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Abstract

This thesis is concerned with singularities of minimizing harmonic maps into
closed manifolds, with special emphasis on maps into the sphere S2. By de�-
nition, they are maps that minimize the Dirichlet energy E(u) =

∫
|∇u|2 with

respect to given boundary conditions. Since the 80’s, such maps are known to
be smooth outside a closed set of codimension at least 3, called the singular set;
recently, its codimension 3 Hausdor� measure was shown to be locally �nite.

First, we present a regularity theorem for the singular set. For maps into S2,
we show that the singular set is indeed a codimension 3 topological submani-
fold (up to a set of measure zero), thus excluding possible arbitrary gaps in the
singular set. This was previously known only for domains of dimension 4.

Next, we give various extensions of Naber and Valtorta’s discrete Reifenberg
theorem, a general tool in geometric measure theory that yields upper measure
bounds for sets satisfying Reifenberg-type �atness conditions. We also illustrate
the applications in the study of singularities.

Finally, building upon previously known local measure estimates, we study
how the singularities of a minimizer u : Ω → S2 depend on its boundary map
ϕ = u|∂Ω. It is shown that the measure of the singular set can be estimated lin-
early in terms of the boundary energy

∫
∂Ω |∇ϕ|

n−1, where n = dim Ω. More-
over, the singular set is stable (in Wasserstein distance) with respect toW 1,n−1-
perturbations of the boundary map.

Keywords: harmonic maps, singularities, Reifenberg parametrization

AMS Subject Classi�cation: 58E20, 35J20, 35A20
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Streszczenie

Tematem niniejszej pracy są osobliwości minimalizujących przekształceń har-
monicznych o wartościach w zamkniętej rozmaitości, ze szczególnym uwzględ-
nieniem przekształceń w sferę S2. Z de�nicji są to przekształcenia z zadanym
warunkiem brzegowym, minimalizujące energię Dirichleta E(u) =

∫
|∇u|2.

Od ponad 30 lat wiadomo, że przekształcenia takie są gładkie poza pewnym
zbiorem domkniętym kowymiaru co najmniej 3, zwanym zbiorem osobliwym.
Jednak dopiero w ostatnich latach wykazano, że miara Hausdor�a (kowymi-
aru 3) tego zbioru jest lokalnie skończona.

Zaczniemy od zbadania regularności zbioru osobliwego. Dla przekształceń w S2

dowiedziemy mianowicie, że zbiór osobliwy jest topologiczną podrozmaitością
kowymiaru 3 (z dokładnością do zbioru miary zero), wykluczając w ten sposób
możliwe dziury w zbiorze osobliwym. Taki wynik był dotychczas znany jedynie
dla dziedzin wymiaru 4.

Następnie zaprezentujemy możliwe uogólnienia pochodzącego od Nabera i Val-
torty dyskretnego twierdzenia Reifenberga. Są to ogólne narzędzia z zakresu ge-
ometrycznej teorii miary, pozwalające na uzyskanie górnych ograniczeń na mi-
arę zbiorów spełniających odpowiednie założenia płaskości typu Reifenberga.
Omówimy też zastosowanie takich twierdzeń do badania osobliwości.

Na koniec wykorzystamy i wzmocnimy dostępne lokalne oszacowania, by zba-
dać zależność osobliwości przekształcenia minimalizującego u : Ω→ S2 od jego
przekształcenia brzegowego ϕ = u|∂Ω. Wykażemy, że miarę zbioru osobliwego
można oszacować w sposób liniowy przez energię brzegową

∫
∂Ω |∇ϕ|

n−1, gdzie
n = dim Ω. Co więcej, pokażemy stabilność osobliwości (w sensie odległości
Wassersteina) przy zaburzeniach przekształcenia brzegowego w normieW 1,n−1.

iv



Acknowledgments

First of all, I would like to express my gratitude to my PhD advisors Anna
Zatorska-Goldstein and Paweł Strzelecki. During these years, they taught me
most of what I know in PDEs, gave me their unconditional support and guided
me towards being an independent mathematician. I remember Paweł praising
my choice of specialization years ago, saying that any fool can achieve something
in mathematical analysis. I hope to prove him right someday.

I am grateful to my coauthors Katarzyna Mazowiecka and Armin Schikorra, as
well as other mathematicians who helped me along the way, including Aaron
Naber, Piotr Rybka and Michał Łasica. I would also like to thank Tristan Rivière
for his hospitality during my stay in Zurich.

I would not follow this path if it were not for my high school teachers, Wiktor
Bartol and Jerzy Bednarczuk. Thank you for showing me what mathematics is!

Special thanks are due to my friends, with whom I engaged in the Tuesday
Burger Group, the Faculty Choir and all sorts of sports. Grześ Bokota, Marcin
Fatyga, Maks Grab, Tomek Gródek, Kasia Kowal, Zosia Aldonka Michalik,
Łukasz Rajkowski, Mateusz Rapicki – to name at least some of you – I greatly
appreciate the time we spent together!

I could not be more grateful to my family – my parents, brothers, sisters, ne-
phews and nieces. Their constant encouragement helped me overcome all the
obstacles on the way.

Finally, I would like to thank the National Science Center in Poland for sup-
porting my research via grants no. 2012/05/E/ST1/03232, 2016/21/B/ST1/03138
and 2018/28/T/ST1/00117. I also acknowledge the �nancial support of Warsaw
Center of Mathematics and Computer Sciences.

v



Contents

1 Introduction 1

1.1 Classical theory of harmonic maps . . . . . . . . . . . . . . . . . 1

1.2 Analytic di�culties . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Minimizing harmonic maps . . . . . . . . . . . . . . . . . . . . . 4

1.4 Results for special target manifolds . . . . . . . . . . . . . . . . 6

1.5 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Basic properties of minimizing harmonic maps 15

2.1 Regularity of energy minimizers . . . . . . . . . . . . . . . . . . 15

2.2 Tangent maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Top-dimensional part of the singular set . . . . . . . . . . . . . 18

2.4 Classi�cation of tangent maps into S2 . . . . . . . . . . . . . . . 19

vi



2.5 Uniform boundedness of minimizers . . . . . . . . . . . . . . . . 20

2.6 Boundary regularity . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Hölder regularity of the singular set 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Indecomposable homotopy classes . . . . . . . . . . . . . . . . . 31

