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Abstract—The last decade witnessed considerable interest in
how microarchitectural aspects of processors can impact com-
puter systems, with an increasing focus on dependable low-
power embedded systems. Multiple hardening and verification
techniques for such systems rely on emulators that faithfully
model code execution timings of real microcontrollers. However,
in contrast to older ultra-low-power processor families, for the
prevalent ARM Cortex-M family, only models derived from
hardware sources are able to provide exact timings.

In this paper, we examine the feasibility of synthesizing a
cycle-exact timing model of a Cortex-M3-based microcontroller
using solely in-code timing measurements and publicly available
documentation. The main artifact of our work is CMEmu, to
the best of our knowledge the first emulator of this kind, which
provides exact timings for gigabytes of diverse programs from
our extensive evaluation suite. We present techniques that we
devised to achieve such an accuracy, which involved elaborate
research methods to capture the various intricacies of the
device microarchitecture, allowing us to even report a previously
unknown hardware bug in the processor.

Index Terms—ARM Cortex-M; cycle-exact; timing model;
emulation; microcontroller simulator; modeling techniques.

I. INTRODUCTION

Models predicting how many processor cycles a given
piece of code would execute on a given microcontroller,
microcontroller timing models, are indispensable instruments
for developing software for embedded devices, the devices
themselves, as well as for exploring (or exploiting) various
aspects of their operation. Usually implemented as emulators
or simulators, they enable streamlining those processes, eval-
uating scenarios difficult to set up or scale in the real world,
and obtaining insights normally unavailable with hardware.

A large family of microcontroller timing models are cycle-
accurate: they approximate the number of processor cy-
cles [1]–[3] or model only on a subset of microarchitec-
tural details, achieving timing errors of a few percent com-
pared to hardware [4]–[8]. In more demanding applications,
however, the inaccuracies may be problematic [9], [10]. To
illustrate, consider simulating a wireless system employing
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IEEE 802.15.4-based protocols utilizing concurrent transmis-
sions, such as Glossy [11], which require devices to be
synchronized under 0.5 µs. For a 48-MHz microcontroller, this
is 24 processor cycles. In such cases, models are necessary
whose timings not just approximate but always equal those of
the corresponding chips: cycle-exact models. In general, apart
from faithful simulation of wireless communication [12], [13],
application examples of such models include identifying secu-
rity side channels [14]–[19], firmware fuzzing [20], fault injec-
tion scheduling [21], high-fidelity performance analysis [14],
power profiling [12], or chip-specific code optimizations [22].

There are two main approaches to building cycle-exact mi-
crocontroller models. One is deriving them from chip sources.
It guarantees their timings but has a few compelling disadvan-
tages: limited or none public availability due to including the
chip manufacturers’ intellectual property, the need for obtain-
ing sources of all hardware components comprising a given
microcontroller, and a low performance due to simulating the
hardware at an ultra-low level [23], [24]. Addressing these
issues is thus the main motivation behind the second approach:
synthesizing timing models only from empirical observations
of program execution on the considered hardware.

However, while empirically synthesized emulators that aim
to be cycle-exact have been available for older low-power
microcontroller architectures such as MSP430 (MSPSim [25])
and AVR (Avrora [26]), to the best of our knowledge none
exists for the modern ARM Cortex-M family, which had over
70 billion chips shipped by 2021 [27]. The general belief [28]–
[30] is that cycle-exact emulation of Cortex-M microcon-
trollers can be accomplished only with hardware-source-based
models [31], presumably due to the internal complexity of
those microcontrollers (multi-stage pipelines, prefetchers, cus-
tomizable memories, bus configurations, arbiters, caches, etc.).
Although there are multiple works exploring certain aspects of
the Cortex-M microarchitecture [15]–[19] and on validation
of timing models [9], [32]–[34], they have not resulted in a
comprehensive cycle-exact model. To the best our knowledge,
the available ones do not aim beyond being cycle-accurate:
they exhibit noticeable overall timing errors (e.g. 1.8% [8])
and still contain specification and abstraction errors (following
the taxonomy by Black et al. [35]).



Research questions. In this light, it is valid to ask: Can
a cycle-exact model of a modern microcontroller be devised
without access to its hardware sources? The question poses
unique challenges, especially in contrast to cycle-accurate
models, for instance: How certain one can become that the
model does not deviate by a single cycle not only on typical
programs but also virtually all valid ones? How to track and
fix causes of even single-cycle deviations?

Studying these questions, we developed a timing model
for a microcontroller with a Cortex-M processor. We chose
Cortex-M3, as it constitutes a middle ground between the
basic, low-cost Cortex-M0 or M0+, and the advanced, high-
performance Cortex-M7 or M85, and has more intricate tim-
ings of some operations than Cortex-M4. However, to avoid
limiting our approach to one particular chip, and thus to
answer the question in a general context as well as devise
versatile techniques, we restricted our research methods solely
to obtaining data from programs run on the microcontroller
(in-code timing measurements) and publicly available infor-
mation about the microcontroller (such as technical docu-
ments, errata notices, books, online forums, free educational
hardware sources of minor components, and related scientific
publications). Moreover, no member of our team was ever
affiliated with ARM or any chip manufacturer, and we had
no experience in processor design. Likewise, our approach
did not require specialized measurement hardware, such as
rarely integrated built-in tracing modules (e.g., Embedded
Trace Macrocell) or external equipment (e.g., electromagnetic
probes). It also did not involve disassembling the modeled chip
or otherwise accessing its internals (e.g., microscopic photos).

Contributions. Our contributions are twofold. First, we
introduce a cycle-exact timing model of a Cortex-M3-based
microcontroller (Texas Instruments CC2650), to the best of
our knowledge, the first such model not based on the hardware
sources of a modern and relatively complex ARM Cortex-M.
We implemented the model as an emulator, CMEmu, which
is open sourced,1 and verified its accuracy on an enormous
and diverse test suite containing real-world and synthetic
programs. Second, we discuss the techniques we employed
to develop the model. In contrast to previous works on timing
models, we strove for the cycle exactness from the ground up
and thus focused on comprehensively deriving and modeling
the microarchitecture as a remedy for the specification and
abstraction errors. The scrutiny is highlighted by our discovery
of a hardware bug in Cortex-M3 itself. As such, we present
completely novel techniques, and techniques inspired by pre-
vious works but advanced to achieve the presented accuracy.

