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Abstract. The paper considers systems of the form

− div
(
|∇u|n−2∇u

)
= |∇u|n−2Ω · ∇u

on a bounded domain in Rn with u ∈W 1,n, a matrix Ω ∈ Ln (depending
on u) and some additional structural assumptions on Ω. We prove that
if a sequence of solutions of the above system converges weakly, the
limit itself is also a solution. The class of systems considered includes
the n-harmonic system and the presented reasoning is a generalization
of C. Wang’s proof for n-harmonic maps.

1. Introduction

Let N ⊆ RL be a compact, smooth submanifold with no boundary and
U ⊆ Rn a bounded domain. The Sobolev space W 1,n(U,N ) is defined as

W 1,n(U,N ) :=
{
u ∈W 1,n(U,RL) : u(x) ∈ N for a.e. x ∈ U

}
.

The Dirichlet n-energy functional En : W 1,n(U,N )→ R is given by

En(u) =

∫
U
|∇u|n dx =

∫
U

∑
α,j

∣∣∣∣ ∂uj∂xα

∣∣∣∣2
n/2

dx.

Here, the sum is taken over all α = 1, . . . , n and j = 1, . . . , L.
A map u ∈ W 1,n(U,N ) is an n-harmonic map, if it is a critical point of

En in the space W 1,n(U,N ) with respect to variations in the range, i.e. it
satisfies the Euler-Lagrange system

−div
(
|∇u|n−2∇u

)
= |∇u|n−2A(u)(∇u,∇u)(1.1)

= |∇u|n−2
n∑

α=1

A(u)

(
∂u

∂xα
,
∂u

∂xα

)
called the n-harmonic system. Here div is the divergence operator in Rn
and A(·)(·, ·) is the second fundamental form of the submanifold N ⊆ RL.
We could define the Dirichlet p-energy functional Ep : W 1,p(U,N )→ R and
p-harmonic maps for any exponent 1 ≤ p ≤ n in exactly the same way.
However, in this paper we focus on the critical exponent.
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Changyou Wang proved in his 2005 paper [14] that any weak limit of
n-harmonic maps is itself n-harmonic. Actually, his result is a bit more
general – the sequence of functions uk is only assumed to satisfy a per-
turbed n-harmonic system, as long as the perturbation tends to zero in(
W 1,n(U,N )

)∗ with k → ∞. Nonetheless, the following can be considered
the main result of Wang’s paper [14, Corollary C].

Theorem 1.1 (Wang, 2005). Assume that n ≥ 2 and that a sequence
uk ∈ W 1,n(U,N ) of n-harmonic maps tends to u weakly in W 1,n(U,N ),
then u is an n-harmonic map.

Our goal is to generalize Wang’s result to a slightly wider class of equa-
tions. Namely, the n-harmonic system can be expressed in the form

−δ
(
|du|n−2du

)
= |du|n−2Ω · du

for some matrix Ω of 1-forms. As we explain later, one can choose Ω to be
the antisymmetric matrix

Ωij =
L∑
l=1

(
Aijl −A

j
il

)
dul, i, j = 1, . . . , L,

where Aijl are the coefficients of the second fundamental form ofN at point u.
Note that the matrix Ω depends on the choice of the function u. It is crucial
for the proof that the entries of this matrix have particular structure – they
are sums of products of the form Ddv, where D ∈ W 1,n

b := W 1,n ∩ L∞ and
v ∈ W 1,n. Therefore, it is natural to assume that the matrix Ω takes the
form

(1.2) Ωij =

m∑
s=1

Ds
ijdv

s
ij , i, j = 1, . . . , L

for some m and Ds
ij ∈ W 1,n

b , vsij ∈ W 1,n. The antisymmetry of Ω is also
important for the proof (see Theorem 2.8).

Our main theorem is formulated in the generality presented above, hence
it is a slight generalization of Wang’s result.

Theorem 1.2. Let U ⊆ Rn be a bounded domain and n ≥ 2. Assume that
each of the functions uk ∈W 1,n(U,RL) satisfies the system

(1.3) −δ
(
|duk|n−2duk

)
= |duk|n−2Ωk · duk,

where the entries of the antisymmetric matrices Ωk ∈ Ln(U, so(L) ⊗ Λ1Rn)
of 1-forms take the form (1.2) for some m and the coefficients D, v are
uniformly bounded:

sup
i,j,k,s

||Dsk
ij ||W 1,n

b
, ||∇vskij ||Ln <∞.

If in addition uk ⇀ u in W 1,n and Ωk ⇀ Ω in Ln, then u satisfies the limit
system

(1.4) −δ
(
|du|n−2du

)
= |du|n−2Ω · du.



WEAK COMPACTNESS FOR SYSTEMS OF n-HARMONIC TYPE 3

The above statement remains valid if we only assume the functions uk to
satisfy the system (1.3) in the perturbed form. Thus the following remark
corresponds to the aforementioned theorem of Wang [14, Th. B].

