in ¢

* Answer: assighment which maximizes t or “No”

Courcelle’s Theorem for Cliquewidth

S

Given a LinCMSO, query (¢, t) and a graph G, we can compute an answer to (@, t) o
G in time at most f(¢,cw(Q)) - |V(G)|?
where fis some computable function and cw(G) is the cliquewidth of G

G can be edge-—and-vertex-colored and weighted
* @isaformulain MSO, logic with some (optional)

free vertex and/eredge-set variables

— Can quantify over single and set vertex/edge variables
— Can count modulo some fixed constant
— Can use usual logical connectives, query incidence etc.

* tis some linear function over the free variables in ¢
* Answer: assighment which maximizes t or “No”

Our Goal

e Courcelle’s Theorem(s) = best meta-theorem(s) for
exact fixed-parameter tractability w.r.t. tw and cw

— Not “tight”: Vertex Disjoint Paths par. by treewidth

Our Goal

e Courcelle’s Theorem(s) = best meta-theorem(s) for
exact fixed-parameter tractability w.r.t. tw and cw

But what about approximate fixed-parameter
tractability w.r.t. tw and cw?

e Could capture many problems which are not FPT, but
are FPT-approximable w.r.t. tw and cw (Lampis 2014)

Model Problems

Equitable k-Coloring / k-Connected Partition
— Partition graph into k equal-size parts

Bounded-Degreel What are we approximating?
— Delete asmallege Not only optimization problems

Capacitated Vert

— Cover/dominate vertices w.r.t. given capacity bounds

Graph Motif

— Find a connected subgraph in a vertex-colored graph where
each color occurs precisely a given number of times

Model Problems

Equitable k-Coloring / k-Connected Partition
— Partition graph into k equal-size parts

Bounded-DegreeI
— Delete a smalleq

Capacitated Vert|*

What are we approximating?
Not only optimization problems
“Size constraints”

— Cover/dominate vertices w.r.t. given capacity bounds

Graph Motif

— Find a connected subgraph in a vertex-colored graph where

each color occurs precisely a given number of times

First Step: Enriching the Logic

* Goal: extend LInCMSO by allowing it to “count”
e But can’t LinCMSO already count?

— It can count modulo some fixed constant

* Useful for, e.g., vertex minor detection. Not here.

e How can we let LInCMSO count?
— Well, it already counts the optimization target t:

tHX:...Xp) —a+Zau

1<i,j<¥
* a, a; are (large input-specified) numbers, w; is sum of weights
* What if we add atoms that can compare these? CMSO[s]

CMSOJ=] on Model Problems

Equitable k-Coloring / k-Connected Partition @)

— Partition graph into k equal-size parts

Bounded-Degree Vertex Deletion (2

— Delete a smallest vertex set to achieve a given max degree
Capacitated Vertex Cover / Dominating Set)

— Cover/dominate vertices w.r.t. given capacity bounds
Graph Motif (2

— Find a connected subgraph in a vertex-colored graph where
each color occurs precisely a given number of times

... But It Is Too Powerful

 WI[1]-hard to approximate for any constant ratio a:

VY]_VYQ(‘YH > |Y2‘ . QQ V |YQ| = ‘Yll . (1"2 \ 'L‘(XYIYQJ)

— on vertex-colored paths, parameterized by formula size

e NP-hard to find exact answers for:

Y1 (X) AVYIVYSVYSVY (([Ya] # [Ya]) V (|Y5] = [Ya]) V 0 (XY5YY)),

— on vertex-colored bounded-depth trees

Taking a Step Back

Xy Xy ...)=V1VYy .. dZ)VZ,
often used for comparisons usually not used for comparisons
Xy Xy ...)=V VY, ... dZ;VZ,
comparisons allowed comparisons forbidden
(first estimate) (first estimate)

Restricting comparisons only to the first quantifier
group would only capture some problems

Restricting comparisons to the first two quantifier

groups is too much 1@)
=

Solution: only limited comparisons in the 2" group

* |V

(Blocked) [v/CMSO Formulas

CMSO, ,, logic contains all formulas that are built

from blocks via 3, v, A

* Block: CMSO|[s] formula with restricted comparisons:

— Only non-negative coefficients and negation-normalized

— At most one weight comparison has a weight term

which involves variables in the 15t two quantifier groups

— All other weight comparisons are exclusively for the first

guantifier group

Meta-Theorem for Treewidth

What is this?

Theorem 11 (Approximation of [VJCMSO,). Given a [YICMSO,-query (p,1), an accuracy
0 < e <0.5 and a graph G with matching signature, we can compute a (1 + €)-approximate

answer to (¢,t) on G in time at most

log (M) 1 0#tw(S) - useful for exponential
() VG| numbers encoded in binary

=
c

and in particular in time at most

E

Fa(]el tw (@) -
(l) (el tw()' MO ()10 useful for unary-encoded
- numbers

where [y, fo are computable functions and M is two plus the highest number that occurs in
any weight term of ¢ or as any weight in G.