II. BACKGROUND

Cortex-M3 implements the ARMv7-M architecture [36]
with Thumb instructions, which have to be 2-bytes-aligned
and are in 2 sizes: 16-bit, denoted in assembly with suffix .N,
and 32-bit, denoted with .W. The instructions operate on
16 general-purpose registers, R0–R12, SP (stack pointer),

1https://mimuw-distributed-systems-group.github.io/cmemu/
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Fig. 1: Simplified overview of the main logical components
of Cortex-M3’s Core with primary data paths between them.

LR (link register), and PC (program counter), and some
special-purpose ones, most notably flags. The focus in this
paper is on 110 instructions sufficient for executing complete
regular user-space programs, which perform arithmetic-logical
operations, memory accesses, and branches. We do not discuss
instructions associated with kernel-space operations, such as
those for interrupt handling (WFI) or exclusive memory ac-
cesses (LDREX). We also restrict ourselves to the functional
scope of ARMv7-M and do not explore undefined behavior or
behavior noncompliant with the architecture.

Cycle-exact modeling requires reflecting in how many pro-
cessor clock cycles a given chip executes a sequence of
instructions. Timings of instructions and other operations of
Cortex-M3 are not specified by ARMv7-M, but they depend
on the processor’s design.

A. Overview of Cortex-M3 Design

In a nutshell, Core is the main component executing a pro-
gram on Cortex-M3 (see Fig. 1). It features a 3-stage pipeline:
Fetch-Decode-Execute. Fetch loads program bytes from mem-
ory into a 3-word buffer. Decode translates them into control
signals for operations and their arguments, performs decode-
time branches, and generates in the Address Generation Unit
(AGU) addresses for memory operations. Execute performs
the operations and writes their results to registers or memory:
data manipulation is done by the Arithmetic and Logic Unit
(ALU), memory accesses by the Load Store Unit (LSU).

Cortex-M3 communicates with memory over the AMBA 3
AHB-Lite protocol [37], which handles each transfer in two
phases: an address phase (the address of the data is provided),
and a data phase (the data are transferred). Transfers can be
pipelined, that is, a bus can serve simultaneously the data
phase of one transfer, and the address phase of the next one.
Accordingly, load-store instructions in Cortex-M3 are executed
in two sub-stages that correspond to the phases and can
operate simultaneously for consecutive instructions, resulting
in effectively simultaneous execution of pipelined instructions.

Debug components available in Cortex-M3 vary between
microcontrollers, but almost all feature the Debug Watchpoint



and Trace (DWT) unit with performance counters. Relevant to
our work are: total processor clock cycles (CYCCNT), pipeline
stall cycles attributed to load-store operations (LSUCNT),
other stall cycles (CPICNT), and cycles during which two
instructions are executed simultaneously (FOLDCNT).

B. The Challenge: Timings

The above description, extracted mainly from the documen-
tation [38], can support only designing basic abstractions for
the timing model. Devising the timings presents challenges.

First, not only is the execution duration of some instructions
variable, but also multiple instructions in the pipeline may
interact with each other. For example, a UMULL R0, R1,
R2, R3; ADDS R4, R0 sequence involves a read-after-
write (RAW) hazard, as the value of R0, the lower 32 output
bits of the 64-bit multiplication, is used as an input of the next
instruction. The hardware may resolve the hazard by stalling
the pipeline (i.e., suspending its progress) or value forwarding
to avoid the pipeline stall, or the hazard may not manifest
itself with multi-cycle instructions.

Second, in Cortex-M3 there are mechanisms that can be
neither controlled nor queried, like fetching instructions from
memory. Some decode-time conditional branches, such as
BEQ, cause the processor to speculatively load the target
instruction. This requires special handling that interrupts the
normal Fetch’s operation. Furthermore, if the branch’s con-
dition is not satisfied, restoring the fetching of subsequent
instructions may incur additional pipeline stalls, depending on
the Fetch’s state the moment the condition is determined.

Third, instruction fetches and load-store operations access
memory, and thus their timings depend on the microcon-
troller’s memory subsystem. In particular, program code is
typically stored in NOR Flash memory that is slower than
the processor, so accesses require suspending the pipeline
progress, thereby introducing wait states. To limit wait states,
chips feature buffers and caches, and the processor communi-
cates with memory modules via multiple buses (e.g., separate
buses for instructions and for data). Simultaneous transfers
on the buses may lead to bus contentions (e.g., LDR loading
a constant from a literal pool .LTORG), and the arbitration
depends on the exact cycles in which Core issues the transfers.

Intuitively, the smaller the tolerated error, the more phenom-
ena have to be accounted for, which for cycle-exact emulation
implies (virtually) all of them: even small errors can be ampli-
fied, for instance, through repeated execution (e.g., a for-loop),
or by causing a divergence in the cache’s state (whose logic
features timing-sensitive corner cases). Moreover, Cortex-M3
performs several operations concurrently and many involve
multiple hardware components. This severely complicates the
reasoning as one cannot look at the features of Cortex-M3 in
isolation, and they can mutually obscure their effects.

C. Implications for Cycle-Exact Modeling

To summarize, cycle-exact emulation requires modeling
various design-level aspects of the microcontroller: its mi-
croarchitecture. As a consequence, while large portions of our
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Fig. 2: Simplified overview of the TI CC2650 microcontroller:
the main components and memory buses (adapted from [39]).

model ultimately describe any Cortex-M3 microcontroller, one
has to tune it to a specific device. We target Texas Instruments
CC2650 [39] (see also Fig. 2). It features a Cortex-M3
(rev. r2p1) clocked at 48 MHz, 20 KiB of system RAM
(SRAM), and the Versatile Instruction Memory System (VIMS),
combining 128 KiB of Flash and its line buffer with 8 KiB of
static RAM, which can operate as a random replacement cache
(Cache) or a general-purpose RAM (GPRAM). TI CC2650 is
relatively popular and available in some large testbeds [40],
has no published hardware sources, and, like typical similar
chips, lacks advanced tracing components. Compared to most
of them, however, it has a sophisticated memory subsystem,
which we model almost in full: we focused on programs with
code in Flash or GPRAM, data in all memories, the line buffer
and Cache on or off, and the in-Core store buffer disabled.

