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My motivation



Speed of hereditary graph classes

m Class of graphs is hereditary if it is closed under vertex deletion

m [f X is a class of labeled graphs, then X', is the set of graphs from 2 with vertex
set [n] :={1,2,...,n}

m The speed of & is the function that maps n — |2 |

Example
Let P be the class of all graphs.

P, | = 2(3) = on(n-1)/2

10g2 ‘Pn‘ — @(nz)



Gra ph coding Why are we interested in log, | X}, |7

A graph coding is a representation of the graph by a word in a finite alphabet.

Graph G Adjacency matrix Binary word
0 0 1 1 1 (Canonl.Cal code of G)
0O—©0© 6 1 0 1 O
1 O O O
001111010000110
1 1 \ _/
4 S5 /2 bi
0 n(n — 1)/2 bits



Gra ph Coding Why are we interested in log, | X}, |7

If we have no a priori information, then in the worst case we need
logs | Py = n(n — 1)/2 bits to represent an n-vertex graph G.

If G € &, and we know something about A" it may help to
represent GG with less than (%) bits.

On the other hand, in the worst case we need log, |X),| bits to
represent an n-vertex graph from X'.

10g2 ‘Xn‘
T
(5)
Is the best possible coefficient of compressibility for representing
graphs in A,.




Speed of hereditary graph classes

Alekseev V.E. (1982) showed that for every hereditary class A the
limit ILm logs | X[/ (%) exists.
N—200

Alekseev V.E. (1992), and Bollobas B. & Thomason A. (1994):
nli_)n;@logz X/ (5) € {1 r | ke N}




Speed of hereditary graph classes

Theorem (Alekseev V.E., 1992; Bollobas B. & Thomason A., 1994)

For every infinite proper hereditary class X :

logy |Xn| = (1 k(lx)) T;z -o(n®),

where k(X') € N is the index of class X

(i) For k(X) > 1, log, |X,,| = ©(n?)

(il) For k(X) =1, log, |X,| = o(n?)



Jumps in the speed of hereditary graph classes

Let £(X) =1

What are possible rates of growth of the function log, |X,,|?

Scheinerman E.R. & Zito J. (1994) \\Classes with index 1 //
e Constant classes: log, |X,,| = ©(1). :
o Polynomial classes: log, |X,,| = O(logn). \ Factorial layer /
o Exponential classes: log, |&),| = ©(n). \ Exponential /
o Factorial classes: log, |X,,| = O(nlogn). \ Polynomial /
o

All other classes are superfactorial. \ /
Constant



Structure of subfactorial classes

Alekseev V.E. (1997), and Balogh J., Bollobas B. & Weinreich D. (2000)

@ Constant classes: log, || = ©O(1).

@ Polynomial classes: log, |X,,| = ©(logn). Classes with index 1

@ Exponential classes: log, |X,,| = O(n).

Factonal layer

@ Factorial classes: log, |X,,| = O(nlogn). OO0O0O0O0OOO0
@ All other classes are superfactorial. Exponential
OOO0O0OO
Polynomial
© Structural characterizations of the first three layers. Q Q Q Q

@ All minimal classes in each of the layers. \ Constant /

O O



Structure of factorial classes

Challenge: find a structural characterisation of the factorial layer

Except the definition, nothing common to all factorial classes is known

However, it was conjectured that every factorial hereditary class

admits an implicit representation (or adjacency labels of size O(logn))



Implicit representation

Given a class X find an algorithm A
such that for every n-vertex graph in X there is a labeling

» v +— £(v); and
> v~ w <— All(v),4(w)] = 1; and
» labels are “short” (O(logn) bits).




Implicit representation and universal graphs

Given a class X find an algorithm A
such that for every n-vertex graph in X there is a labeling

> v +— £(v); and
> v~ w <= All(v),l(w)] = 1; and
> labels are “short” (O(logn) bits).

Universal Graph (sequence), for a graph class &', of size m(n) is a sequence U = (U,), -,
of graphs with | U | = m(n) such that, for all n € N, every graph G € &', is an induced
subgraph of U, .