3.3 Notions of �atness and Reifenberg’s topological disc theorem . 35

3.4 Regularity of the singular set . . . . . . . . . . . . . . . . . . . . 37

3.5 Stability of δ-�atness . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Regularity results of Naber and Valtorta 49

4.1 Important tools and results . . . . . . . . . . . . . . . . . . . . . 49

4.2 A measure bound on lower strata . . . . . . . . . . . . . . . . . 52

4.3 A measure bound on the singular set for N = S2 . . . . . . . . . 54

5 Discrete Reifenberg-type theorem 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Technical constructions . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . 73

5.5 Extentions of the theorem . . . . . . . . . . . . . . . . . . . . . 82

6 Linear bound on the measure of singularities 88

6.1 Linear law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Hot spots – re�ned boundary regularity . . . . . . . . . . . . . . 90

6.3 Covering argument . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Stability of singularities 98

7.1 Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Behavior of top-dimensional singularities . . . . . . . . . . . . . 101

7.4 Local case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Global case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



Chapter 1

Introduction

1.1 Classical theory of harmonic maps

In the greatest generality, our object of study are maps u : M → N between
two Riemannian manifolds that minimize (or are critical points of) the Dirichlet
energy

E(u) :=

∫
M
|∇u|2,

called harmonic maps. More precise de�nitions will be given in a moment; for
now let us only explain that the size of the di�erential∇u(x) : TxM→ Tu(x)N
is measured with the Hilbert-Schmidt norm and the integration takes place with
respect to the volume measure onM.

In this dissertation we investigate the regularity properties of such maps, with
special emphasis on the case N = S2 and dimM > 3. As we shall see, har-
monic maps are in general not regular, but their singularities are by now well
understood. The study of their singular sets is the main objective of this work.

For now, let us mention several interesting examples of harmonic maps:
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• ifM is 1-dimensional, harmonic maps are geodesics on N ;
• if N = R, harmonic maps are simply harmonic functions onM;
• ifM is 2-dimensional, conformal harmonic maps are parametrizations of

minimal surfaces (i.e., critical points of the area functional).

A detailed discussion of the classical theory of (smooth) harmonic maps can be
found in two survey articles by Eells and Lemaire [11, 12].

1.2 Analytic di�culties

The analysis of harmonic maps becomes substantially harder when the domain
has dimension n > 3. To illustrate the di�culties, let us assume that the target
manifold N ⊆ RN is a submanifold of some (possibly high-dimensional) Eu-
clidean space; by Nash’s isometric embedding theorem, this does not a�ect the
generality of our considerations.

To start with, assume that u : M→ N is a critical point of E; this means that
for each perturbation ϕ ∈ C∞c (M,RN) we have

d

dt

∣∣∣
t=0
E(πN (u+ tϕ)) = 0.

Note that u + tϕ is not a valid competitor as it takes values outside of N , and
thus it needs to be projected back onto N by the nearest-point projection πN .
This Euler-Lagrange equation can be rewritten as

−∆Mu = ANu (∇u,∇u), (1.2.1)
where ∆M is the Laplace-Beltrami operator onM and ANu denotes the second
fundamental form of the submanifold N ⊆ RN evaluated at u. To be precise,
the right-hand side is to be understood as a sum

∑
αA
N
u (∂αu, ∂αu) over some

orthonormal basis ∂α of TM.

This dissertation is focused on the special case whenM⊆ Rn is a bounded �at
domain and N is the standard sphere S2. Then, the equation (1.2.1) takes the
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simple form
−∆u = |∇u|2u.

In all possible cases of non-�at target manifolds, the quadratic non-linearity
is troublesome. If one assumes that u belongs to the Sobolev space W 1,2 –
which is natural in the context of minimizing E – then the right-hand side
belongs merely to the space L1, and most standard techniques of regularity
theory cannot be directly applied. Indeed, in higher dimensions the solutions
may be singular:

• if u ∈ W 1,2 is a weak solution of (1.2.1) and dimM 6 2, then u is a smooth
classical solution (Hélein [21]);

• however, if dimM > 3, then umay be discontinuous everywhere (Rivière
[41]).

An example of a singular harmonic map is

Rn 3 x 7−→ x

|x|
∈ Sn−1 (n > 3).

Let us stress that this map is not only a critical point, but also a minimizer
in the sense of De�nition 1.3.2 [25]. It is worth mentioning that singularities
appear also in the absence of topological obstructions – i.e., a homotopically
trivial prescribed boundary map ϕ : Sn−1 → Sn−1 may give rise to a singular
minimizer u : Bn → Sn−1 [16, 31].

Since full regularity is not available in the case n > 3, one can hope for at
least a partial regularity result, i.e., smoothness outside a small singular set. To
this end, one has to carefully distinguish between di�erent classes of harmonic
maps. Many of the results cited in this introduction also hold in case of so-
called stationary and stable-stationary harmonic maps, but for simplicity we
focus only on minimizing harmonic maps introduced in the next section.

The dichotomy mentioned above – discontinuity on the singular set and smooth-
ness elsewhere – in some sense reduces the usual regularity problems to the
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study of the singular set. For this reason, from now on we will focus on estimat-
ing its dimension (which in typical situations is n− 3) and size (i.e., Hausdor�
measure), studying its manifold structure and its dependence on the boundary
data.

1.3 Minimizing harmonic maps

From now on,N will always be a smooth closed (i.e., compact, without bound-
ary) manifold, isometrically embedded into some Euclidean space RN . To sim-
plify the considerations, we will also assume that the maps u : Ω → N under
consideration are de�ned on a bounded �at domain Ω ⊆ Rn. Since singular
behavior of u is a local phenomenon, most results in this dissertation can be
generalized to a general domainM. The main idea is that by restricting u to
a su�ciently small ball Br(p) ⊆ M and rescaling in normal coordinates we
obtain the map

u : B1 → N , u(x) := u(expp(rx))

de�ned on the unit ball with Riemannian metric arbitrarily close to the Eu-
clidean metric. The di�erences in analysis are of technical nature – e.g., the
monotonicity formula (2.1.1) becomes an almost-monotonicity formula. The
interested reader can �nd a detailed explanation in [37] and [47, Sec. 8].