Following our objective of in-code measurements, the built-
in performance counters are the only way we inspect the
microarchitecture. Crucially, our goal is not to reverse engineer
the hardware but to build abstractions that mimic its timing:
a model that given a program outputs its execution time.

III. PRELIMINARY TECHNIQUES

A common way to bootstrap a processor model is to review
publicly available documentation [6], [7], [15], [17]–[19], [32].
The documents outline facts essential for developing abstrac-
tions of the device’s internal architecture and include details
on certain device operations. Nonetheless, they offer limited
information required to accurately determine the timings of
even basic features. For instance, UMLAL (multiply & accu-
mulate) is documented to execute in 4–7 cycles, but without
precise rules [38]. Moreover, the documentation may contain
errors: we found values for which UMLAL executes in 3 cycles.

Therefore, it is necessary to empirically measure executions
on a real device. For timing models, the most popular approach
is to use built-in performance counters [8], [14], [18], [33].
Usually, model development involves measuring individual
instructions and handcrafted programs [16], [18], although the
process can be supported with tools to generate random ones
(see Section IV-A). Execution on the device requires a system-
atic approach to ensure valid results. To this end, software-
hardware tools are developed that automate setting up and
priming the device (for a consistent initial state) and executing
the measurements (incl. recording counter values). However,
as we repeatedly demonstrate in this paper, measuring timings
without sophisticated reasoning is highly insufficient.



The process of developing a model commonly involves
progressively implementing it as an emulator, and repeatedly
validating it against the hardware as a step of the development
methodology [14], [32], [33]. We implement our model in the
Rust programming language; the emulator, called CMEmu, can
run the same program binaries as our target microcontroller.
In existing work, mainly programs imitating typical work-
loads (benchmarks) and exercising particular features (micro-
benchmark) are employed for the validation [6]–[9], [32]–[34].
However, as we argue in Section IV-A and Section IV-E, such
programs exercise only a limited set of features of a processor.

IV. TECHNIQUES ENABLING CYCLE-EXACTNESS

We followed the above techniques, but they fell short of
supporting the development of a cycle-exact model. To achieve
and ensure the desired accuracy, we devised novel ones.

A. Generating Random Fully-Featured Programs (CMGen)

Handcrafted programs hardly explore features unknown to
their authors but present in the processor, whereas typical
workloads (benchmarks) execute a nondiversified set of in-
structions: we traced the Embench benchmarks [41] to learn
that they exercise 92 out of the 110 instructions, 12.7% of all
unique allowable pairs of succeeding instructions, and 0.4% of
all unique allowable triplets. As a consequence, such programs
cover only a small subspace of the possible internal states
of the microcontroller. There are tools that can increase the
coverage by employing random bytestreams and fuzzing [42],
[43], generating random instruction sequences [14], [35], or
systematically generating individual instructions [44]. We used
one such tool in our evaluation (see Section V), but it was
unable to verify complex instruction interactions. We argue
that for a cycle-exact model, validation against full-length
fully-featured programs is essential. A tool by Corno et al. [45]
generates programs with complex control flow, but it was
implemented for a DLX architecture and employed an evolu-
tionary approach µGP [46] to ensure the coverage of a target.
We are aware of no tool dedicated to ARMv7-M capable of
generating instructions with peculiar semantics like IT and
TBB, generating possibly diverse programs, and supporting not
only the validation, but also the development of an emulator.

To bridge that gap, we introduce CMGen, which generates
any-length correct ARMv7-M assembly programs (i.e., they
terminate and do not cause exceptions or undefined behavior).
The programs are generated in blocks, and each block is gener-
ated backwards to facilitate respecting instruction restrictions
(e.g., alignment, allowed registers, input values) and ensuring
predictable branches and safe memory operations. Moreover,
CMGen strives to maximize the randomness of the programs:
it selects instructions and their arguments at random, although
it promotes some of the latter to induce interactions between
instructions. When it is necessary to prime an instruction’s
arguments to ensure the correctness of the program, CMGen
mixes the prerequisites with other preceding instructions. To
do so, it tracks registers and their values, and whether they
act as a source or destination of instructions. Thanks to

that, the programs contain possibly many features, including
complex dependencies, conditional execution, and code reuse.
Finally, the set of instructions is precisely configured, and
always only correct programs are generated, which we argue
to be indispensable for gradually managing the scope when
incrementally developing a cycle-exact model.

Finally, when our emulator incorrectly mimics the execution
time of a generated program, CMGen can automatically iden-
tify problematic fragments by gradually reducing the program
source (a ca. 1 MB assembly file) and reevaluating it. To
this end, CMGen leverages the program structure to efficiently
rule out irrelevant instructions while preserving the correctness
of the program. The process progresses both at block- and
instruction-level, but instead of straightforward removal, code
and data are replaced with blank spaces (in ARMv7-M zeros
encode MOVS.N R0, R0). The sizes of blank spaces are set
to their original sizes modulo a parametrized value, to find the
relevant alignment and distances (e.g., 0 removes the fragment
altogether, 4 preserves word-alignment, and ∞ preserves all
memory addresses). Two search strategies guide the program
reduction: a bisection is used to determine fragments that must
be preserved, and an evolutionary approach is employed to
identify fragments that may be jointly eliminated.

To illustrate the importance of CMGen for the development
of a cycle-exact model, consider multiplication instructions:
UMULL and MLA (see Listing 2). For some values their Execute
lasts 3 and 2 cycles respectively, and 5 cycles for a sequence
UMULL; MLA. However, a program generated by CMGen
highlighted that the sequence is executed 1 cycle faster when
there is one particular register dependency—the upper bits of
the UMULL’s result are the accumulate value for MLA—and
that the same effect occurs when there is one more instruction
with the dependency (i.e., UMULL; MLA; MLA). CMGen’s
automatic identification of problematic fragments supports
even more convoluted cases: for instance, CMGen reduced a
program to a sequence of five branching instructions resulting
in accesses to a particular cache line, which highlighted an
issue in an initialization of the cache in some of our programs.