Remark 1.3. Assume that each of the functions uk ∈W 1,n(U,RL) satisfies
the perturbed system

(1.5) −δ
(
|duk|n−2duk

)
= |duk|n−2Ωk · duk + Φk,

where Φk → 0 w
(
W 1,n(U,RL)

)∗, and all other assumptions of Theorem 1.2
hold. Then the limit function u satisfies the system (1.4).

With assumptions as above, our proof remains valid with only minor
changes. We shall discuss these after we complete the proof of Theorem 1.2.
Now we explain how Wang’s Theorem 1.1 follows from Theorem 1.2.

Proof of Theorem 1.1. The problem is to show that the n-harmonic system
(1.1) is of the form (1.4). More precisely, to express the term A(u)(∇u,∇u)
as Ω ·du for a matrix Ω of the required form. To this end we shall use a trick
first introduced by Frederic Hèlein [8, Ch. 4]. The form A can be understood
as a symmetric bilinear form on TRL|N ; it is enough to choose it to be zero
on the orthogonal complement of TN . Let Ail = A(u)(ei, el) be the matrix
of A in the standard basis of RL. It follows from the orthogonality Ail ⊥ TN
that

L∑
j=1

Ajil∇u
j = 0.

Multiplying the above by ∇ul and summing over l = 1, 2, . . . , L yields
L∑

j,l=1

Ajil∇u
l · ∇uj = 0.

Subtracting from A(∇u,∇u) the expression above, we obtain

Ai(∇u,∇u) =
L∑

j,l=1

Aijl∇ul · ∇uj

=
L∑

j,l=1

(
Aijl −A

j
il

)
∇ul · ∇uj

=

L∑
j=1

Ωij · duj ,

where the matrix

Ωij =

L∑
l=1

(
Aijl −A

j
il

)
dul

is antisymmetric, Ω ∈ Ln(U, so(L)⊗ Λ1Rn). Note also that A(u) as a com-
position of the functions u ∈ W 1,n and A ∈ C∞0 is in the class W 1,n

b and
||A(u)||W 1,n .N ||u||W 1,n . Hence the matrix Ω is of the required form
Ωij =

∑m
s=1D

s
ijdv

s
ij (1.2) if we set m = L. Moreover, by the Rellich-

Kondrashov theorem, the convergence uk ⇀ u inW 1,n(U,N ) implies uk → u
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in Ln/(n−1). Thus by composing with A ∈ C∞0 we get A(uk) → A(u) in
Ln/(n−1) and finally, Ωk ⇀ Ω in Ln by Lemma 2.1.

We presented the n-harmonic equation in the form (1.4). This allows us
to use Theorem 1.2, pass to the limit and conclude that u is an n-harmonic
map. �

The proof of Theorem 1.2 presented in this paper follows the proof of
Wang. However, we take an approach that allows us to use the same methods
in a more general setting. In particular, the equation we consider is not
directly connected to the geometry of manifolds, hence it is necessary to use
Uhlenbeck decomposition theorem in an abstract formulation due to Tristan
Rivière [12].

The key difficulty is that the right-hand side of the equation (1.3) is only
bounded in L1 and therefore we can only assume that it is weakly-* con-
vergent to some measure. The difference of this measure and the right-hand
side of the limit equation (1.4) can be proved to satisfy a reverse Hölder-type
inequality, then the concentration compactness principle due to Pierre-Louis
Lions (Lemma 2.6) together with a capacity argument allows us to prove
that the difference is actually zero.

The main idea of the proof is to use the Hodge and Uhlenbeck decom-
positions in order to obtain expressions with a div-curl structure. Then it
is possible to conclude their higher regularity and also convergence through
application of the compensated compactness lemma (Proposition 2.5) and
the classical div-curl lemma, yielding the desired reverse Hölder’s inequality.

2. Preliminaries

2.1. Notation. The proof of Theorem 1.2 relies on the particular differential
structure of certain terms in our reasoning (see Proposition 2.5). Therefore
we find it more convenient to use the language of differential forms. We use
the following notation for the differential operators connected to standard
differential structure of the space Rn:

• ΛsRn – the space of alternating s-forms on Rn (note that the standard
notation would be Λs(Rn)∗),
• d – the exterior derivative,
• α · β – the inner product of two forms α, β ∈ ΛsRn,
• δ – the codifferential.

Vector and matrix-valued functions are used frequently in this paper and
most of the equalities are formulated for vector-valued functions. For the
sake of brevity we shall abuse the notation presented above. As an example,
for a matrix Ω ∈ ML×L(R)⊗ Λ1Rn of 1-forms and a vector v ∈ RL ⊗ Λ1Rn
of 1-forms, the product Ω · v is to be understood as a matrix product with
scalar multiplication replaced by the inner product of forms, i.e

(Ω · v)i =

L∑
j=1

Ωij · vj .