Theorem (S. Kannan, M. Naor, S. Rudich, 1992) A class 2" admits an implicit
representation if and only if it has a universal graph of size poly(n).



Implicit Graph Conjecture



Implicit Graph Conjecture

Problem (S. Kannan, M. Naor, S. Rudich, 1992)

s it true that every hereditary class X’ with |X,,| = 20(nlogn)
admits an implicit representation?’

Implicit Graph Representation Conjecture (J. Spinrad, 2003)

Every hereditary class X with |X),| = 20(nlogn) 3dmits an implicit
representation.



Communication Complexity Problems



Communication Complexity problems

m 2 parties: Alice and Bob
m Target function f, : [n] X [n] — {0,1} is known by Alice and Bob
m Alice receives an input x € [n] and Bob receives an input y € [n]

m Alice and Bob exchange (single bit) messages in turn in order to find f, (x,y)

Alice’s input: f, and x Bob's input: . and y

I ——————————

—
—
.—

?

[,(,Y)




Communication Complexity problems

Alice’s input: f, and x Bob's input: f, and y
| P ————
= 2 parties: Alice and Bob @:w
—
m Target function f, : [n] X [n] — {0,1} is known by Alice and Bob :
m Alice receives an input x € [n] and Bob receives an input y € [n] ‘

£, y)

m Alice and Bob exchange (single bit) messages in turn in order to find £ (x, y)

m The total size (in bits) of exchanged messages is the cost of the communication protocol

m [he communication complexity (or communication cost) of f,, denoted CC(f)), is the minimum
cost of a communication protocol that computes f,

m A communication problem is a sequence F = (f,),

m A communication cost of F'is the function CC(F) : n — CC(f,)



Examples

s Equality problem
n Equalityn . [n] X [n] = {0,1}, where Equalityn(x,y) =l ifanonlyitx=y

s Communication complexity of Equality: [logn] + 1

m Greater-Than problem

mn GT,:[n]X[n] = {0,1}, where GT ,(x,y)=1ifanonlyif x <y

s Communication complexity of GT: [logn| + 1



From Communication Complexity to Adjacency Labelling



From a Communication Complexity problem to Adjacency Labelling

Alice’s input: f, and x Bob’s input: f, and y
We can think of f, o ——0F8—————— = @
——————————
as a bipartite graph G, = ([n], [n], E), Q f w
where E'= {(x,y) € [n] X [n] | fx,y) =1} ’
Ja(%: Y)

Alice and Bob compute, in an interactive way, adjacency of two given vertices x and y

One can use
- messages sent by Alice (Alice's protocol) as labels for vertices in the left part
- messages sent by Bob (Bob's protocol) as labels for vertices in the right part

Given labels of two vertices from different parts the decoder executes protocol to decide adjacency
of the vertices



From a Communication Complexity problem to Adjacency Labelling

Alice and Bob compute, in an interactive way, adjacency of two given vertices x and y

One can use
- messages sent by Alice (Alice’s protocol) as labels for vertices in the left part

- messages sent by Bob (Bob's protocol) as labels for vertices in the right part

Given labels of two vertices from different parts the decoder executes protocol to decide adjacency of the vertices

Because the communication between the parties is interactive (e.g. next message of Bob depends on all previous

messages by Alice and Bob) we need to encode all possible “conversations” in the label.

If the communication cost of a protocol is ¢, then it can be stored as a binary tree with 2° nodes.

A communication protocol of cost ¢ gives adjacency labels of size O(2°).