Finally, we envision much broader applicability of CMGen.
For instance, by generating programs with relaxed correctness
rules and verifying them with CMEmu, which strictly follows
the ARMv7-M specification, we found and reported a few
bugs in GNU Binutils (bugs no. 27066, 27065, 27099, and
27096). As future work, CMGen could be extended with a
satisfiability solver to generate peculiar register dependencies
with strict requirements (e.g., as in Listing 2).

B. Observing Unobservable (“Gadgets”)

The performance counters of Cortex-M3 provide only cu-
mulative, top-level information about an execution. For in-
stance, it is directly measurable with CYCCNT that executing
ADD RA, RB from the 0-wait-state GPRAM lasts 1 cycle.
Executing the instruction from the 2-wait-state Flash with
the line buffer and cache disabled lasts 3 cycles. This is
due to pipeline stalls, which is confirmed by the CPICNT
counter; however, it is not directly observable whether Fetch



or Execute of the instructions is prolonged. Additional insights
into the processor could be obtained through tracing modules
(e.g., ETM [47]) or energy leakage (e.g., with electromagnetic
probes [18], [19]). However, this would violate our assumption
of only in-code measurements, and even then not all details
essential for a cycle-exact model could be observed directly.

To learn about unobservable details we propose gadgets:
parameterized modifications to the program that help enforce
particular conditions and uncover the processor’s internal state
through observable side effects. In the above example, as the
gadget, one can use a 32-bit arithmetic-logical instruction that
introduces no dependencies, and measure the execution times
of GADGET; ADD RA, RB, selecting either an addition, a
division, or a multiplication with appropriate values to control
how many cycles (n) the gadget instruction itself is executed.
By finding that for n = 1 to 5 the execution times of the
sequence were the same, we can deduce that Fetch of the
instructions is prolonged because increasing the cumulative
duration of Execute does not increase the overall time.

In our work we employ many kinds of gadgets: NOP
sequences to offset code alignment, multi-cycle instructions to
stall the pipeline and fill the Fetch’s buffer, ADD.W sequences
to drain the buffer, branches to the following instruction to
introduce bus conflicts, and LDR/STR to affect buffers and
bus arbiters, to name few. Of particular interest are gadgets
that behave as no-ops, but may introduce various side effects
facilitating detection of emulation errors. Moreover, not only
do the gadgets constitute a reasoning technique themselves,
but they also support more sophisticated reasoning methods
(Sections IV-C and IV-D) and can enforce a particular state of
the processor necessary for further analysis (Section IV-E).

C. Counterfactual Reasoning

The intuitive abductive reasoning—accepting the simplest
explanation that matches observations—quickly bootstraps a
model, but risks overgeneralized conclusions and accumulating
errors with subsequent features. For instance, consider mea-
suring whether two consecutive instructions are pipelined by
comparing execution times of these instructions individually
and as a sequence (a method used e.g. by Barenghi et al. [18]):

CY CCNT (I1) +CY CCNT (I2)
?
= CY CCNT (I1; I2)

For the sequence ADDS RA, RB; ADD RC, RD both times
are always equal for any combination of registers, so one
may conclude that any RAW hazard here is resolved by value
forwarding to Execute. Executing the sequence LDR RA,
[RB]; LDR RC, [RD] that loads data from SRAM takes
1 cycle less than the instructions individually unless there is a
data-address dependency (RA=RD), and it is documented that
these instructions are internally pipelined in Execute and their
transfers are pipelined on the bus. In contrast, for a similar se-
quence STR RA, [RB]; LDR RC, [RD] both times are
always equal. Although inferring that LDR cannot be pipelined
after STR in Execute would initially improve the model’s
accuracy, for longer sequences this (wrong) conclusion would
lead to puzzling contradictions.

To avoid such pitfalls, we propose moving away from
abductive reasoning and instead applying counterfactual-like
reasoning: for each unknown feature considering all hypothe-
ses to be equally plausible and exploring their consequences
to design measurements that refute incorrect ones. These
measurements should not involve assumptions about other un-
verified features; otherwise, the dependency should be noted.

To illustrate, for STR; LDR, we considered models where
the instructions were pipelined in Execute: always, never, or
depending on features such as instruction variants, involved
registers, and the pipeline’s state. To refute a hypothesis, after
the LDR we added a decode-time branch as a gadget, so the
side effects of the branch would occur when the LDR advanced
to Execute. For transfers to SRAM we measured different
timings of the side effects depending on the variant of STR
(STR RA, [RB, #IMM] vs. STR RA, [RB, RE]), indi-
cating that the instructions were pipelined for some variants.
Therefore, we ruled out the never- hypothesis, and the always-
hypothesis assuming the memory subsystem cannot identify
instruction variants, and thus it cannot block pipelining in
Execute for some variants. On Cortex-M3’s external buses, on
the other hand, in our model loads are never pipelined after
stores: for transfers on the same bus it is due to write buffers,
on different buses due to bus timing constraints.

D. Reconstructing Execution With Constraint Solving

When developing a cycle-exact model, it is essential to
determine the instruction handled in each cycle by each
pipeline stage, but this is not reported by the device. Therefore,
we propose a technique to reconstruct the execution of a given
program by approaching it as a constraint satisfaction problem.
When the execution is visualized on a grid like Fig. 3a, the
process is similar to solving a Sudoku puzzle: first, one fills
in what stems directly from verified rules of the model (as
exemplified in step 1 in Fig. 3a) and direct observation like a
difference in CYCCNT (step 2); then one tries to fill in the
blank spots. To that end, one extracts constraints from all
already filled slots and the rules (step 3a), trying to fill more
and ultimately find a satisfying arrangement. Importantly, one
does not proceed cycle-by-cycle: information on further cycles
can be used to reason about previous cycles (step 3b). Usually,
the reasoning is supported by adding gadgets (steps 4 and 5)
and modifications (steps 5 and 6) to the program to introduce
additional constraints.