The meaning should be always clear from the context.
We denote the space of bounded Sobolev functions byW 1,n

b = W 1,n∩L∞.
Note that this space is closed under multiplication in view of the elementary
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inequalities

||∇(fg)||Ln ≤ ||f∇g||Ln + ||g∇f ||Ln ≤ ||f ||L∞ ||∇g||Ln + ||g||L∞ ||∇f ||Ln .

The asymptotic inequality symbol . is used here very often. The state-
ment A . B for two expressions A, B reads: there is a constant C > 0 such
that A ≤ CB. The constant is assumed to depend only on fixed parameters
such as the space dimensions n, L. Sometimes, to emphasize the dependence
on some of these parameters, we shall write e.g. .n.

2.2. Technical lemmata. First we note two elementary observations, which
we shall use frequently. The utility of the second one comes from the fact that
the Sobolev and Rellich-Kondrashov theorems imply a continuous embedding
W 1,p ↪→ Lq for q ≤ p∗ = np

n−p , which is compact only for q < p∗. Therefore
we may assume a weakly convergent sequence in W 1,p to be strongly conver-
gent (up to a subsequence) in Lq for q < p∗, but this is not necessarily true
for q = p∗.

Lemma 2.1 (on weak convergence).
• Let p, q, r ≥ 1 satisfy 1

p + 1
q = 1

r . If uk → u in Lp and vk ⇀ v in Lq,
then ukvk ⇀ uv in Lr.
• Let the space U have finite measure, 1 < p < ∞, vk ∈ Lp(U) be
a bounded sequence and v ∈ Lp(U). If vk ⇀ v in L1(U), then also
vk ⇀ v in Lp(U).

The next lemma gives us particular test functions, which will be used to
remove the singularities from the equation in Section 3.3. The construction
relies on the existence of unbounded functions in the space W 1,n(Rn). The
proof follows the paper of Goldstein et al. [6, Lemma 3.2].

Lemma 2.2. There is a sequence of functions ϕk ∈ C∞0 (Rn) such that
0 ≤ ϕk ≤ 1, ϕk ≡ 1 on the ball B(0, rk), ϕk ≡ 0 outside the ball B(0, Rk),
where 0 < rk < Rk → 0 and ||ϕk||W 1,n → 0.

Proof. Let us define the function

η(r) = log log(e− log r) for r ∈ (0, 1).

For r ∈ (0, 1) we have e − log r > e and hence log(e − log r) > 1; this
implies that η(r) > 0. The function η has an infinite limit at zero and the
asymptotics of its derivative can be estimated as follows:∣∣η′(r)∣∣ =

1

r(e− log r) log(e− log r)
.

1

r(e− log r)
∼ − 1

r log r
,

Cauchy’s condensation test then concludes that the function rn−1 |η′(r)|n
has a finite integral on the interval (0, 1), if only n > 1.

Now we introduce the radial function f(x) = η(|x|). We will show that
f ∈ W 1,n(Bn). It is easy to check that f ∈ Ln(Bn). Rotational invariance
yields |∇f(x)| = |η′(|x|)|, so we can compute∫

Bn

|∇f(x)|n dx =

∫ 1

0

∫
Sr

|η′(r)|n dy dr =

∫ 1

0
|Sr|

∣∣η′(r)∣∣n dr <∞,

where the last integral is finite by our previous considerations.
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The idea of the construction of the sequence ϕk is the following: divide
the graph of f into horizontal ‘slices’, i.e. choose ϕk so that they satisfy∑m

k=1 ϕk = min(f,m) for each m = 1, 2, . . .. We formalize it in a slightly
different manner. Choose a function ζ ∈ C∞(R) satisfying 0 ≤ ζ ≤ 1, ζ ≡ 0
on (−∞, 0], ζ ≡ 1 on [1,∞). Define ϕk(x) = ζ(f(x) − k) for x ∈ Bn and
k = 1, 2, . . .. Evidently 0 ≤ ϕk ≤ 1. Moreover,

f(x) ≤ k ⇒ ϕk(x) = 0,
f(x) ≥ k + 1 ⇒ ϕk(x) = 1,

which implies that ϕk has the required behaviour. Since the function f is
smooth except at the origin, the function ϕk is smooth in Bn and can be
extended by zero to a function ϕk ∈ C∞0 (Rn). Finally, |∇ϕk| . |∇f | ·χ{f>k}
and f ∈W 1,n imply that ||ϕk||W 1,n → 0. �

The following compactness theorem for maps with p-Laplacian bounded
in L1 is due to Hardt, Lin and Mou and independently to Courilleau [2,
Th. 1.1]. Here we state it with p = n.

Lemma 2.3. Let U ⊆ Rn be a bounded domain and uk be a bounded sequence
in W 1,n(U,RL) such that the sequence

div
(
|∇uk|n−2∇uk

)
is bounded in L1(U,RL). Assume that uk ⇀ u in W 1,n(U,RL). Then there is
a subsequence for which we have ∇uk → ∇u in Lq(U,RL) for any 1 ≤ q < n.