To discuss partial regularity results by Schoen and Uhlenbeck [43, 44, 45], we
�rst need to precisely de�ne the class of harmonic maps we consider.

De�nition 1.3.1. If Ω ⊆ Rn is a bounded domain and N ⊆ RN is a closed
smooth submanifold, then we de�ne the class of Sobolev maps W 1,2(Ω,N ) by

W 1,2(Ω,N ) =
{
u ∈ W 1,2(Ω,RN) : u(x) ∈ N for a.e. x ∈ Ω

}
.

Note that this is a weakly closed subset, but not a linear subspace ofW 1,2(Ω,RN).

De�nition 1.3.2. Let u ∈ W 1,2(Ω,N ).

4



• if E(u) 6 E(v) for each v ∈ W 1,2(Ω,N ) with the same trace on ∂Ω as u,
then u is called an energy minimizer or a minimizing harmonic map in Ω;

• if Ω can be covered by a family of balls in which u is minimizing, then u
is called a local energy minimizer or a locally minimizing harmonic map.

Finally, having in mind partial regularity, we adopt the following de�nition.
De�nition 1.3.3. Let u : Ω → N be a (locally) minimizing harmonic map.
A point x ∈ Ω is called regular if u has a representative continuous at x, other-
wise x is singular. We denote the set of all singular points by sing u.
Remark 1.3.4. Equivalently, a point x ∈ Ω is regular if u is smooth on some
neighborhood of x (see the theorem below).

The following partial regularity theorem summarizes the results obtained by
Schoen and Uhlenbeck in the 1980’s for the interior case [43, 45] and the bound-
ary case [44].
Theorem 1.3.5 ([43, 44, 45]). Let u : Ω → N be a minimizing harmonic map
in a bounded domain Ω ⊆ Rn. Then sing u ⊆ Ω is a closed subset of Hausdor�
dimension at most n− 3, and u is smooth in Ω \ sing u. Moreover,

• if both the boundary ∂Ω and the boundary map u|∂Ω are su�ciently smooth
(C1,α is su�cient), then u is smooth on some neighborhood of ∂Ω;

• in case n = 3, sing u is discrete.

In particular, if both ∂Ω and u|∂Ω are su�ciently smooth and n = 3, the singular
set sing u consists of �nitely many points. The higher-dimensional counterpart
of this statement – that Hn−3(sing u) < ∞ – had been open for over 30 years
and has been recently proved by Naber and Valtorta [37]. This recent break-
through and the new methods behind it were one of the reasons I have chosen
this topic for my doctoral dissertation.

One of the main results of Naber and Valtorta’s article from 2017 [37] is the
following. Further discussion of this work can be found in Chapter 4.
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Theorem 1.3.6. If u : B2r(p)→ N is a locally minimizing harmonic map, then
sing u is a recti�able (n− 3)-dimensional set. Moreover, its measure in a smaller
ball Hn−3(sing u ∩ Br(p)) is bounded by rn−3 times a constant dependent on n,
N and the energy r2−n ∫

B2r(p)
|∇u|2.

In general the (n − 3)-dimensional bounds on the singular set cannot be im-
proved. A typical singularity of a minimizing map into S2 looks like

R3 × Rn−3 3 (x, y) 7→ x/|x| ∈ S2,

so it has an (n− 3)-dimensional plane as its singular set (see Corollary 2.4.2).

These are the main results available for a general smooth closed target manifold
N . A number of other interesting properties were shown for special classes of
target manifolds, especially for the standard sphere S2.

1.4 Results for special target manifolds

There are many results for special classes of target manifolds – real analytic
manifolds [47], simply-connected manifolds [17], symmetric spaces [20] – or
simply for the target manifold N = S2.

In addition to its intrinsic mathematical interest, this special case also appears in
some physical models. The molecules of liquid crystals are small but relatively
long, and their con�guration minimizes an energy that penalizes changes of
direction. Taking the averaged direction of molecules at each point, we obtain
a map u : Ω→ RP 2 that minimizes a functional closely resembling the Dirich-
let energy E(u). Singularities of harmonic maps are related to defects of liquid
crystals, i.e., points where the direction of molecules changes in a discontin-
uous way. Replacing RP 2 (the space of directions) by S2 and simplifying the
functional toE, we can still capture the main phenomena. An interested reader
can be referred to [1] and [14].
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Here, I focus on the caseN = S2 and give three results of this type. A large part
of the dissertation is dedicated to these three theorems and their generalizations
to higher dimensional domains. Possible generalizations to a larger class of
target manifolds will also be discussed.

In the special case of maps u : B4 → S2, Hardt and Lin [19] obtained the fol-
lowing remarkable structure result.

Theorem 1.4.1. The singular set of an energy minimizer u : B4 → S2 is locally
a union of a �nite set and a �nite family of Hölder continuous closed curves with
a �nite number of crossings.

The same claim was obtained also for maps u : B5 → S3 (Lin-Wang [26]). To
the author’s knowledge, these are the only two cases where sing u was shown
to be essentially a manifold.

Let us remark here that the classi�cation of tangent maps from [26] makes it
possible to generalize the main results of this dissertation to the case of maps
into S3. For clarity, we focus on S2 and refer the interested reader to [26] and
[37, Sec. 1.3], where the necessary modi�cations are described.

In dimension n = 3, when minimizing harmonic maps have only isolated singu-
larities, further re�nements of Schoen and Uhlenbeck’s results were obtained.

Hardt and Lin [18] also showed that the singularities are stable under Lipschitz
perturbations of the boundary map.

Theorem 1.4.2. Let Ω ⊆ R3 be a bounded smooth domain and u : Ω → S2 be
a minimizing harmonic map with Lipschitz continuous boundary data ϕ := u|∂Ω.
If uk is a sequence of minimizers with corresponding boundary maps ϕk and

ϕk → ϕ in Lip(∂Ω,S2), uk → u inW 1,2(Ω,S2),

then for large k, uk has the same number of singularities as u, and sing uk con-
verges to sing u (say, with respect to Hausdor� distance).