We attempted to automate the reconstruction using Z3 [48],
but that required encoding as formulas increasingly many rules
and ultimately would have transcribed the entire emulator,
thereby being infeasible. In particular, it is unnecessary to
reconstruct every execution: we primarily focus on skillfully
designed programs to get new insights into operations of
Cortex-M3. To illustrate, Fig. 3a is inconsistent with instruc-
tion fetches having a strictly higher priority than data loads
(cycles +8 and +9), but does not assume that—thus it refutes
such a hypothesis. As a variation of this technique, to prove a
hypothesis is inconsistent with other rules, we show it leads to
no correct reconstruction. For a given hypothesis a program



cycles of the execution
+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13program in GPRAM.align 2

+0x0
+0x2
+0x4
+0x6
+0x8
+0xa
+0xc
+0xe

+0x10
+0x12

LDR.N R5, [R0] ; loads CYCCNT
ADD.N R6, R1

LDR.W R7, [R3] ; aligned from GPRAM

LDR.W R6, [R4] ; aligned from GPRAM

UDIV.W R7, R2, R1 ; as 2-cycle gadget

LDR.W R8, [R0] ; loads CYCCNT

F:A F:D

F:A

D
(F)

F:D

F:A

X:A
D
(F)

F:D

X:D
D
(F)

(F)

X:D

X
D X:A

D

X:D

X:A X:D

D X X

D X:AF:DF:
A/DF:A F:

A/D

(F)

F:A DF:D

1. The arrangement for aligned instructions
following ISB we already verified before.

2. We measure a difference
in CYCCNT of 8.
3. (a) The only possible
arrangement of X, X:A, and
X:D, assuming the only way
instructions pipeline is X:A
with X:D. (b) Instructions
have to be decoded before
they are executed.

4. If we used a 1-cycle
gadget at +0xc, we would
still measure a difference in
CYCCNT of 8. So fetching
LDR at +0x10 doesn’t end
until the 10th cycle.

5. If both LDR at +0x4 and +0x8 loaded data from a different memory than GPRAM (no bus
contention), with a 0-cycle gadget (NOP) at +0xc we would measure a difference in CYCCNT
of 6, so fetching LDR at +0x10 would start no later than in the 7th cycle. Without the bus
contention but with the 2-cycle gadget the fetching would start in the 7th cycle too, because
the duration of the gadget could not be known at least until it is decoded (which cannot happen
earlier than LDR at +0x8 is decoded). Consequently, with bus contention and the 2-cycle gadget
the fetching starts in the 7th cycle too, but the transfer is then delayed (in F:A or F:D).

6. The gadget (+0xc) isn’t fetched
until after the 5th cycle, as we
verified with another setup, and has to
be fetched before the 8th cycle, as the
bus cannot deliver it simultaneously
with data loaded by LDR at +0x4.

(a) A reconstruction of processor’s pipeline operations illustrating the Sudoku-like reconstruction of the program execution. The numbered
comments illustrate the step-by-step reasoning. The dashed arrows point at premises, the solid arrows at conclusions of each step.

cycles of the execution
+1 +2 +3 +4 +5 +6 +7 +8 +9 +10+11+12+13+14+15+16+17+18+19+20+21program in Flash (line buffer OFF).align 2
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+0xa
+0xc
+0xe

+0x10
+0x12
+0x14
+0x16
+0x18
+0x1a
+0x1c
+0x1e

NOP

UDIV R4, R4, R5 ; 5-cycle

ADDS R0, R1

UMULL R1, R0, R0, R1 ; 3-cycle

LDR R2, [R1], #4 ; unaligned from SRAM

STR R2, [R3] ; aligned to GPRAM

BEQ LABEL ; not taken, any location
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(b) A reconstruction of processor’s pipeline operations illustrating an exhaustive test and the Fetch behavior.

Fig. 3: Illustrative reconstructions of the processor’s pipeline operations in each cycle of program execution. The colored cells
denote individual pipeline operations: F:A and F:D – address and data phases of Fetch, D – Decode, X – Execute of an
arithmetic-logical instruction, X:A and X:D – address and data phase of Execute of a load-store instruction. F:A*/X:A* mean
that a transfer has not yet been forwarded to ICode/DCode, (F) denotes that an instruction is loaded to the Fetch’s buffer.

is designed by considering what execution should occur to
support or refute it, and then what program can enforce such
an execution, leveraging the already verified rules.

When an execution cannot be reconstructed using gadgets
because introducing modifications to the program alters the
explored behavior, we propose upgrading the technique: ex-
ecuting the program multiple times, each time scheduling an
interrupt more cycles into the program. By reading register val-
ues, performance counters and the return address in a custom
interrupt handler, one gets snapshots of the processor state.
The snapshots, however, do not reveal the execution directly,
as the timing of interrupt handling is affected by aspects
such as bus congestion and currently executed instructions.
Thus, to properly interpret the snapshots, first the reasoning
with gadgets is required to determine when the effects of an
instruction are visible in an interrupt handler, and when the
effects of a handler are visible on an instruction. To illustrate,
consider a program with two subsequent load instructions. If

scheduling an interrupt in the i+1-th cycle instead of the i-th
cycle causes the handler to read a smaller value of LSUCNT,
this means that the loads are pipelined in the i+ 1-th cycle.

E. Exhaustive Tests

Programs that are handcrafted, randomly generated, or rep-
resent real-world workloads have an inherent limitation: they
do not exhaustively explore a given aspect of a microcontroller
operation. Moreover, even if they reveal an error in the model,
fixing it based on only a few observations risks overfitting,
particularly when it is related to an extremely rare behavior.

To prevent that, we propose extending the set of programs
used to validate a model with exhaustive tests: for a prob-
lematic case, generating millions of new programs, trying to
cover all possible interactions of the underlying feature of the
microcontroller. For instance, in order to validate interactions
of load-store instructions, we enumerate all their variants (e.g.,
w/ & w/o writeback, one & multiple registers), encodings, and



arguments (e.g., SP is handled in a special way [36]), we vary
the accessed memories and access alignment, and we inter-
leave them with various instructions. Furthermore, we employ
gadgets (Section IV-B) to validate the instructions in a mag-
nitude of contexts (e.g., code location, code alignment, Fetch
state, conditional execution, features for indirect observations).
The scalability of our in-code measurement approach makes
the exhaustive tests feasible: in particular, we executed them
on dozens of devices of the 1KT IoT testbed [40]. Emulating
such a set of programs correctly gives high confidence in the
correctness of the corresponding part of the model.