Examples

s Equality problem
- Equalityn : [n] X [n] — {0,1}, where Equalityn(x,y) =l ifanonlyif x=y

m Corresponds to a matching graph: nk,

s Greater-Than problem
n GT,:[n]X[n] = {0,1}, where GT  (x,y)=1ifanonlyifx <y

m Corresponds to a half graph



Randomized Communication Complexity Problems



Randomized Communication Complexity problems

m 2 parties: Alice and Bob

m Target function f, : [n] X [n] — {0,1} is known by Alice and Bob

m Alice receives an input x € [n] and Bob receives an input y € [n]

m Alice and Bob exchange (single bit) messages in turn in order to find f,(x, y)

m Alice and Bob have access to a random string §

Shared random string S
Alice’s input: f, and x Bob's input: . and y

S  —--vvovoo

—
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Randomized Communication Complexity problems

Shared random string S

Alice’s input: f, and x Bob’s input: f, and y

s A randomised protocol 7 is a distribution over o P

deterministic protocols such that for Vx,y € |[n]

_

t I

P [2(x,y) = f,(x,y)| > 2/3 ‘

JRERY

s The maximum total size (in bits) of exchanged messages is the cost of the randomised
protocol &

= The randomised communication complexity of f,, denoted CC"(f,), is the minimum cost
of a randomised communication protocol that computes |,

» A communication cost of F = (f,) . is the function CC*(F) : n — CC®(f.)



Examples

s Equality problem
n Equalityn . [n] X [n] = {0,1}, where Equalityn(x,y) =l ifanonlyitx=y

s Randomized Communication complexity of Equality: O(1)

m Greater-Than problem
n GT,:[n]X[n] — {0,1}, where GT, (x,y)=1ifanonlyifx <y

s Randomized Communication complexity of GT: Q(loglogn)



Constant-cost randomized communication problems

Open problem: Characterise communication problems that admit a constant-cost

randomized communication protocol



From Randomized Communication Complexity to
Randomized Adjacency Labelling (or Probabilistic Universal Graphs)



From Randomized Communication Complexity to Probabilistic Universal
Graphs (PUGs)

Probabilistic Universal Graph (sequence), for a graph family &, of size m(n) is a
sequence U = (U,), - of graphs with | U, | = m(n) such that, for all » € N and all
G € &, the following holds: there exists a probability distribution over the mappings

¢ : V(G) = V(U,) such that

Yu,v € V(G) u; (p(u), p(v)) € E(U,) < (u,v) € E(G)| > 2/3

Nathan Harms.
“Universal Communication, Universal Graphs, and Graph Labeling." (ITCS 2020)

Pierre Fraigniaud, Amos Korman.

"On randomized representations of graphs using short labels." (SPAA 2009)



Correspondence between
Communication Problems and Adjacency Labelling for classes of graphs



Communication Problems vs Adjacency Labelling for hereditary graph
classes

1. Let I =(J,),cn be communication problem:
1. G; is the bipartite graph corresponding to f.

2. Y(F) is the hereditary closure of {G{, Gy, ...}

2. Let 2 be a hereditary class:

1. Adj, = (f,),en IS @ communication problem such that f, is a "hardest” function

corresponding to a graph in X,



Constant cost problems vs constant-size PUGs

Theorem 1. For any communication problem F = (/). and hereditary graph class

1. F has constant randomized communication complexity if and only if % (F) has a
constant-size PUG

2. X has a constant-size PUG if and only if Adj,. has constant randomized
communication complexity

Open problem: Characterise communication problems that admit a constant-cost

randomized communication protocol

Equivalent open problem: Characterise hereditary graph classes that admit a
constant-size PUG



Constant-size PUGs

Theorem 2. If a class 2 has a constant-size PUG then it admits an adjacency labelling
scheme with labels of size O(logn).

Corollary. The classes that have a constant-size PUG is a subset of the classes
satisfying the Implicit Graph Conjecture.

Thus by characerizing classes that admit a constant-size PUG we:

1. characterise communication problems with a constant randomized communication
complexity

2. make progress towards the Implicit Graph Conjecture



Necessary condition

Lemma. If a class of bipartite graphs 2 has a constant-size PUG then it excludes a
half graph as an induced subgraph.

Proof sketch.

It 2 contains all half graphs, then the corresponding communication problem Adj,,. is at
least as hard as the Greater-Than problem (which has complexity (loglogn)), and

thus it does not have a constant-cost randomized protocol.

Therefore & cannot have a constant-size PUG.