7



Even more, there exist bi-Lipschitz transformations ηk of Ω mapping sing u to
sing uk and such that ‖ηk − id ‖Lip → 0 and ‖u− uk ◦ ηi‖Cβ → 0 for some small
β > 0.

Almgren and Lieb estimated the number of singularities in terms of the bound-
ary map [1].
Theorem 1.4.3. Let Ω ⊆ R3 be a bounded smooth domain and u : Ω → S2 be
a minimizing harmonic map with boundary data ϕ ∈ W 1,2(∂Ω,N ). Then

# sing u 6 C(Ω)

∫
∂Ω

|∇ϕ(x)|2 dH2(x).

Note that a simple non-linear estimate # sing u 6 C(Ω, ‖ϕ‖Lip) follows already
from Hardt and Lin’s Theorem 1.4.2 (see [18, Sec. 4]). However, this linear es-
timate only uses the W 1,2-norm of the boundary map, which does not control
the distance of singularities from the boundary.

1.5 Discussion of results

General goals

Considering the whole theory of harmonic maps, a number of fundamental
questions has already been answered. For low dimensions (n = 1, 2), this
theory is classical and the solutions are smooth, while for higher dimensions
(n > 3) one needs to study minimizing maps (instead of merely critical points)
and singularities appear. Again, the case n = 3 (when singularities are iso-
lated) is very well understood, while for n > 3 (when singularities are (n− 3)-
dimensional) a major breakthrough took place in the last 5 years. For special
cases of target manifolds, especially for S2, some further results are available.
They rely heavily on the classi�cation of tangent maps into S2 (Theorem 2.4.1),
carried out by Brezis, Coron and Lieb [4].

8



This discussion motivates the following general questions, which I aim to ad-
dress in this disertation.

• Do Theorems 1.4.1, 1.4.2, 1.4.3 generalize to domains of an arbitrary di-
mension n > 3?

• Can similar results be shown for other target manifolds? What special
properties of minimizing harmonic maps into S2 are crucial?

• In case the singular set is proved to be a topological manifold (as in Theo-
rem 1.4.1), how regular is it?

Structure of the dissertation

Chapters 1, 2, 4 have an introductory character, and only Sections 4.2, 4.3 there
include new results or proofs. The author’s results from [33] are presented
in Chapter 3, while Chapter 5 is based on the article published in Annales
Academiæ Scientiarum Fennicæ Mathematica [32]. Chapters 6 and 7 discuss
the recent results obtained in collaboration with Katarzyna Mazowiecka and
Armin Schikorra [30] (see also [29]).

Let us now discuss the contents of this dissertation in more detail.

In the course of the proofs, we shall use – among others – many tools developed
in the 1980’s (most of them already in [43]), such as the ε-regularity theorem,
monotonicity formula and strong W 1,2-compactness of the class of minimizing
maps. These are introduced in Chapter 2. The notion of tangent maps – which
describe the in�nitesimal behavior of minimizing harmonic maps, especially
around a singular point – is discussed with special care.

Chapter 3 generalizes Theorem 1.4.1 to higher-dimensional domains; it is based
on the author’s work [33]. The main result (Corollary 3.1.5) is the following. For
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any minimizing map u : Ω → S2 de�ned on Ω ⊆ Rn, one can distinguish the
top-dimensional part of the singular set sing∗ u ⊆ sing u (see (2.3.1)), which is
a subset of full Hn−3-measure. Then, sing∗ u is proved to be an open subset
and a topological (n − 3)-dimensional manifold of Hölder class C0,γ for every
γ ∈ (0, 1).

In order to extract the topological obstruction responsible for preventing gaps
in the singular set of maps into S2, we study properties of possible singulari-
ties of maps into an arbitrary closed Riemannian manifold N . We distinguish
particular homotopy classes of tangent maps R3 → N (called here indecompos-
able classes, see De�nition 3.2.4), with which we are able to prove an analogous
result (see Theorem 3.1.3 for a precise statement). Consider a minimizing map
u : Ω → N and an indecomposable homotopy class α ∈ π2(N ). Then the set
of points where u has a singularity of type α and energy density close to optimal
forms an open subset of sing u and a topological (n− 3)-dimensional manifold
of Hölder class C0,γ for some γ > 0.

This formulation might seem complicated, but it sheds some light on the an-
alytic and topological properties of singularities responsible for regularity of
the singular set. In the particular case of N = S2, Theorem 2.4.1 implies that
almost all singularities have the same indecomposable homotopy type and op-
timal energy density, and Corollary 3.1.5 follows.

The important contributions of Naber and Valtorta [37] are crucial to all further
developments described here, thus the whole Chapter 4 is devoted to them. Let
us remark that the three ingredients needed to prove the measure bound in
Theorem 1.3.6 are the L2-approximation theorem (Theorem 4.1.5), the discrete
Reifenberg theorem (Theorem 4.1.3) and an appropriate covering theorem (see
[37, Lemma 8.1]).

In addition to the estimates on the whole singular set (as in Theorem 1.3.6),
bounds on its (n− 4)-dimensional part are also available (see Corollary 4.2.2).
I would like to thank Aaron Naber for pointing out that the results of Chapter
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3 can be combined with [37] in this way.

To give a �avor of Naber and Valtorta’s methods, we investigate the special case
considered in Chapter 3 of a minimizing map u : Bn → S2 close to its tangent
map (i.e., δ-�at in the sense of De�nition 3.3.3). In Theorem 4.3.1 (a very weak
version of their main result), we show that in this case the original proof sim-
pli�es signi�cantly, and the measure bound on sing u can be obtained without
a sophisticated covering argument. This also emphasizes the importance of the
discrete Reifenberg theorem.

Chapter 5 discusses various extensions of the discrete Reifenberg theorem from
[37]; these were published in the author’s paper [32]. Theorems of this kind
have wide applicability in the study of singular sets in various geometric prob-
lems [36, 22, 5], and in particular to singularities of minimizing harmonic maps
[37]. They are also interesting in themselves as general results in geometric
measure theory.