The proof of Remark 1.3 requires a more generalized version of the above
lemma.

Lemma 2.4. Let U ⊆ Rn be a bounded domain and uk be a bounded sequence
in W 1,n(U,RL) such that

div
(
|∇uk|n−2∇uk

)
= fk + Φk,

where the sequence fk is bounded in L1(U,RL) and Φk → 0 in
(
W 1,n(U,RL)

)∗.
Assume that uk ⇀ u in W 1,n(U,RL). Then there is a subsequence for which
we have ∇uk → ∇u in Lq(U,RL) for any 1 ≤ q < n.

The proof of Courilleau [2, Th. 1.1] applies here as well. The only differ-
ence lies in the estimation of the integral∫

U
div
(
|∇uk|n−2∇uk

)
~βε(uk − u)ξ dx

appearing in [2], which in our case is decomposed into a sum of two terms.
Since Φk → 0 in

(
W 1,n

)∗ and the sequence ~βε(uk − u)ξ is bounded in W 1,n,

the additional term
〈

Φk, ~βε(uk − u)ξ
〉
tends to zero.

2.3. Spaces H1 and BMO. Now we recall the basic properties of the Hardy
space H1(Rn) and the space BMO(Rn).

A function f ∈ L1(Rn) belongs to the Hardy space H1(Rn), if

f∗ := sup
ε>0
|φε ∗ f | ∈ L1(Rn),
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where φε(x) := ε−nφ
(
x
ε

)
and φ ∈ C∞0 (Rn) is a fixed nonnegative function

satisfying
∫
Rn φ dy = 1. The space H1(Rn) equipped with the norm

||f ||H1(Rn) := ||f ||L1(Rn) + ||f∗||L1(Rn).

is a Banach space.
A function f ∈ L1

loc(Rn) belongs to the space BMO(Rn) (bounded mean
oscillation, see [10]), if

||f ||BMO(Rn) := sup

{
1

|B|

∫
B
|f − fB| dy : B – ball in Rn

}
<∞,

where fB = 1
|B|
∫
B f dy is the mean of f over the ball B.

A function f ∈ BMO(Rn) belongs to the subspace VMO(Rn) (vanishing
mean oscillation), if in addition we have the convergence

1

|B(x, r)|

∫
B(x,r)

|f − fB| dy
r→0−→ 0

uniformly in x ∈ Rn. This is a closed subspace of BMO(Rn) and it can
be alternatively characterised as the closure of the subspace C∞0 (Rn) in the
norm BMO(Rn). Note that for a function f ∈W 1,n(Rn) we have

1

|B(x, r)|

∫
B(x,r)

|f − fB| dy .n

(∫
B(x,r)

|∇f |n dy

)1/n

thanks to the Poincaré inequality, hence W 1,n(Rn) ⊆ VMO(Rn) and

||f ||BMO(Rn) . ||∇f ||Ln(Rn).

Fefferman and Stein [5] proved that the dual space toH1(Rn) is BMO(Rn).
Moreover, ∣∣∣∣∫

Rn

fg dy

∣∣∣∣ . ||f ||H1(Rn)||g||BMO(Rn),

for any f ∈ H1(Rn) and g ∈ L∞ ∩ BMO(Rn). Additionally, the dual space
to VMO(Rn) is H1(Rn).

We recall an important theorem of Coifman, Lions, Meyer and Semmes
[1] (see also [4]) on compensated compactness.

Proposition 2.5. Let 1 < p, q < ∞ and 1
p + 1

q = 1. Assume that we have
f ∈W 1,p(Rn) and g ∈W 1,q(Rn,Λ2Rn). Then df · δg ∈ H1(Rn), moreover

||df · δg||H1(Rn) . ||∇f ||Lp(Rn)||∇g||Lq(Rn).

In particular, by the duality of H1(Rn) and BMO(Rn) we obtain the inequal-
ity ∣∣∣∣∫

Rn

hdf · δg dy

∣∣∣∣ . ||∇f ||Lp(Rn)||∇g||Lq(Rn)||∇h||Ln(Rn)

for any h ∈W 1,n
b (Rn).
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2.4. Concentration-compactness. We shall use the concentration-com-
pactness principle of P.-L. Lions.

Lemma 2.6. Let µ, ν be finite positive measures on the ball B ⊆ Rn. As-
sume that(∫

B
|φ|q dν

)1/q

.

(∫
B
|φ|p dµ

)1/p

for all φ ∈ C∞0 (B),

where 1 ≤ p < q ≤ ∞. Then there exists an at most countable set J ,
a sequence of distinct points (xj)j∈J in B and a positive sequence (aj)j∈J
such that

ν =
∑
j∈J

ajδxj .

In particular,
∑

j∈J aj <∞.

In the statement above we have the ball B in place of the space Rn, see
[11, Remark 1.5]. We shall apply the lemma also to signed measures, as
explained below.