A class of bipartite graphs that excludes a half graph is called edge-stable.



Many factorial edge-stable classes of graphs have constant-size PUG

m Graph of bounded degeneracy
m All edge-stable { H}-free bipartite graphs

m All edge-stable classes of bounded twin-width

Jakub Gajarsky, Michat Pilipczuk, Szymon Torunczyk
“Stable graphs of bounded twin-width” (LICS 2022)

m All edge-stable classes of permutation graphs
m All edge-stable classes of interval graphs

m All edge-stable classes of unit disk graphs


https://lics.siglog.org/#:~:text=LICS%20%2D%20ACM%2FIEEE%20Symposium%20on%20Logic%20in%20Computer%20Science

Probabilistic Implicit Graph Conjecture



Probabilistic Implicit Graph Conjecture

Probabilistic Implicit Graph Conjecture
A hereditary class of bipartite graphs has a constant-size PUG if and
only if it is factorial and edge-stable



two weeks later...

Probabilistic Implicit Graph Conjecture
s false



Probabilistic Implicit Graph Conjecture is False

Lianna Hambardzumyan, Hamed Hatami, Pooya Hatami

studied (independently and concurrently to our work) communication problems with constant
randomized complexity

Lianna Hambardzumyan, Hamed Hatami, Pooya Hatami

"Dimension-free Bounds and Structural Results in Communication Complexity”
Israel Journal of Mathematics 253(2) (2023): 555-616.

Lianna Hambardzumyan, Hamed Hatami, Pooya Hatami

"A counter-example to the probabilistic universal graph conjecture via randomized

communication complexity"
Discrete Applied Mathematics 322 (2022): 117-122.



Probabilistic Implicit Graph Conjecture is False

Construction:

Sequence of functions (bipartite graphs) M = (M), such that
1. Randomized communication complexity of M is unbounded (i.e. (1))

2. Every a X b submatrix of M, with a,b <+4/n contains a row or a column with at most
four 1's
In the graph-theoretical language (2) means that every subgraph of M with at most \/;
vertices in each of the parts is 4-degenerate.
It implies that the hereditary closure X of {M,,M,, ...} is

1. Edge-stable, i.e. excludes some half graph
2. Factorial



another week later...

The Implicit Graph Conjecture
s falsel

Hamed Hatami, Pooya Hatami
“The Implicit Graph Conjecture is False.”

FOCS (2022)



The Implicit Graph Conjecture is False

Proof sketch:
1. A bipartite graph is G = (|n], |[n], E) is good if
1. |E| = |n*"¢| (where € is some fixed constant)

2. Every induced subgraph of G with at most ﬁ vertices in each of

the parts is c-degenerate (where ¢ is some fixed constant)

2. Let & be the family of all good graphs



The Implicit Graph Conjecture is False

Proof sketch (2):

Claim: For every n, let /, C G be any subset with | .Z, | < v

Then the hereditary closure of U A, is at most factorial.

neN

Counting: For every large n

- there are a lot of sets #, C &G, with | A, | = oVn,

- so many, that there exists such a set ./, C &  that cannot be represented by

. 0.5-9
a universal graph of polynomial size 29U°¢™ in fact, of size smaller than 2"

for some constant O



The Implicit Graph Conjecture is False

Proof sketch (3):

Then the hereditary closure of U A, is most factorial, but does not admit a

neN
5

. . 0.5—
universal graph sequence of size smaller than 2"



Conclusion

The Implicit Graph Conjecture

Factorial classes

Classes with O(log n) labelling scheme



Conclusion

Reality

Factorial classes

Classes with O(log n) labelling scheme



Conclusion

Bad news for characterization of the factorial classes

However, opens up a new perspective for labelling schemes:

1. What are the classes of graphs that admit a O(log n) labelling scheme?

2. What are the edge-stable classes that admit a O(log n) labelling scheme?

3. What are the classes that admit a constant-size probabilistic universal graph?



T hank you!



T hank you!



Thank you to Jakub, Michat, Szymon!