The main result of this chapter is phrased in terms of so called Jones’ height ex-
cess numbers. Fixing a Radon measure µ onRn and some dimension 0 < k < n,
the quantity

β2
µ,2(x, r) := inf

{
r−(k+2)

∫
Br(x)

d2(y, V ) dµ(y) : V is a k-dim a�ne plane
}

measures how far µxBr(x) is from being supported on some k-dimensional
plane (d(·, V ) denotes the distance to V ). The main result of this chapter (The-
orem 5.1.1) states that (under some technical assumptions on µ) the condition

r−k
∫
Br(x)

∫ r

0

β2
µ,2(y, s)

ds

s
dµ(y) 6 J on each ball Br(x)

implies the bound µ(Br(x)) 6 C(n)(1 + J1/2)rk on every ball.

These technical assumptions are automatically satis�ed if µ is the Hausdor�
measure on some k-dimensional set (i.e., µ = HkxS) or if it is a discrete mea-
sure µ =

∑
j ωkr

k
j δxj associated to some family {Brj(xj)} of disjoint balls. The
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name discrete Reifenberg theorem comes from the fact that the proof follows by
a careful application of the classical Reifenberg construction [40], �rst in the
case when µ is a discrete measure. Indeed, a version for more general measures
(Theorem 5.5.1, Remark 5.5.3) follows easily from the discrete case. Simple mod-
i�cations allow also for the use of βµ,q-numbers with q > 2 (which involve the
distance d(·, V ) to the power q), and for weakened assumptions (Theorem 5.5.4).
I remark here that Edelen, Naber and Valtorta [9, 10] later published even more
general versions of Theorem 5.1.1 (see also the lecture notes [35]).

The last two chapters describe the results of my joint work with Katarzyna Ma-
zowiecka and Armin Schikorra [30]. The main result of Chapter 6 is Theorem
6.1.1, a higher-dimensional counterpart of Almgren and Lieb’s Theorem 1.4.3.
If Ω ⊆ Rn is a bounded smooth domain and u : Ω → S2 is a minimizing map
with boundary data ϕ ∈ W 1,n−1(∂Ω,S2), then

Hn−3(sing u) 6 C(Ω)

∫
∂Ω

|∇ϕ(x)|n−1 dHn−1(x).

As in the case n = 3, a non-linear estimate Hn−3(sing u) 6 C(Ω, ‖ϕ‖Lip) is
much easier to obtain (see Theorem 6.1.3). Thus, the power of our result lies
in the linear dependence on the energy, and in the use of W 1,n−1-norm of the
boundary map, which again does not control the distance of singularities from
the boundary.

The strategy of the proof is close to the original, based on re�ned boundary reg-
ularity results of the following type: if a minimizer u : B+

1 → S2 has a boundary
map ϕ : Bn−1

1 → S2 with small energy, then some region of B+
1 is free of sin-

gularities. However, the crucial ingredient here is the hot spot lemma due to
Almgren and Lieb [1, Thm. 2.4], generalized to higher dimensions (Theorem
6.2.2). It yields the same regularity conclusion with a weakened assumption –
we only assume that the energy of ϕ on Bn−1

1 \Bε is small, while its behavior
on the small ball Bε (called the hot spot) can be arbitrarily wild.

The original paper of Almgren and Lieb [1] relies on the classi�cation of singu-
larities of maps into S2 (Theorem 2.4.1) to show a lower bound on the distance
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between two singularities. Replacing this bound by Naber and Valtorta’s The-
orem 1.3.6, we are able to obtain a similar result in an arbitrary dimension.
A similar strategy was used in the context of minimal surfaces by Edelen in [8],
where he combined interior measure bounds due to Naber and Valtorta [36]
with boundary regularity results to obtain global bounds on the singular set.

Moreover, the only special property of S2 needed in course of the proof is the
extension property (Theorem 2.5.1), which can be shown for a wider class of
target manifolds. Thus, the �nal result holds for maps into any closed simply
connected Riemannian manifold N .

Finally, a higher-dimensional counterpart of Hardt and Lin’s stability theorem
is proved in Chapter 7 (Theorem 7.1.1). With the same assumptions on Ω, u and
ϕ as above, if uk is a sequence of minimizers with boundary data ϕk and

uk → u in W 1,2, ϕk → ϕ in W 1,n−1,

then
Hn−3xsing uk

dW−→ Hn−3xsing u,

where dW denotes the 1-Wasserstein distance (7.1.1) between Hausdor� mea-
sures on singular sets of uk and u. In particular, the total measureHn−3(sing uk)
tends toHn−3(sing uk).

Note that this recovers most of Hardt and Lin’s Theorem 1.4.2 in the case n = 3
(except for the di�eomorphism statement). Indeed, H0 is simply the counting
measure, so Wasserstein convergence implies that # sing uk = # sing u for
large k and that sing uk converges to sing u with respect to Hausdor� distance.
However, generalizing the di�eomorphism statement to higher dimensions is
very hard – even the bi-Lipschitz regularity of sing∗ u is an open problem for
n > 3.

As in the original paper [18], the heart of the argument lies in the local case.
If we restrict u to a small enough ball around a singularity, it is close to its
tangent map, and after rescaling the problem reduces to the following (which
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is the content of Lemma 7.4.1). If u : B80 → S2 is close enough to its tangent
map (again, δ-�at in the sense of De�nition 3.3.3), then

(1− ε)ωn−3 6 Hn−3(sing u ∩B1) 6 (1 + ε)ωn−3.

This means that the measure of sing u ∩B1 is close to the measure of the sin-
gular set of its tangent map in B1, which is an (n − 3)-dimensional disc. The
proof is very similar to that of Theorem 4.3.1 and follows the lines of Naber and
Valtorta’s work, only that Theorem 4.1.4 (recti�able Reifenberg) is used instead
of Theorem 4.1.3 (discrete Reifenberg). This time however, the results of Chap-
ter 3 are essential to the proof of the sharp measure estimate above. Therefore,
a generalization to a larger class of target manifolds seems challenging.

