
Approximate Evaluation of
Quantitative Second Order Queries

Jan Dreier, Robert Ganian, Thekla Hamm

FO Model
Checking

Monadically
Stable

MSO Model
Checking

Motivation

• Many NP-hard problems are known to be fixed-
parameter tractable parameterized by treewidth

– Minimum Vertex Cover, Maximum Independent Set,
Hamiltonian Cycle, 3-Coloring…

– “Standard” dynamic programming

• But what if we want to show that some new problem
is fixed-parameter tractable w.r.t. treewidth?

– Solve it via dynamic programming, or…

– use an algorithmic meta-theorem: Courcelle’s Theorem

Courcelle’s Theorem

• Why is this useful?

– Instead of doing dynamic programming, we just need to
encode problems as bounded-size “LinCMSO2 queries”

• Can be much, much easier

Given a LinCMSO2 query (φ, t) and a graph G, we can compute an answer to (φ, t) on
G in time at most f(φ,tw(G)) ∙ |V 𝐆 |

where f is some computable function and tw(G) is the treewidth of G

Courcelle’s Theorem

• G can be edge- and vertex-colored and weighted

• φ is a formula in CMSO2 logic with some (optional)
free vertex and/or edge set variables

– Can quantify over single and set vertex/edge variables

– Can count modulo some fixed constant

– Can use usual logical connectives, query incidence etc.

• t is some linear function over the free variables in φ

• Answer: assignment which maximizes t or “No”

Given a LinCMSO2 query (φ, t) and a graph G, we can compute an answer to (φ, t) on
G in time at most f(φ,tw(G)) ∙ |V 𝐆 |

where f is some computable function and tw(G) is the treewidth of G

Courcelle’s Theorem for Cliquewidth

• G can be edge- and vertex-colored and weighted

• φ is a formula in MSO1 logic with some (optional)
free vertex and/or edge set variables

– Can quantify over single and set vertex/edge variables

– Can count modulo some fixed constant

– Can use usual logical connectives, query incidence etc.

• t is some linear function over the free variables in φ

• Answer: assignment which maximizes t or “No”

Given a LinCMSO1 query (φ, t) and a graph G, we can compute an answer to (φ, t) on
G in time at most f(φ,cw(G)) ∙ |V 𝐆 |2

where f is some computable function and cw(G) is the cliquewidth of G

Our Goal

• Courcelle’s Theorem(s) = best meta-theorem(s) for
exact fixed-parameter tractability w.r.t. tw and cw

– Not “tight”: Vertex Disjoint Paths par. by treewidth

Our Goal

• Courcelle’s Theorem(s) = best meta-theorem(s) for
exact fixed-parameter tractability w.r.t. tw and cw

• Could capture many problems which are not FPT, but
are FPT-approximable w.r.t. tw and cw (Lampis 2014)

But what about approximate fixed-parameter
tractability w.r.t. tw and cw?

Model Problems

• Equitable k-Coloring / k-Connected Partition

– Partition graph into k equal-size parts

• Bounded-Degree Vertex Deletion

– Delete a smallest vertex set to achieve a given max degree

• Capacitated Vertex Cover / Dominating Set

– Cover/dominate vertices w.r.t. given capacity bounds

• Graph Motif

– Find a connected subgraph in a vertex-colored graph where
each color occurs precisely a given number of times

What are we approximating?
• Not only optimization problems
• “Size constraints”

Model Problems

• Equitable k-Coloring / k-Connected Partition

– Partition graph into k equal-size parts

• Bounded-Degree Vertex Deletion

– Delete a smallest vertex set to achieve a given max degree

• Capacitated Vertex Cover / Dominating Set

– Cover/dominate vertices w.r.t. given capacity bounds

• Graph Motif

– Find a connected subgraph in a vertex-colored graph where
each color occurs precisely a given number of times

What are we approximating?
• Not only optimization problems
• “Size constraints”

First Step: Enriching the Logic

• Goal: extend LinCMSO by allowing it to “count”

• But can’t LinCMSO already count?

– It can count modulo some fixed constant

• Useful for, e.g., vertex minor detection. Not here.

• How can we let LinCMSO count?