Approximate Solutions

Original constraint: | X| < |Y]
* Target value (=optimum): 0, -=<, 50, ...
Loosened constraint: |[X| < (1 + &) - |Y]|
e Optimum could increase but not decrease
Tightened constraint: (1 + ¢) - | X| < |Y]
e Optimum could decrease but not increase
A (1+¢&)-approximate solution contains two solutions:

— An eager one that is at least as good as the original
optimum while satisfying the loosened constraints

— A conservative one that satisfies the original constraints
while being at least as good as the optimum under the
tightened constraints

Approximate Solutions

target optimization value

I | I 1

optimum conservative optimum ‘3'(1:‘!-_’§91' optimum
w.r.t solution solution w.r.t

tightened loosened

constraint constraint

* A (1+&)-approximate solution contains two solutions:

— An eager one that is at least as good as the original
optimum while satisfying the loosened constraints

— A conservative one that satisfies the original constraints
while being at least as good as the optimum under the
tightened constraints

Meta-Theorem for Cliquewidth

Theorem 10 (Approximation of [V[CMSO,). Given a [YJCMSO;-query

t), an accuracy

(¢,
0 < e <0.5 and a graph G with matching signature, we can compute a (1 + £)-approximate

answer to (p,t) on G in lime at most

(log[ﬁ.j)) A(lelew(G))

£

V@P,

and in particular in time at most

(1)fﬁ{-lﬁl-cw(cr)} | |2 0.001
L . V(G'J - M

.
=
o

useful for exponential
numbers encoded in binary

useful for unary-encoded
numbers

where [, fo are computable functions and M is two plus the highest number that occurs in

any weight term of ¢ or as any weight in G.

— Notice that we have a lot of freedom in choosing &

— What if we set € to be so small that the loosened
constraints are integer-equivalent to the original ones?

Exact Meta-Theorem

Theorem 12 (Evaluating Queries Exactly). Given a [VICMSO;-query (or [JICMSOs-query)
(¢,t) and a graph G with matching signature and cliquewidth (or treewidth) at most k, we
can compute an answer to (p,t) on G in time

(M + |\w’((;)|)f(l»9l-k)

where f is some computable function and M is the highest number that occurs in any weight
term of ¢ or as any weight in G.

* Encoding a problem as a [V[CMSO, ,, query yields XP-
tractability and FPT-time computation of

“approximate” (eager/conservative) solutions

Some Examples

* Equitable k-Coloring / k-Connected Partition
— [Y[CMSO, formula whose size depends on k
— When parameterizing by treewidth, we can also do:

Yrcp-2(X) = (‘v’Y : (“G[Y] is not a connected component of G — X”) Vv |Y| > L%J)
A (VY : (“G[Y] is not a connected component of G — X”) V |Y] < Hﬂ)
A (‘V’Y . (“Y does not contain precisely one vertex from each
connected component of G — X7) V |Y| < kt)

A (\G’Y : (“Y does not contain precisely one vertex from each

connected component of G — X7) V |Y| > k?)j

where X is an edge set variable, Y is a vertex set variable and n = |V (G)|.

Some Examples

* Equitable k-Coloring / k-Connected Partition
— [V[CMSO, formula whose size depends on k

* Bounded-Degree Vertex Deletion

¢ppvp(X) :=VA: (_|(“X NA=0" A “A contains an A-universal Vertex”)) VIA <p—+1.

* Graph Motif

eem(X) :=3Xq, ..., X (“X is connected”)
A (“Xq, ..., X} is the partitioning of X into colors 1,... k, respectively”)
AN\ Xl < M) A M) < (X))

i€[k]

Some Examples

» Capacitated Vertex Cover / Capacitated Dom. Set

— Graph is preprocessed so that we can capture an
“assignment” by the formula

* Kidney Exchange

— Find a maximum-weight collection of vertex-disjoint cycles,
each of length at most some given bound p

* Non-graph problems

— Can capture known dynamic programming approximation
algorithms for Subset Sum (incl. multidimensional variant),
Knapsack, and other number problems via vertex weights

Last Examples

 Max-Cut and Edge Dominating Set
— parameterized by cliquewidth

* i.e., without edge set quantification

— requires heavy preprocessing of input graph

— probably harder to encode than to solve directly

— only works for exact solutions (XP), not approximation
— ...but still unexpected

Thank you for your attention
Here is a “mindmap” for the proof

KNOWN NEW rounding,
Step 1 in proof of Step 2 in proof of
Thm. [16] Thm. [16

/—\/—\

CMSO;-formulas = [V[CMSO;-formulas exact table formulas approx. table formulas
Sec. B.3] Sec. [6.1] Sec. [Z.1]

“non-FPT

“approx. Feferman-

Feferman—Vaught” Vaueht” f
Feferman—Vaught > for exact | vausht oL approx.
: : table formulas
table formulas Thm. [
. Meta-Theorem dynamic prog. for
Meta-Th
foreL?nECeﬁfSez)n for VJICMSO, |« approx. table formulas
! Thm. Thm.

ac [I [I ALGORITHMS AND
COMPLEXITY GROUP

25