To illustrate the advantage of exhaustive tests, consider a
program as in Fig. 3b. It employs a few gadgets: NOP forces
instructions not to be word-aligned; UDIV, ADDS, and UMULL
control the state of Fetch (new transfers are not started in A,
B, and C, because its buffer is full; one is opportunistically
started in D); LDR executes an unaligned transfer over a
different external bus than fetching (see Fig. 2). In effect, a
bus congestion occurs due to Core simultaneously prefetching
instructions from Flash from the address +0x1c (E) and
executing the STR to GPRAM (F). When the DCode bus
proceeds to the 1-cycle data phase (H), the prefetch transfer
is carried out on ICode (G) after a prolonged address phase
on the internal bus. In that cycle (+13), a conditional branch
triggers an attempt to speculatively fetch the target instruction.
Since the data phase of the ongoing transfer has not started yet
(G), the prefetching logic attempts to substitute the transfer’s
address with the branch target, but the memory subsystem
carries out the transfer on ICode from the original address. In
the next cycle that transfer proceeds to the data phase (I), and
since the branch was not taken, the prefetching logic starts
fetching from +0x1c as it previously successfully prefetched
from +0x18. It is not aware that the address substitution
did not succeed so it issues a new transfer from +0x1c (I),
whereas the data from the ongoing transfer is disregarded
when it finishes (J). Consequently, +0x1c is prefetched twice,
regardless of the address of the branch target. We hypothesize
it is so because full AHB-Lite compliance was introduced as
an option only in the latest revision of Cortex-M3 and thus
was implemented not in the prefetching logic but in another
subcomponent. Even though this behavior surfaces only in
particular setups, exhaustive tests were able to capture it.

F. Automatically Characterizing Misemulated States

The exhaustive tests are suitable for revealing errors related
to microarchitectural details of Cortex-M3. However, as the
details are low-level, their effects are easily obscured by
higher-level features. As a result, such errors can manifest
themselves as misemulation of programs that seemingly have
nothing in common. Walker et al. [33] employ clustering and
correlation analysis of values of real and emulated perfor-
mance counters to identify sources of errors in the model.
While inspiring, from the perspective of cycle-exact modeling
their method has a few limitations: it evaluates a suite of 65
programs whereas we advocate massive tests (Section IV-E); it
benefits from 68 counters of their hardware while Cortex-M3

1 B.W label ; goto label
2 ...
3 label:
4 STR.W R1, [R2, R3] ; *(u32*)(R2+R3) = R1
5 NOP.N ; do nothing

Listing 1: Program illustrating pecularities of Fetch and IT.

features 6; it identifies misemulated features but we would like
to narrow that down to precise internal states.

As a consequence, we propose an alternative approach
leveraging the design of the exhaustive tests (Section IV-E).
For each program, we annotate hardware and emulation results
with a list of the alternations that define its state and control
flow. We apply to the dataset manual feature engineering
based on our understanding of Cortex-M3, and automated
associative learning to extract problematic alternations and
thereby characterize those cases, ultimately identifying states
of the processor in which the model is inaccurate. To this
end, we fit gradient boosted trees and use TE2Rules [49] to
extract a rule-based model. As it is hardly understandable, we
apply post-processing transformations—agglomerative cluster-
ing and logic- and data-based simplifications—to obtain a
logical formula in the form of an intuitive tree of conditions
(conjunctions in nodes, alternatives in subtrees). We did not
use explainable artificial intelligence (XAI) toolkits, as they
are designed to operate on incomplete and noisy data, therefore
producing less precise descriptions.

To illustrate the benefits of this approach, consider a rule
that we distilled from a series of exhaustive tests and their
analyses: 5 half-words after IT (the if-then instruction) there
is a 16-bit NOP (or a skipped instruction) preceded by a load-
store instruction, the NOP can be pipelined with the load-store
instruction, and the NOP is the only instruction in the Fetch’s
buffer (e.g., due to slow memory). That rule characterized a
processor state when the NOP was pipelined in our model but
not in the hardware, and it would be extremely hard to derive
it so precisely with solely manual reasoning.

The holistic explanation of that behavior was deduced from
a program as in Listing 1 generated by CMGen (Section IV-A).
We noticed that a branch there was encoded as a 32-bit
instruction whose second half-word was an encoding of IT, so
binary-wise the program resembled the distilled rule. Usually
the NOP instruction is pipelined with a preceding load-store
instruction, except when a 16-bit NOP is followed by a 16-bit
IT instruction, and they are decoded together—then the former
is no longer pipelined. We hypothesized that in the programs
when the instruction following NOP was not fetched yet, the
next buffer entry was still occupied by the already executed IT
or half of the already executed branch that encoded IT—the
entry was logically empty but interacted as if IT was there.

G. Exploration with High-Performance Computing

Components of a microcontroller interact with each other,
so it is necessary to tune the model as a whole. To this
end, Adileh et al. [32] parametrize the model and apply



1 UMULL.W R0, LR, R1, R2 ; u64 LR:R0 = R1 * R2
2 MLA.W R3, R4, R5, LR ; R3 = R4*R5 + LR
3 BX.N LR ; goto *LR

Listing 2: Code triggering a hardware bug in Cortex-M3.

an optimization algorithm to search for the best parameter
combination. We employed this idea in our work to evaluate
mutually-dependent hypotheses arising from counterfactual
reasoning (Section IV-C): we implemented the hypotheses in
our emulator as parameters, and we applied a Bayesian opti-
mization minimizing the number of incorrectly emulated cases.