Remark 2.7. In Lemma 2.6 we can drop the assumption that ν is positive.
Then we need to assume the inequality∣∣∣∣∫

B
|φ|q dν

∣∣∣∣1/q . (∫
B
|φ|p dµ

)1/p

for all φ ∈ C∞0 (B)

and as a result the measure ν has the form

ν =
∑
j∈J

ajδxj ,

where aj ∈ R,
∑

j∈J |aj | <∞.

Proof. Apply Hahn’s decomposition to obtain ν = ν+ − ν−, where ν+, ν−
are mutually singular positive measures. As in the proof of Lemma 2.6 [11],
we can show that the inequality above holds for any bounded function φ.
Hence it also holds for measures ν+ and ν− in place of ν. The application
of Lemma 2.6 ends the proof. �

2.5. The Uhlenbeck decomposition. The last key tool of the proof is
a decomposition first introduced by Karen Uhlenbeck [13]. It was used by
Wang [14] to choose an orthogonal basis of the tangent bundle, for which the
connection matrix of 1-forms is coclosed. Here we use an abstract statement
of this theorem due to Tristan Rivière [12] – it does not refer to the geometry
of manifolds and thus is better adjusted to the proof of Theorem 1.2.

Theorem 2.8. There is ε > 0 such that for any antisymmetric matrix
Ω ∈ Ln(Bn, so(L) ⊗ Λ1Rn) of 1-forms on Bn satisfying ||Ω||Ln < ε there
exists a function P ∈W 1,n(Bn,SO(L)) taking values in orthogonal matrices
such that the matrix

(2.1) Ω̃ = P−1dP + P−1ΩP

is coclosed, i.e. δΩ̃ = 0, moreover

(2.2) ||Ω̃||Ln + ||dP ||Ln .n,L ||Ω||Ln .
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Remark 2.9. It is easily checked using a substitution of the form x 7→ x0+rx
that in fact Theorem 2.8 holds for every ball B(x0, r) ⊆ Rn with the same
value of ε > 0 and the same constant in the inequality (2.2).

3. Proof of the main theorem

3.1. Application of the Uhlenbeck decomposition. Suppose that the
assumptions of Theorem 2.8 are satisfied for every k, and so we can apply
the Uhlenbeck decomposition to each of the matrices Ωk and choose Pk, Ω̃

as in (2.1), (2.2). Without loss of generality Pk ⇀ P in W 1,n and Ω̃k ⇀ Ω̃

in Ln. Then it is easily checked that P , Ω̃ satisfy the conditions (2.1), (2.2)
for the matrix Ω.

Recall that our system is the following:

(1.4) −δ
(
|du|n−2du

)
= |du|n−2Ω · du.

Now we transform it using the above decomposition. We calculate:

−δ(|du|n−2P−1du) = −dP−1|du|n−2du− P−1δ(|du|n−2du).

Taking into account the equality dP−1 = −P−1dPP−1 for the first summand
and the equation (1.4) for the second, we obtain

−δ(|du|n−2P−1du) = P−1dPP−1|du|n−2du+ P−1|du|n−2Ω · du
= |du|n−2

(
P−1dP + P−1ΩP

)
· P−1du

= |du|n−2Ω̃ · P−1du.

Thus we obtained a coclosed matrix Ω̃ in place of Ω. It is also important
that Ω̃ has the form required by Theorem 1.2. Recall that

(1.2) Ωij =
m∑
s=1

Ds
ijdv

s
ij , i, j = 1, . . . , L,

for some m and Ds
ij ∈ W

1,n
b , vsij ∈ Ln. We shall check that this is the case

for the matrix Ω̃ = P−1dP + P−1ΩP . Indeed, the first term is

(
P−1dP

)
ij

=
L∑
s=1

PsidPsj ,

and so it has the form (1.2) with L summands. The second term is

(
P−1ΩP

)
ij

=

L∑
s,t=1

PsiΩstPtj .

Thanks to the form of Ω and the fact that the space W 1,n
b is closed under

multiplication, the entries of the second term are also of the form (1.2).
Therefore Ω̃ has the form (1.2) with L+mL2 summands instead of m.
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3.2. Local convergence. Our aim is to prove that each side of the system
(1.3) converges to the corresponding term of the system (1.4) in the sense
of distributions. Since Theorem 2.8 on the Uhlenbeck decomposition applies
only to matrices Ω of small Ln norm, we shall prove the convergence locally,
on sufficiently small balls. The following local lemma is the key point of the
proof of Theorem 1.2. It proves our claim under an additional assumption
that the norm ||Ω||Ln is small enough, up to possible point singularities.

Lemma 3.1. Let the functions uk ∈W 1,n(B,RL), Ωk ∈ Ln(B, so(L)⊗Λ1Rn)
satisfy the conditions of Theorem 1.2 on a ball B ⊆ U , uk ⇀ u in W 1,n,
Ωk ⇀ Ω in Ln. Suppose that ||Ωk||Ln(B) < ε for each k with ε = ε(n,L)

from Theorem 2.8. Then u ∈ W 1,n(B,RL) satisfies the system (1.4) with
possible singularities, i.e.

