Some remarks on Marczewski-measurable sets and functions

Marcin Kysiak

Institute of Mathematics, Warsaw University

Będlewo, September 2007
Marczewski measurable sets and functions

Definition

- a set $X \subseteq \mathbb{R}$ is Marczewski measurable ($X \in (s)$ for short) if
 \[\forall P \in \text{Perf} \ \exists Q \subseteq P \ Q \in \text{Perf} \land (Q \subseteq X \lor Q \cap X = \emptyset), \]
- a set $X \subseteq \mathbb{R}$ is Marczewski null ($X \in (s_0)$ for short) if
 \[\forall P \in \text{Perf} \ \exists Q \subseteq P \ Q \in \text{Perf} \land Q \cap X = \emptyset, \]
- a function $f : \mathbb{R} \to \mathbb{R}$ is Marczewski measurable, if it is measurable with respect to the σ-field (s).

Theorem

A function $f : \mathbb{R} \to \mathbb{R}$ is Marczewski measurable if, and only if, for every $P \in \text{Perf}$ $\exists Q \subseteq P \ Q \in \text{Perf} \land f \upharpoonright Q$ is continuous.
Definition

Let \(f : X \to Y \) be a function. The **indicatrix** \(s(f) : Y \to \text{Card} \) of the function \(f \) is defined by

\[
s(f)(y) = |f^{-1}\{y\}|.
\]

We say that \(f, g : [0, 1] \to [0, 1] \) are equivalent (\(f \sim g \), for short), if \(s(f) = s(g) \).

Remark

The functions \(f, g : [0, 1] \to [0, 1] \) are equivalent if, and only if, there exists a bijection \(\varphi : [0, 1] \to [0, 1] \) such that \(f \circ \varphi = g \).
Let $\mathcal{F} \subseteq [0, 1]^{[0,1]}$ be a class of functions. Can we characterize functions equivalent to a member of \mathcal{F}?

In other words, can we characterize indicatrices of members of \mathcal{F}?
Theorem (Morayne–Ryll-Nardzewski)

A function $f : [0, 1] \rightarrow [0, 1]$ is equivalent to a Lebesgue measurable one (and equivalently, to a Baire-measurable one) if, and only if, $s(f) > 0$ on a perfect set or there exists $y \in [0, 1]$ such that $s(f)(y) = c$.

Moreover:

- Komisarski, Michalewski and Milewski characterized indicatrices of Borel functions (under Projective Determinacy),
- Kwiatkowska characterized indicatrices of continuous functions (in ZFC).
What about Markiewski-measurable functions?

Theorem

A function \(f : [0, 1] \to [0, 1] \) is equivalent to a Markiewski-measurable one if, and only if, \(s(f) > 0 \) on a perfect set or there exists \(y \in [0, 1] \) such that \(s(f)(y) = c \).

Corollary

Every Markiewski measurable function is equivalent to a Lebesgue measurable one (and to a Baire measurable one) and vice versa.
Definition
A σ-algebra \mathcal{A} has the weak Continuous Restriction Property if for every \mathcal{A}-measurable function $f : [0, 1] \to [0, 1]$ there exists a perfect set $P \subseteq [0, 1]$ such that $f \upharpoonright P$ is continuous.

Lemma
If a σ-algebra \mathcal{A} has the weak Continuous Restriction Property then for each \mathcal{A}-measurable function $f : [0, 1] \to [0, 1]$ either $s(f) > 0$ on a perfect set or $s(f)$ takes value c.
Lemma

Assume that a σ-algebra \mathcal{A} contains all Borel sets and that $\mathcal{H}(\mathcal{A})$ contains a set of size \mathfrak{c}. Then

- if a function $f : [0, 1] \to [0, 1]$ is constant on a set of cardinality \mathfrak{c} then it is equivalent to an \mathcal{A}-measurable function,
- if a function $f : [0, 1] \to [0, 1]$ contains a perfect set in its range then it is equivalent to an \mathcal{A}-measurable function.
Remark

The theorem is also true for other algebras, e.g. for algebras associated with “tree forcing notions”.

http://www.mimuw.edu.pl/~mkysiak/