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Homomorphism Indistinguishability

graph class F relation ≡F

all graphs isomorphism Lovász (1967)

cycles cospectral adjacency matrices Folklore
planar graphs quantum isomorphism Mančinska and Roberson (2020)
treewidth ≤ k Ck+1-equivalence Dvořák (2010);

Dell, Grohe, Rattan (2018)
… …
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Similarity

Homomorphism
Indistinguishability

Let A1, . . . ,An and B1, . . . ,Bn be complex square matrices.

When does there exist X such that XAi = BiX for all i ∈ [n]?

Theorem (Grohe, Rattan, S. (ICALP 2022))

X pseudo-stochastic
s.t. XAi = BiX

For every word w ∈ [n]∗,
soewA = soewB.
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Lower Bound

Lt is a class of graphs of treewidth ≤ 3t − 1 containing K3t.

Although Lt 6⊆ T W3t−2, it could well be that G ≡T W3t−2 H =⇒ G ≡Lt H.

Conjecture (Roberson (2022))
Every minor-closed union-closed graph class is homomorphism distinguishing
closed.

Theorem (Neuen (2023))
T Wk is homomorphism distinguishing closed.

Corollary (Roberson and S. (ICALP 2023))
For every t ≥ 1, there are graphs G and H such that G 'SA

3t−1 H and G 6'L
t H.
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Conclusion

• Homomorphism indistinguishability
characterisations of ISO relaxations

• Homomorphism tensors of
(bi)labelled graphs

• Determined number of
Sherali–Adams levels necessary to
guarantee feasibility of Lasserre
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The Graph Class Lt

A (t, t)-bilabelled graph is atomic if all its vertices are labelled.

The class Lt is generated by atomic graphs under
• series composition,
• parallel composition with atomic graphs,
• permutation of labels.
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Extras: Lasserre

Let t ≥ 1. The level-t Lasserre relaxation for graph isomorphism has variables yI
ranging over R for I ∈

(V(G)×V(H)
≤2t

)
. The constraints are

Mt(y) := (yI∪J)I,J∈(V(G)×V(H)
≤t ) � 0,∑

h∈V(H)
yI∪{gh} = yI for all I s.t. |I| ≤ 2t − 2 and all g ∈ V(G),

∑
g∈V(G)

yI∪{gh} = yI for all I s.t. |I| ≤ 2t − 2 and all h ∈ V(H),

yI = 0 if I s.t. |I| ≤ 2t is not partial isomorphism
y∅ = 1.



Extras: Sherali–Adams

Let t ≥ 1. The level-t Sherali–Adams relaxation for graph isomorphism has
variables yI ranging over R for I ∈

(V(G)×V(H)
≤t

)
. The constraints are∑

h∈V(H)
yI∪{gh} = yI for all I s.t. |I| ≤ t − 1 and all g ∈ V(G),

∑
g∈V(G)

yI∪{gh} = yI for all I s.t. |I| ≤ t − 1 and all h ∈ V(H),

yI = 0 if I s.t. |I| ≤ t is not partial isomorphism
y∅ = 1.



Extra: Graph Classes

OP PW2t−1 T Wmax{2t−1,2}

T Wt−1 Lt L+
t T W3t−1
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