However, it should be possible to further re�ne the norm of the boundary map in
both Theorem 6.1.1 and Theorem 1.4.2. Our work in progress involves replacing
theW 1,n−1(∂Ω) norm in these two theorems byW 1,p(∂Ω) with any p > 2, using
more sophisticated geometric tools. As examples in [31] show, both results fail
in the case p < 2.
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Chapter 2

Basic properties of minimizing
harmonic maps

This chapter introduces most notions and results needed in the sequel. These
mostly come from the seminal work of Schoen and Uhlenbeck [43], but the
presentation here mostly follows Simon’s lecture notes [48]. In what follows,
u : Bn → N is an energy minimizing map into a closed Riemannian manifold
N .

2.1 Regularity of energy minimizers

A central object in the study of singularities is the rescaled energy

θu(x, r) := r2−n
∫
Br(x)

|∇u|2 for Br(x) ⊆ Ω,

which can be shown to be monotone in r:
∂
∂rθu(x, r) = 2

∫
∂Br(x)

|∇u · (y − x)|2

|y − x|n
> 0. (2.1.1)

For the sake of exposition, we show only a weaker version of this formula.
Choosing a competitor v(x) = u(r · x

|x|), we see that v = u on ∂Br and
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∫
Br
|∇v|2 = r

n−2

∫
∂Br
|∇Tu|2, where ∇Tu denotes the di�erential restricted to

directions tangent to ∂Br. It follows from minimality of u that∫
Br

|∇u|2 6 r

n− 2

∫
∂Br

|∇Tu|2,

thus ∂
∂rθu(x, r) = r2−n

∫
∂Br

|∇u|2 − (n− 2)r1−n
∫
Br

|∇u|2

> r2−n
∫
∂Br

|∇u|2 − r2−n
∫
∂Br

|∇Tu|2

=

∫
∂Br

|∇u · (y − x)|2

|y − x|n
.

A re�ned reasoning based on the so-called stationary equation shows that the
derivative of θu(x, r) is exactly twice the right-hand side; the proof can be found
in [48, Sec. 2.4]. Either way, it is evident that θu(x, r) is constant in r if and only
if u is a homogeneous (i.e., radially constant) map.

The monotonicity formula (2.1.1) enables us to de�ne the energy density at x:

θu(x, 0) := lim
r→0

θu(x, r),

which is by de�nition an upper semicontinuous function (in both x ∈ Bn and
u ∈ W 1,2) [48, 2.11]. Obviously, θu(x, 0) = 0 at regular points.

The main regularity statement of [43] is the following ε-regularity theorem:

there is ε(n,N ) > 0 s.t. θu(x, 2r) < ε⇒ u is smooth on Br(x), (2.1.2)
in particular θu(x, 0) < ε⇒ x /∈ sing u.

We also note two compactness theorems for a sequence uk of energy minimizers
in Ω:

• if uk ⇀ u in W 1,2(Ω), then u is an energy minimizer in any subdomain
Ω′ b Ω and the convergence is actually locally strong in W 1,2(Ω′) [27]
(see [48, Sec. 2.9]),
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• if uk ⇀ u in W 1,2(Ω), then the convergence is uniform on compact sets
disjoint from sing u [43, Proposition 4.6].

As a historical note, let us mention that the �rst statement was proved by Luck-
haus a few years after Schoen and Uhlenbeck’s work. Its use signi�cantly sim-
pli�es the analysis, even if it could be avoided.

It follows from upper semicontinuity and ε-regularity that the singular set of
a minimizer u : Ω → N is relatively closed in Ω. The W 1,2-compactness theo-
rem above yields even more for a sequence of minimizers uk:

yk ∈ sing uk, uk → u in W 1,2, yk → y =⇒ y ∈ sing u. (2.1.3)

2.2 Tangent maps

To study the in�nitesimal behavior of u at a singular point x, we introduce the
notion of tangent maps. It is a close analogue of tangent cones used to describe
singularities of minimal surfaces and other possibly non-smooth geometric ob-
jects.

Given an energy minimizer u : Bn → N and a point x ∈ Bn, consider the
family of rescaled maps ur(y) = u(x + ry). By the results from the previous
section (monotonicity formula and compactness of minimizers), each sequence
rj → 0 has a subsequence for which urj converges in W 1,2

loc (Rn) to some local
energy minimizer ϕ, called a tangent map of u at x (possibly dependent on the
choice of the subsequence, and thus non-unique). By monotonicity formula,
this limit map is homogeneous, i.e., ϕ(λx) = ϕ(x) for all λ > 0, x ∈ Rn.
Moreover, the energy of ϕ is consistent with the energy density of u in the
sense that θu(x, 0) = θϕ(0, r) for any r > 0.

Example 2.2.1. (a) If x is a regular point, then evidently every tangent mapϕ
is constant, mapping Rn to the point u(x) ∈ N . By ε-regularity theorem
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(2.1.2), the reverse implication is also true – if u has a constant tangent
map at x, then θu(x, 0) = 0 and u is smooth around x.

(b) The map u : B3 → S2 given by u(x) = x/|x| is energy minimizing. Since
it is homogeneous, u is its own (and unique) tangent map at 0.

For a homogeneous energy minimizer ϕ : Rn → N , the energy density θϕ(y, 0)
is maximal at y = 0; moreover, equality θϕ(y) = θϕ(0) at some other point y
leads to higher symmetry: ϕ(x+ ty) = ϕ(x) for all t ∈ R, x ∈ Rn. Let S(ϕ) be
de�ned by

S(ϕ) = {y ∈ Rn : θϕ(y) = θϕ(0)} .
Then S(ϕ) is a linear subspace of Rn describing the symmetries of ϕ:

ϕ(x+ y) = ϕ(x) for all x ∈ Rn, y ∈ S(ϕ).

For non-constant ϕ, we have S(ϕ) ⊆ singϕ. If dimS(ϕ) = n− 3, we note that
this inclusion is necessarily an equality.

Since the symmetries described above will play an important role later, we adopt
the following de�nition (see [37, Def. 1.1]).

De�nition 2.2.2. A map ϕ : Rn → N is symmetric with respect to a k-dimen-
sional linear plane V ⊆ Rn if it is homogeneous (ϕ(λx) = ϕ(x) for λ > 0 and
x ∈ Rn) and ϕ(x+y) = ϕ(x) for all y ∈ V and x ∈ Rn. It is called k-symmetric
if any such V exists; the space of all such functions will be denoted by symn,k.