Exploring the combinations is a computationally intensive
task since a model contains dozens of parameters: Adileh et al.
restrained themselves to a set of micro-benchmarks that was
simulated in subseconds, but the entire exploration still ran for
2 days on a commodity CPU. However, a cycle-exact model
requires much more scrutiny (see Section IV-E). Therefore,
we evaluated our model against millions of programs of the
exhaustive tests. To make that feasible, we employed an HPC
cluster (Intel Xeon E5-2697 v3 CPUs providing ca. 500 cores).
That made it possible to evaluate the programs in 15 minutes
and complete the exploration in a few hours despite the scale.
Moreover, we were able to run the exploration repeatedly as
the model progressed. Overall, for exploration and evaluation
(Section V) we used 30,000 CPU-hours.

H. Errata Notices

Reviewing public documentation is a common technique
(see Section III), but it describes few internal details. However,
we argue that some insights into the microarchitecture can be
obtained from seemingly irrelevant literature. Errata notices
for previous Cortex-M3 revisions are an important example,
since bugs found after the processor’s initial release were
likely patched with workarounds instead of being thoroughly
corrected (which would require optimizing and verifying the
processor again [50]). To illustrate, Errata Notice 377494 [51]
lists a bug where decoding BX LR (procedure return) after
pipelined load-store instructions could start fetching an incor-
rect instruction due to a RAW hazard. We deduced that the
problem was solved using information easily available in the
design to detect a relatively simple necessary condition for
the RAW hazard, resulting in false positives. That explained
why our initial model of BX LR based on an intuitive, more
precise condition was inconsistent with measurements.

The peculiarity of BX LR prompted us to verify RAW
hazards introduced also by other instructions. In particular,
CMGen had found that UMULL; MLA could be pipelined,
even though that was not documented (Section IV-A). When
analyzing the timings of such instruction sequences, we found
that a program like in Listing 2 caused incorrect functional
operation of Cortex-M3: not only did it fetch an instruction
from a stale address (i.e., the value of LR from before UMULL),
but it also executed that instruction or otherwise entered an
inconsistent state. The discovery was reported to ARM, who
confirmed the bug in hardware and issued Erratum #3922886.

V. EVALUATION

We evaluated our model’s accuracy by employing CMEmu
to emulate a suite of programs, and for each test case we
compared the number of emulated cycles against the hardware.
The suite consists of three main categories: short, random, and
real-world programs. For robustness of the evaluation [32], we
employed the machine learning approach of splitting the suite
into two sets: training (development) and testing (which we
did not use to identify emulation errors). CMEmu perfectly
emulates timings of all these programs; several gigabytes of
binaries, an order of 1012 cycles in total.

1) Development tests: We employed over 500,000 hand-
crafted test cases, 900,000 lengthy programs generated with
CMGen (Section IV-A), and 500,000,000 extensive test cases
(Section IV-E). Moreover, we used the CoreMark [52] bench-
mark and micro-benchmarks targeting Cache.

2) Real-world tests: To estimate the accuracy of a cycle-
accurate model usually a few benchmarks [6]–[10], [32], [34]
or typical workloads [13], [53] are employed. We followed that
idea but selected a wide suite: Embench [41] (a diverse bench-
mark incl. algorithms, compression, state machines, etc.),
STREAM [54], BenchCouncil IoTBench [55], TI MSP430
microbenchmarks [56], and selected libc tests [57]; in addition,
cryptographic primitives from embedded libraries: Mbed TLS,
OpenSSL, TweetNaCl, wolfSSL, and built-in TI CC2650
ROM. The selection was guided by our platform’s capabilities
(limited memory, no external probes, etc.), licensing of the
benchmark (free/open-source), and our model’s scope (no
multithreading, no file system), although for some benchmarks
we had to set selected parameters (e.g., buffer and key sizes)
outside their recommended range to fit the memory. To further
diversify the suite, as most of the programs are written in C
and thus expose CMEmu to compiler-generated assembly and
C programming practices (only some additionally utilize hand-
written assembly), we compiled each program with multiple
GCC optimization levels: -Os, -O0, and -O3.

In total, the suite consists of 644 test cases—55 unique
binaries compiled at 3 optimization levels and executed in
4 memory configurations (16 test cases do not fit in the
memory)—each executing from 51 to a billion cycles.

3) Instruction coverage: Real-world programs exercise few
features supported by our model (see Section IV-A), so
we employed EXAMINER [44] to successfully validate our
model against 33,951 single-instruction test cases it generated.
Moreover, we used our CMGen (Section IV-A) to generate
460,000 test cases we did not use in the model development.
They covered all 110 instructions supported by our model, all
unique allowable pairs of succeeding instructions, and 99.97%
of unique allowable triplets of succeeding instructions.

4) PC trace correctness: We additionally verified the cor-
rectness of an entire PC trace—a trace listing the instruc-
tion executed in each cycle. We chose OpenSSL AES, and
due to the lack of advanced tracing components (ETM) in
TI CC2650, we obtained the reference PC trace using an al-
ternative, lengthy technique [47]. The emulated and reference



Programs category Test cases Cycles Speculative Fetch STR; LDR UMULL; MLA; MLA Phantom IT Final model
in total cases error cases error cases error cases error cases error

Embench 252 1e11 251 2e-2 140 5e-4 0 0 0 0 0 0
other benchmarks 168 7e7 136 2e-2 18 3e-4 0 0 0 0 0 0

libc tests 72 4e8 72 3e-3 60 1e-5 0 0 0 0 0 0
cryptography 152 2e10 152 1e-2 101 9e-5 12† 8e-8 0 0 0 0

CMGen test set 460,000 6e9 459,845 3e-2 137,420 4e-4 2 2e-8 1024 1e-6 0 0

TABLE I: Results of the ablation study. The programs are grouped into categories, but we compared emulated cycles against
the hardware for each test case individually. For each variant of the model we report a number of failed test cases (i.e., non-zero
error) and a total relative absolute error:

∑
|emulation−hardware|∑

|hardware| . †– All cases execute the same built-in ECC code from ROM.

traces matched, demonstrating that in some applications it is
feasible to substitute a real device with CMEmu.