(3.1) −δ(|du|n−2P−1du) = |du|n−2Ω̃ · P−1du+
∑
j∈J

ajδxj in B,

where the set J is at most countable, xj ∈ B, aj ∈ RL,
∑

j∈J |aj | <∞.

Proof. The assumption ||Ωk||Ln(B) < ε allows us to apply the Uhlenbeck
decomposition inside the ball B. Let us adopt the notation introduced in
Section 3.1. The system (1.4) takes an equivalent form

−δ(|du|n−2P−1du) = |du|n−2Ω̃ · P−1du.

It follows from Lemma 2.3 that we can assume the convergence duk → du
in Lq(B) for 1 ≤ q < n. Using this and the convergence P−1k → P−1 in Lp
for every p <∞ we obtain, by Lemma 2.1,

|duk|n−2P−1k duk ⇀ |du|n−2P−1du in L1(B).

Hence
δ
(
|duk|n−2P−1k duk

)
→ δ

(
|du|n−2P−1du

)
in D′(B).

We shall now investigate the convergence of the term |duk|n−2Ω̃k ·P−1k duk.
Consider extensions of uk, P−1k from the ball B to the whole of Rn, vanishing
outside the ball 2B and with corresponding norm estimates. Namely, we
require the norms

||∇uk||Ln(Rn), ||∇P−1k ||Ln(Rn), ||P−1k ||L∞(Rn)

not to exceed the corresponding norms on the ball B times a constant. This
is possible for the norm L∞, as the matrices Pk are orthogonal. We have

|||duk|n−2P−1k duk||Ln/(n−1)(Rn) ≤ ||P
−1
k ||L∞(Rn)||∇uk||n−1Ln(Rn) . ||∇uk||

n−1
Ln(B).

Thus we can apply the Hodge decomposition theorem (cf. Iwaniec, Martin
[9]) for |duk|n−2P−1k duk ∈ Ln/(n−1)(Rn,RL ⊗ Λ1Rn) and choose

fk ∈W 1,n/(n−1) (Rn,RL) , gk ∈W 1,n/(n−1) (Rn,RL ⊗ Λ2Rn
)

satisfying

(3.2) |duk|n−2P−1k duk = dfk + δgk,

||∇fk||Ln/(n−1)(Rn) + ||∇gk||Ln/(n−1)(Rn) . ||∇uk||
n−1
Ln(B).
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By these estimates, we can assume without loss of generality that fk ⇀ f
and gk ⇀ g in W 1,n/(n−1)(B). Passing to the limit in the equation (3.2) and
using Lemma 2.3 again, we obtain

|du|n−2P−1du = df + δg in B.

The right-hand side term of our equation can then be rewritten as

|duk|n−2Ω̃k · P−1k duk = Ω̃k · dfk + Ω̃k · δgk.

Since dfk ⇀ df in Ln/(n−1)(B), Ω̃k ⇀ Ω̃ in Ln(B) and δΩ̃k = 0 in B, the
classical div-curl lemma gives

Ω̃k · dfk → Ω̃ · df in D′(B).

However, we can show this directly using integration by parts. Recall that
fk → f in Ln/(n−1)(B) and Ω̃k ⇀ Ω̃ in Ln, so Ω̃k · fk ⇀ Ω̃ · f in L1. For any
φ ∈ C∞0 (B), ∫

Rn

Ω̃k · dfkφ dx = −
∫
Rn

Ω̃k · fkdφdx

→ −
∫
Rn

Ω̃ · fdφdx

=

∫
Rn

Ω̃ · dfφ dx.

Recall that by our assumptions each entry of the matrix Ω̃k is a sum of
L+mL2 1-forms, each of the form Ddv, where D ∈W 1,n

b and v ∈W 1,n; the
norms of D, v are uniformly bounded. For the sake of simplicity we shall
consider only one summand at a time and assume Ω̃k = Dkdvk for further
calculations; here Dk takes matrix values and vk vector values. At the end,
one just needs to sum up the estimates obtained in this way. Without loss
of generality we assume that Dk ⇀ D and vk ⇀ v in their corresponding
spaces. Let us decompose the difference Ω̃k · δgk − Ω̃ · δg in the following
manner:

Ω̃k · δgk − Ω̃ · δg = Dkdvk · δgk −Ddv · δg
= (Dk −D)d(vk − v) · δ(gk − g)

+Dd(vk − v) · δ(gk − g)

+Dkd(vk − v) · δg + (Dkdv · δgk −Ddv · δg)

= I + II + IIIa+ IIIb.