2.3 Top-dimensional part of the singular set

If u is an energy minimizer, for each j = 0, 1, 2, . . . , n− 1 we de�ne

Sj = {y ∈ sing u : dimS(ϕ) 6 j for all tangent maps ϕ of u at y}
= {y ∈ sing u : no tangent map ϕ of u at y is (j + 1)-symmetric} ,
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which leads to the classical strati�cation of the singular set

S0 ⊆ S1 ⊆ . . . ⊆ Sn−3 = Sn−2 = Sn−1 = sing u.

It is known [43] that each Sj has Hausdor� dimension at most j, in particular

dimH sing u 6 n− 3.

Because of this, we are mostly interested in the top-dimensional part of the
singular set:

sing∗ u = Sn−3 \ Sn−4 (2.3.1)
= {y ∈ sing u : dimS(ϕ) = n− 3 for some tangent map ϕ of u at y} .

Note that
dimH(sing u \ sing∗ u) 6 n− 4.

De�nition 2.3.1. Following [48], we shall call any homogeneous energy min-
imizing ϕ : Rn → N with dimS(ϕ) = n− 3 (i.e., (n− 3)-symmetric) a homo-
geneous cylindrical map (abbreviated HCM).

2.4 Classi�cation of tangent maps into S2

For maps into S2, all possible homogeneous minimizers ϕ : R3 → S2 were clas-
si�ed by Brezis, Coron and Lieb [4].

Theorem 2.4.1 ([4, Thm. 7.1, 7.3, 7.4]). All homogeneous locally minimizing
harmonic maps ϕ : R3 → S2 take the form

ϕ(x) =
qx

|qx|

for some linear isometry q of R3.
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Note that
∫
B1
|∇ϕ|2 = 8π does not depend on the choice of q, in particular the

energy density θu(x, 0) can take only two values: 0 at regular points and 8π at
singular points.

In higher dimensional domains, a full classi�cation of tangent maps is not avail-
able, but one can at least describe all HCMs ((n − 3)-symmetric minimizers);
they are responsible forHn−3-almost all singularities. This is done by combin-
ing Theorem 2.4.1 with a simple but important observation due to Hardt and
Lin [19, Lemma 2.1].

Corollary 2.4.2. The map

R3 × Rn−3 3 (x, y)
Ψ7−−−−→ x

|x|
∈ S2 (2.4.1)

is the only locally minimizing (n − 3)-symmetric harmonic map from Rn to S2,
up to linear isometries of Rn. That is, any such map takes the form Ψ ◦ q for some
linear isometry q of Rn.

Its energy density will be denoted by

Θ :=

∫
B1

|∇Ψ|2 dx. (2.4.2)

As before, we may observe that if u : Ω→ S2 is a minimizing harmonic map in
Ω ⊆ Rn and x ∈ sing∗ u, then θu(x, 0) = Θ.

2.5 Uniform boundedness of minimizers

The last two sections gather results on boundary behavior of minimizers. For
convenience, we denote the upper half-space by Rn

+ = {x ∈ Rn : xn > 0}, and
the upper half-ball by B+

r = Br ∩ Rn
+. For any r > 0 we write Tr = Br ∩ ∂Rn

+

for the �at part and S+
r = ∂Br ∩Rn

+ for the curved part of the boundary of the
half ball B+

ρ .
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The following extension property of maps into S2 is crucial in establishing The-
orem 6.1.1. A proof can be found in [15].

Theorem 2.5.1 (Extension Property). Let Ω ⊆ Rn be a bounded domain and
let v ∈ W 1,2(Ω,R3) with v(x) ∈ S2 for a.e. x ∈ ∂Ω. Then there exists a map
u ∈ W 1,2(Ω,S2),

u
∣∣∣
∂Ω

= v
∣∣∣
∂Ω

such that
‖∇u‖L2(Ω) 6 C ‖∇v‖L2(Ω)

with a dimensional constant C(n) > 0.

Remark 2.5.2. As shown in [17], an analogous statement holds for any simply
connected manifold N in place of S2.

We obtain the following as a corollary of Theorem 2.5.1 (see [29, Sec. 3]). We re-
mark here that a similar argument works for domains close to B+

1 (i.e., bounded
by a C2 graph with small constant). For clarity, we focus on the �at boundary
case.

Corollary 2.5.3. If u : Br → S2 is a minimizing harmonic map, then the follow-
ing estimate holds

‖∇u‖L2(Br) .
√
r
n−1

2 ‖∇Tu‖L2(∂Br). (2.5.1)

If u : B+
r → S2 is a minimizing harmonic map with u = ϕ on the �at part of the

boundary Tr, then the following estimate holds

‖∇u‖L2(B+
r ) .

√
r
n−1

2 ‖∇Tu‖L2(S+
r ) + r

n−1
2 ‖∇ϕ‖L2(Tr). (2.5.2)

Sketch of proof. Consider the �rst statement with r = 1. The square root comes
from interpolation – since ‖u‖L∞ = 1, we have [u]W 1/2,2(∂B1) .

√
‖∇u‖L2(∂B1).

By the trace theorem, there exists an extension v ∈ W 1,2(B1,R3) such that
‖∇v‖L2(B1) . [u]W 1/2,2(S1). By the extension property, we can actually take v in
the space W 1,2(B1,S2), and the claim follows from energy comparison.
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The same reasoning works on the half-ball B+
1 , and the general case follows by

rescaling.

One of the main consequences is the following – slightly surprising – result.
Theorem2.5.4 (Uniform Boundedness of Minimizers). Letu ∈ W 1,2(BR(0),S2)
be a minimizing harmonic map. Then for any r < R,

r2−n
∫
Br(0)

|∇u|2 dx 6 C(n)
R

R− r
,

where C is an absolute constant.

Also, let u ∈ W 1,2(B+
2r(0),S2) be a minimizing harmonic map with u = ϕ on the

�at part of the boundary T2r. Then

r2−n
∫
B+
r (0)

|∇u|2 dx 6 C(n)
(

1 + r
3−n

2 ‖∇ϕ‖L2(T2r)

)
.

Proof. We focus on the boundary estimate, which is more delicate. In the ab-
sence of the boundary term, the calculations are more straightforward and one
easily obtains the more precise asymptotics.