5) Performance: Emulation speed was a major consider-
ation in CMEmu development. As a result, although it is
cycle-exact, it achieves performance comparable with cycle-
accurate emulators [23], [24]: on a PC with an Intel Xeon W-
1290 CPU, it emulates CoreMark with a rate of approximately
0.9 million Cortex-M3’s clock cycles per real-time second.2

For reference, ARM’s IP Explorer [31] hardware-source-based
model emulates at ∼10K cycles/second; gem5 [5] with the
Minor CPU model emulates an ARMv8 system (Cortex-M3
is unsupported) at ∼0.7M cycles/second.

A. Ablation Study

For an older low-power microcontroller, ATmega128, there
are two major emulators: hardware-source-based AVR Sim-
ulator [58] and non-hardware-source-based Avrora [26]. The
former is slow but cycle-exact, the latter faster but we mea-
sured a timing error of 0.4% on CoreMark. Before applying
the techniques of Section IV our model exhibited a comparable
error, so to quantitatively assess the impact of our techniques,
we performed an ablation study: we selectively impaired the
final model and evaluated it against the programs of our testing
suite. We considered 4 impairments: missing speculative fetch-
ing with single-cycle instructions (related to Section IV-E),
a “never pipeline” rule for STR; LDR (Section IV-C), no
special handling for UMULL; MLA; MLA (Section IV-A), and
not modeling the “phantom IT” (Section IV-F). We evaluated
also various impairments of the memory subsystem, but they
resulted in regressions comparable with the STR; LDR.

Judging from the results (see Table I), we expect the
typical methodologies for developing cycle-accurate models of
embedded platforms to be inherently limited to approximately
0.1% overall error validated with popular benchmarks. The
cycle-exact modeling techniques enable reducing the error to
virtually 0%, although it is impossible to be certain that an em-
pirically synthesized emulator is fully cycle-exact. Therefore,
striving for cycle-exactness has to be an ongoing effort, and we
anticipate our model may be incorrect on some very atypical
instruction sequences such as Listing 2, whose systematical
verification requires devising further techniques.

2At an additional performance cost, CMEmu may produce a per cycle
description of a program execution: the pipeline state, values of registers
and flags, and ongoing bus transfers. It can also generate a highly detailed
microarchitecture-level log and visualize the execution similarly to Fig. 3.

VI. DISCUSSION AND OUTLOOK

We showed that, contrary to common beliefs, it is feasible
to devise a cycle-exact model of a modern microcontroller
without access to its hardware sources, or even physical
access to the device, relying instead solely on in-code timing
measurements and publicly available information. CMEmu, to
the best of our knowledge the first implementation of such a
model, exhibits no timing error on trillions of emulated cycles
of a diverse test suite. Although it cannot completely replace
hardware-source-based emulators, especially for insights other
than execution timing, we believe that CMEmu opens up a
range of diverse research opportunities. Furthermore, we are
currently modeling other subsystems of the microcontroller
and integrating CMEmu with a network simulator to enable
research on low-power wireless communication.

While this paper demonstrates modeling a particular micro-
controller, we argue that the applicability of our techniques
is not limited to that device. By design, none of them are
constrained to TI CC2650 or Cortex-M3, and they require no
advanced tracing components or invasive instrumentation. In
fact, we have already approached modeling other microcon-
trollers (incl. one with Cortex-M4), and the initial measure-
ments strongly suggest that it is readily feasible. Even a lack
of performance counters would not invalidate our techniques,
but pose an additional challenge [18], requiring external time
measurements and additional reasoning. Lastly, CMEmu itself
is organized into modules reflecting typical microarchitectural
components, thereby facilitating customization.

Nevertheless, even though the selected processor family is
arguably only moderately advanced compared to smartphone
processors, the modeling process was a tedious task. Applying
the preliminary techniques was a topic of a two-year three-
person Master’s project, and the following techniques required
exponentially more effort. The discovery of a hardware bug
in Cortex-M3 and several bugs in GNU Binutils is a good
testimony to the meticulousness of the process. Finally, we
envision that the demonstrated scalability of measurement
acquisition could enable leveraging large ML models to derive
a complete emulator rather than only improve its constituents.
However, fully automatic exploration of all microcontroller
intricacies would necessitate further advancements.
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[8] S. Schreiner, R. Görgen, K. Grüttner, and W. Nebel, “A quasi-cycle
accurate timing model for binary translation based instruction set simu-
lators,” in 2016 Int. Conf. Embed. Comput. Syst. Archit. Model. Simul.
SAMOS. IEEE, 2016.

[9] R. Desikan, D. Burger, and S. Keckler, “Measuring experimental error
in microprocessor simulation,” in Proc. 28th Annu. Int. Symp. Comput.
Archit. ACM, 2001.

[10] A. Akram and L. Sawalha, “A Survey of Computer Architecture Simu-
lation Techniques and Tools,” IEEE Access, vol. 7, 2019.

[11] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient
network flooding and time synchronization with Glossy,” in Proc. 10th
ACMIEEE Int. Conf. Inf. Process. Sens. Netw. IEEE, 2011.

[12] J. Eriksson et al., “COOJA/MSPSim: Interoperability testing for
wireless sensor networks,” in 2nd International ICST Conference on
Simulation Tools and Techniques. ICST, 2010.

[13] K. Roussel, Y.-Q. Song, and O. Zendra, “Using Cooja for WSN
Simulations: Some New Uses and Limits,” in Proc. 2016 Int. Conf.
Embed. Wirel. Syst. Netw., ser. EWSN ’16. Junction Publishing, 2016.

[14] J. Bauer and F. Freiling, “Towards Cycle-Accurate Emulation of Cortex-
M Code to Detect Timing Side Channels,” in 2016 11th Int. Conf.
Availab. Reliab. Secur. ARES. IEEE, 2016.

[15] D. McCann, E. Oswald, and C. Whitnall, “Towards Practical Tools for
Side Channel Aware Software Engineering: ’Grey Box’ Modelling for
Instruction Leakages,” in 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, 2017.

[16] M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, and
Y. Yarom, “Rosita: Towards Automatic Elimination of Power-Analysis
Leakage in Ciphers,” in Proc. 2021 Netw. Distrib. Syst. Secur. Symp.
Internet Society, 2021.
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