Convergence of the summands III to 0. The convergence of IIIa,
IIIb to 0 inD′(B) is a straightforward consequence of the Sobolev embedding
theorem and technical Lemma 2.1. Indeed, we know that Dk ⇀ D, vk ⇀ v
in W 1,n (and thus strongly in Lp for p <∞), gk ⇀ g in W 1,n/(n−1) and the
sequence Dk is bounded in L∞. This implies Dkd(vk − v) ⇀ 0 in L1, so also
in Ln, and finally IIIa ⇀ 0 in L1. Similarly, DT

k δgk ⇀ DT δg in L1, so also
in Ln/(n−1), and by Lemma 2.1 again we have dv ·DT

k δgk ⇀ dv ·DT δg in L1.
This, together with the linear algebra identity Ddv · δg = dv ·DT δg, yields
IIIb ⇀ 0 in L1.
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Convergence of the summand II to 0. Consider extensions of the
functions vk, v, D from the ball B to the space Rn with corresponding
norm estimates; we can assume the convergence vk ⇀ v in W 1,n, gk ⇀ g in
W 1,n/(n−1) is preserved. It follows that d(vk − v) · δ(gk − g)→ 0 in D′(Rn);
the argument is similar to that for the term Ω̃k · dfk. By Proposition 2.5,
the sequence d(vk − v) · δ(gk − g) is bounded in H1(Rn), so without loss of
generality it is weakly-* convergent to some function s ∈ H1(Rn). Then we
know that ∫

φd(vk − v) · δ(gk − g) dx→ 0 for φ ∈ C∞0 (Rn),∫
φd(vk − v) · δ(gk − g) dx→

∫
φs dx for φ ∈ VMO(Rn).

which shows that s = 0. Choose any test function φ ∈ C∞0 (B); since
φD ∈W 1,n(Rn), we have φD ∈ VMO(Rn), and so∫

φDd(vk − v) · δ(gk − g) dx→ 0,

which proves II → 0 in D′(B).

Convergence of the summand I. For k = 1, 2, . . . we define the aux-
iliary measures

dνk = ((Dk −D)d(vk − v) · δ(gk − g)) dx,

dµk =
(
|∇(Dk −D)|n + |∇(vk − v)|n + |∇(gk − g)|n/(n−1)

)
dx.

Up to this point, we have proved that for any φ ∈ C∞0 (B),∫
φ
(
|duk|n−2Ω̃k · P−1k duk − |du|n−2Ω̃ · P−1du

)
dx

=

∫
φ(Dk −D)d(vk − v) · δ(gk − g) dx+ o(1)

=

∫
φ dνk + o(1).

Fix any φ ∈ C∞0 (B). Now we derive the following estimate:∣∣∣∣∫ φn+1 dνk

∣∣∣∣ . (∫ |φ|n dµk

)(n+1)/n

+ o(1).

First, observe that∫
φn+1 dνk =

∫
φn+1(Dk −D)d(vk − v) · δ(gk − g) dx

=

∫
φ(Dk −D)d(φ(vk − v)) · δ(φn−1(gk − g)) dx+ o(1).

Indeed, the difference of the integrands is a sum of products, each of them
having at least one of the factors vk − v, gk − g not differentiated. Recall
that by the Sobolev and Rellich-Kondrashov theorems,

Dk −D → 0 weakly in W 1,n, strongly in Lp, p <∞,
vk − v → 0 weakly in W 1,n, strongly in Lp, p <∞,
gk − g → 0 weakly in W 1,n/(n−1), strongly in Lp, p < n

n−2 .
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Hence the difference converges weakly to zero in L1 by Hölder’s inequality
and Lemma 2.1. We apply Proposition 2.5 to the obtained integral and get∣∣∣∣∫ φ(Dk −D)d(φ(vk − v)) · δ(φn−1(gk − g)) dx

∣∣∣∣
≤ ||φ(Dk −D)||BMO||∇(φ(vk − v))||Ln ||∇(φn−1(gk − g))||Ln/(n−1) .

Each of the factors is estimated in the same manner:

||φ(Dk −D)||BMO . ||∇(φ(Dk −D))||Ln

≤ ||φ∇(Dk −D)||Ln + ||∇φ||L∞ ||Dk −D||Ln

≤
(∫
|φ|n dµk

)1/n

+ o(1),

||∇(φ(vk − v))||Ln ≤ ||φ∇(vk − v)||Ln + ||∇φ||L∞ ||vk − v||Ln

≤
(∫
|φ|n dµk

)1/n

+ o(1),

||∇(φn−1(gk − g))||
L

n
n−1
≤ ||φn−1∇(gk − g)||

L
n

n−1
+ ||∇φn−1||L∞ ||gk − g||L n

n−1

≤
(∫
|φ|n dµk

)(n−1)/n
+ o(1).

Multiplying these inequalities gives∣∣∣∣∫ φn+1 dνk

∣∣∣∣ . (∫ |φ|n dµk

)(n+1)/n

+ o(1),

as claimed. Now it follows from Hölder’s inequality that the densities of
measures νk and µk are uniformly bounded in L1(B), so we can assume
without loss of generality that

νk −→ ν, µk −→ µ weakly-* in M(B).

