Probability on graphs winter term 2024/2025 Problem set 2

Michał Kotowski

Problem 1. Let $G \sim G(n,p)$ where $p = \frac{\log n + t}{n}$ for some constant $t \in \mathbb{R}$. Prove that the number of isolated vertices in G converges in distribution to a Poisson random variable with parameter e^{-t} .

Problem 2. Let G = (V, E) be a graph with a vertex set V and edge set E. For any subset of vertices $S \subseteq V$ let ∂S denote the set of edges in E which have one endpoint in S and the other one in $V \setminus S$. Let

$$\operatorname{ex}(S) = \frac{|\partial S|}{\min\{|S|, |V \setminus S|\}}.$$

Suppose that $G \sim G(n,p)$ for $p = \frac{100 \log n}{n}$. Prove that there exist constants $\alpha > 0, \beta < 1$ such that

$$\mathbb{P}\left(\min_{S\subseteq V} \operatorname{ex}(S) < \alpha\right) < \beta.$$

Problem 3. For a graph G let X denote the number of isolated edges in G (i.e., edges whose both endpoints have degree one). Let $G \sim G(n,p)$ with $p = \frac{\lambda}{n}$.

- (a) Let $\lambda = a \log n$ for fixed $a \in \mathbb{R}_+$. Prove that $X \to \infty$ in probability if a < 1/2, while $X \to 0$ in probability if a > 1/2.
- (b) Prove that X converges in distribution if $\lambda = \frac{1}{2} \log n + \frac{1}{2} \log \log n + t$, with $t \in \mathbb{R}$ fixed, and identify the limiting distribution.