– Well, it already counts the optimization target t:

• a, aij are (large input-specified) numbers, wi is sum of weights

• What if we add atoms that can compare these? CMSO[]

CMSO[] on Model Problems

• Equitable k-Coloring / k-Connected Partition

– Partition graph into k equal-size parts

• Bounded-Degree Vertex Deletion

– Delete a smallest vertex set to achieve a given max degree

• Capacitated Vertex Cover / Dominating Set

– Cover/dominate vertices w.r.t. given capacity bounds

• Graph Motif

– Find a connected subgraph in a vertex-colored graph where
each color occurs precisely a given number of times

… But It Is Too Powerful

• W[1]-hard to approximate for any constant ratio α:

– on vertex-colored paths, parameterized by formula size

• NP-hard to find exact answers for:

– on vertex-colored bounded-depth trees

Taking a Step Back

• Restricting comparisons only to the first quantifier
group would only capture some problems

• Restricting comparisons to the first two quantifier
groups is too much

• Solution: only limited comparisons in the 2nd group

(Blocked) CMSO Formulas

• CMSO1/2 logic contains all formulas that are built
from blocks via Ǝ, v, ∧

• Block: CMSO[] formula with restricted comparisons:

– Only non-negative coefficients and negation-normalized

– At most one weight comparison has a weight term
which involves variables in the 1st two quantifier groups

– All other weight comparisons are exclusively for the first
quantifier group

Meta-Theorem for Treewidth

useful for exponential
numbers encoded in binary

useful for unary-encoded
numbers

What is this?

Approximate Solutions

• Original constraint: 𝑋 ≤ 𝑌
• Target value (=optimum): 0, -∞, 50, …

• Loosened constraint: 𝑋 ≤ (1 + 𝜀) ∙ |𝑌|
• Optimum could increase but not decrease

• Tightened constraint: (1 + 𝜀) ∙ 𝑋 ≤ |𝑌|
• Optimum could decrease but not increase

• A (1+𝜀)-approximate solution contains two solutions:
– An eager one that is at least as good as the original

optimum while satisfying the loosened constraints

– A conservative one that satisfies the original constraints
while being at least as good as the optimum under the
tightened constraints

Approximate Solutions

Original constraint: 𝑋 ≤ 𝑌
• Target value (=optimum): 0, -∞, 50, …

Loosened constraint: 𝑋 ≤ (1 + 𝜀) ∙ |𝑌|
• Optimum could increase but not decrease

Tightened constraint: (1 + 𝜀) ∙ 𝑋 ≤ |𝑌|
• Optimum could decrease but not increase

• A (1+𝜀)-approximate solution contains two solutions:
– An eager one that is at least as good as the original

optimum while satisfying the loosened constraints

– A conservative one that satisfies the original constraints
while being at least as good as the optimum under the
tightened constraints

Meta-Theorem for Cliquewidth

– Notice that we have a lot of freedom in choosing 𝜀

– What if we set 𝜀 to be so small that the loosened
constraints are integer-equivalent to the original ones?

useful for exponential
numbers encoded in binary

useful for unary-encoded
numbers

Exact Meta-Theorem

• Encoding a problem as a CMSO1/2 query yields XP-
tractability and FPT-time computation of
“approximate” (eager/conservative) solutions

Some Examples

• Equitable k-Coloring / k-Connected Partition

– CMSO1 formula whose size depends on k

– When parameterizing by treewidth, we can also do:

Some Examples

• Equitable k-Coloring / k-Connected Partition

– CMSO1 formula whose size depends on k

• Bounded-Degree Vertex Deletion

–

• Graph Motif

– Find a connected subgraph in a vertex-colored graph
whereach color occurs precisely a given number of

• Capacitated Vertex Cover / Dominating Set

Some Examples

• Capacitated Vertex Cover / Capacitated Dom. Set

– Graph is preprocessed so that we can capture an
“assignment” by the formula

• Kidney Exchange

– Find a maximum-weight collection of vertex-disjoint cycles,
each of length at most some given bound p

• Non-graph problems

– Can capture known dynamic programming approximation
algorithms for Subset Sum (incl. multidimensional variant),
Knapsack, and other number problems via vertex weights

– Find a connected subgraph in a vertex-colored graph

Last Examples

• Max-Cut and Edge Dominating Set

– parameterized by cliquewidth

• i.e., without edge set quantification

– requires heavy preprocessing of input graph

– probably harder to encode than to solve directly

– only works for exact solutions (XP), not approximation

– …but still unexpected

Thank you for your attention

Here is a “mindmap” for the proof

25