Moreover, since the measures µk are positive, µ is positive as well. The
obtained estimate gives us∣∣∣∣∫ φn+1 dν

∣∣∣∣ . (∫ |φ|n dµ

)(n+1)/n

.

If we replace φ by φ2, where φ ∈ C∞0 (B), we obtain∣∣∣∣∫ |φ|2(n+1) dν

∣∣∣∣ 1
2(n+1)

.

(∫
|φ|2n dµ

) 1
2n

.

Then Lemma 2.6 (concentration compactness) and Remark 2.7 imply that
ν is a finite measure of the form

ν =
∑
j∈J

ajδxj ,

where the set J is at most countable, xj ∈ B, aj ∈ RL,
∑

j∈J |aj | < ∞.
Thus we proved that passing to the limit in the system (1.3) yields

(3.1) −δ(|du|n−2P−1du) = |du|n−2Ω̃ · P−1du+
∑
j∈J

ajδxj in B.
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�

3.3. Removing the singularities.

Proof of Theorem 1.2. We begin by showing that in the obtained system
(3.1) the singular term

∑
j∈J ajδxj is in fact necessarily zero. To this end we

use technical Lemma 2.2. Let us choose the functions ϕk as constructed in
the lemma.

Choose any j0 ∈ J and for simplicity assume that xj0 = 0 ∈ B. The
equation (3.1) can be tested with the function ψk = (±ϕk, . . . ,±ϕk), where
the signs are chosen to match the signs of the coordinates of the vector aj0 .
Thus we obtain the following:〈
−δ(|du|n−2P−1du), ψk

〉
=
〈
|du|n−2Ω̃P−1 · du, ψk

〉
+ |aj0 | +

∑
j 6=j0 aj · ψk(xj)y y y

0 0 0

Indeed, the condition ||ϕk||W 1,n → 0 implies the convergence of the first term.
Since 0 ≤ ϕk ≤ 1 and suppϕk ⊆ B(0, Rk), Rk → 0, the convergence of the
second term follows from the Lebesgue dominated convergence theorem. The
third term is similar: a ∈ l1 and for each j 6= 0 and k large enough we have
ψk(xj) = 0. Therefore we proved that aj0 = 0; in consequence the whole
singular part is zero.

Now we can proceed from local to global considerations. Since the se-
quence |Ωk|n is bounded in L1(U), without loss of generality it is weakly-*
convergent to some finite positive measure η on U . Let ε > 0 be as in
Lemma 3.1 and let us define the set

S = {x ∈ U : η({x}) ≥ εn}.

The set S is finite, as |S|εn ≤ η(S) ≤ η(U) < ∞. For any point x ∈ U \ S
there is a radius r > 0 for which η(B(x, 2r)) < εn. We have

lim sup
k→∞

∫
B(x,r)

|Ωk|n dy ≤ η(B(x, 2r)),

hence
∫
B(x,r) |Ωk|n dy < εn for k large enough. Lemma 3.1 and our previous

remarks on the singularities allow us to conclude that u satisfies the system
(1.4) on the ball B(x, r). Hence u satisfies the system (1.4) on the set U \S.

In order to finish the proof, we exploit Lemma 2.2 again. Assume that the
set S consists of points x1, . . . , xs. Choose any test function ψ ∈ C∞0 (U,RL)
and decompose it into two parts as follows:

ψ(x) = ψ(x)

s∑
j=1

ϕk(x−xj)+ψ(x)

1−
s∑
j=1

ϕk(x− xj)

 =: ψ0,k(x)+ψ1,k(x).

Note that suppψ1,k ⊆ U \ S and so we can test the system (1.4) with the
function ψ1,k. On the other hand, ψ0,k → 0 in W 1,n(U) and in a dominated
way, so by passing to the limit k → ∞ we obtain the system (1.4) tested
with the funtion ψ. This ends the proof. �
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Proof of Remark 1.3. Assume that the functions uk satisfy the perturbed
system (1.5). We only need to show that in this case the conclusion of
Lemma 3.1 holds as well. Indeed, the remaining part of the proof of Theo-
rem 1.2 is still valid. Observe that in our case the Uhlenbeck decomposition
gives the following:

−δ(|duk|n−2P−1k duk) = |duk|n−2Ω̃k · P−1k ∇uk + P−1k Φk.

For any ψ ∈ C∞0 (B,RL) we have∣∣〈P−1k Φk, ψ〉
∣∣ = |〈Φk, Pkψ〉| ≤ ||Φk||(W 1,n(U,RL))∗ ||Pkψ||W 1,n(U) → 0,

as the sequence Pk is bounded in W 1,n. Hence the additional term tends to
zero in the sense of distributions. The proof of convergence for other terms
remains the same, although we have to replace Lemma 2.3 with a slightly
generalized version, i.e. Lemma 2.4. �
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