Special subsets of the reals and tree forcing notions

Marcin Kysiak (Warsaw University)

(joint work with A. Nowik and T. Weiss)
Forcing notions under consideration:

- Laver forcing \mathbb{L},
- Miller forcing \mathbb{M},
- Mathias forcing \mathbb{R},
- Sacks forcing \mathbb{S},
- Silver forcing \mathbb{V}.
Ideals related to forcing

These forcing notions are of the form

$$\langle \mathbb{P}, \subseteq \rangle$$

where

$$\mathbb{P} \subseteq \Pi^0_1.$$

A set X is \mathbb{P}-null iff the set

$$\{P \in \mathbb{P} : P \cap X = \emptyset \}$$

is dense in \mathbb{P}.

So we have the σ-ideals (l_0), (m_0), (cr_0), (s_0) and (v_0) related to the forcing notions of Laver, Miller, Mathias, Sacks and Silver, respectively.
Motivation for forcing ideals

Proposition. A set $X \subseteq \mathbb{R}$ has Lebesgue measure zero if and only if the set of conditions of Solovay forcing disjoint with X is dense.

Definition. (Marczewski) A set $X \subseteq \mathbb{R}$ is Marczewski-null (or $X \in (s_0)$), if for every perfect set $P \subseteq \mathbb{R}$ there exists a perfect set $Q \subseteq P$ such that $P \cap X = \emptyset$.

Underlying spaces

The natural underlying space for \((l_0), (cr_0)\) and \((m_0)\) is \(\omega^\omega\) and \(2^\omega\) for \((v_0)\).

For \((s_0)\) the underlying space \((\omega^\omega\) or \(2^\omega\)) depends on the representation.

We identify \(\omega^\omega\) with \([\omega]^\omega \subseteq 2^\omega\) and define the ideals \((l_0)\) and \((m_0)\) of subsets of \(2^\omega\) in the natural way.
Special sets under consideration

- perfectly meager sets (AFC)
- universally null sets (UMZ)
- strongly null sets (SMZ)
- meager-additive sets
- sets with Rothberger’s property (C’’)
- Lusin sets
- γ-sets
- σ-sets
- λ- and λ'-sets
General form of a question:

Is a class of special sets included in the ideal of \mathbb{P}-null sets?

Two possible interesting answers:

- YES,
- consistently NOT.

How to read these slides?

- Proposition is something which is easy or easily follows from something well-known,
- Theorem requires some arguments (sometimes similar to our previous results, though).
Previous results

Theorem. *All classes of special sets considered are included in s_0.***

Theorem. *(Nowik–Weiss)* *Strongly meager sets have the l_0-property.*

Theorem. *(Kysiak–Weiss)* *Every perfectly meager set has the m_0-property, but under CH there exists one which does not have the l_0-property.*

Theorem. *(Kysiak–Weiss)* *In the Baire space with the natural metric strongly null sets have the l_0- and the m_0-property.*

Theorem. *(Kysiak–Weiss)* *Under CH in the Cantor set not every strongly null set has the l_0-property and not every strongly null set has the m_0-property.*
About Silver forcing

Theorem. Every perfectly meager set has the ν_0-property.

Theorem. Every universally null set in 2^ω has the ν_0-property.

Corollary. All other classes of special sets mentioned before are included in ν_0.
Below strongly null sets

Proposition. Every Lusin set (in 2^{ω} and in ω^ω) has the l_0- and the m_0-property.

Proposition. Under CH there exists a C''' -set in 2^ω which does not have the l_0-property. Similarly, under CH there exists a C'''' -set in 2^ω which does not have the m_0-property.

Proposition. Every meager-additive set in 2^ω has the m_0-property.

Theorem. Under CH there exists a meager-additive set in 2^ω which does not have the l_0-property.

Theorem. Every γ-set in 2^ω has the l_0- and the m_0-property.
Classes related to Borel hierarchy

Proposition. Every λ-set (in ω^ω and in 2^ω) has the m_0- and the ν_0-property. In particular, every σ-set has these properties.

Proposition. Under CH there exists a λ'-set in ω^ω which does not have the l_0-property. In particular, this set is a λ-set in 2^ω.

Proposition. Every λ'-set in 2^ω has the l_0-property.

Theorem. Every σ-set in ω^ω has the l_0-property and the cr_0-property.
The paper is available at

http://www.mimuw.edu.pl/~mkysiak