DenoteD(ρ) := ‖∇u‖2
L2(B+

ρ )
andA := r

n−1
2 ‖∇ϕ‖L2(T2r). Observing thatD′(ρ) =

‖∇u‖2
L2(S+

ρ )
, we can restate Corollary 2.5.3 as the inequality

D(ρ) 6 C
(
ρ
n−1

2

√
D′(ρ) + A

)
for 0 < ρ 6 2r.

Since our aim is an estimateD(r) . rn−2+A, we may assume thatD(r) > 2CA
with C as above. Then

D(ρ) 6 2Cρ
n−1

2

√
D′(ρ) for r 6 ρ 6 2r.

Rewriting this as the di�erential inequality (−D(ρ)−1)′ > 4C−2ρ1−n and inte-
grating, we obtain

D(r)−1 −D(2r)−1 > 4C−2

∫ 2r

r

ρ1−n dρ.

The �nal claim now follows from D(2r)−1 > 0.
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2.6 Boundary regularity

All of the boundary regularity statements were already present (sometimes im-
plicitly) in Almgren and Lieb’s paper [1]. Very similar results (usually with
stronger assumptions on the boundary map) can be found in the literature, and
the necessary modi�cations in our case are minor. A discussion of these mod-
i�cation can be found in [29, 30]; here we gather all the necessary results and
brie�y sketch the main ideas.

Recall that a weakly convergent sequence of minimizers is actually strongly
convergent in compactly contained subdomain. However, global estimates re-
quire convergence on a domain that reaches the boundary; to this end, one
additionally needs to assume convergence of the boundary map (see [34]).

Theorem 2.6.1 (strong convergence of minimizers at the boundary). Consider
a sequence of minimizing harmonic maps ui ∈ W 1,2(B+,S2) and denote their
traces ϕi := ui|T1

. Assume additionally that ϕi converges to ϕ inW 1,2(T1). Then,
up to taking a subsequence, we �nd u : B+ → S2 such that ui → u strongly in
W 1,2(B+

r ,S2) for every r ∈ (0, 1). Moreover, u is a minimizing harmonic map in
each such ball B+

r .

Remark 2.6.2. A technical modi�cation of this reasoning allows us to con-
sider in Theorem 2.6.1 a sequence of maps ui de�ned on converging Lipschitz
domains with non-�at boundaries. This will be used in Theorem 6.2.4. For the
sake of exposition, the author chose to downplay the role of curved boundaries.

As a �rst corollary of the compactness result above, we have

Theorem 2.6.3 (interior regularity for almost constant boundary data). For
each bounded smooth domain Ω ⊆ Rn and each σ > 0, there is ε(Ω, σ) > 0
so that the following holds. If u ∈ W 1,2(Ω,S2) is a minimizing harmonic map
with trace ϕ := u|∂Ω and ∫

∂Ω

|∇ϕ|n−1 dHn−1 6 ε,
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then u is smooth in the interior region {x ∈ Ω : dist(x, ∂Ω) > σ}.

Proof. Assume this is not true – there is a sequence of minimizers uk satisfying∫
∂Ω |∇ϕk|

n−1 → 0, but with a singularity yk ∈ sing uk in the interior region.
By interior compactness, we may assume that uk → u locally in W 1,2(Ω), and
yk tends to some y ∈ sing u in the interior region.

To reach a contradiction, we also need convergence at the boundary. According
to Remark 2.6.2, we can apply Theorem 2.6.1 on Ω, as without loss of generality
ϕk tends to a constant. But then u is a minimizer with constant boundary con-
ditions, thus u is constant and in particular smooth in the interior region.

The �rst step towards to boundary regularity theory is the following uniform
boundary regularity theorem for constant boundary data (see [1, Theorem 1.10]).
The other results can be derived from it by a contradiction argument.

Theorem 2.6.4 (Boundary regularity). There is λ(n) > 0 such that the following
holds. If u ∈ W 1,2(B+

1 ,S2) is a minimizer and its trace ϕ on T1 is constant, then
u is smooth in a small neighborhood T1/2 × (0, λ) of the boundary.

Corollary 2.6.5. There is another constant ε(n) > 0 such that the smallness
condition

∫
T1
|∇ϕ2| 6 ε implies smoothness of u on an even smaller neighborhood

T1/2 × (λ/2, λ).

Again, a similar statement holds for a general domain with �at enough boundary.

Proof. This follows from Theorem 2.6.4 by a contradiction argument based on
Theorem 2.6.1 (see the proof of Theorem 2.6.3). The necessity of restricting to
T1/2× (λ/2, λ) comes from the fact that otherwise the sequence of singularities
may converge to a boundary point.

Theorem 2.6.6 (Uniform boundary regularity for singular boundary data). Let
Ω ⊆ Rn be a bounded smooth domain. Then there are constants σ (depending
on Ω), ε, λ (as in Corollary 2.6.5) such that the following holds. If u : Ω → S2 is

24



a minimizing harmonic map with the trace ϕ on ∂Ω, which satis�es the smallness
condition ∫

Tρ(p)

|∇Tϕ|n−1 dHn−1 6 ε

for some p ∈ ∂Ω and ρ 6 σ, then u is smooth in Bλρ(p) ∩ Ω.

Sketch of proof. We choose σ(Ω) > 0 so that ∂Ω is �at enough in balls of size
ρ 6 σ (after rescaling to unit size). Applying Corollary 2.6.5 on Bρ(p), we
obtain regularity in a small strip. Thanks to scaling-invariance of the W 1,n−1

norm on the boundary, the smallness condition also holds on all smaller balls.
The �nal claim now follows by a covering argument.
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Chapter 3

Hölder regularity of the singular set

3.1 Introduction

Singularities of energy minimizing harmonic maps

As already mentioned, (locally) minimizing harmonic maps between manifolds
may have singularities if the domain dimension is 3 or higher. The most well-
known example is the map

R3 × Rn−3 3 (x, y)
Ψ7−−−−→ x/|x| ∈ S2.

Since all the considerations in this chapter are local in nature, we shall drop the
word locally.

In general, any energy minimizer u is smooth outside the closed singular set
sing u of Hausdor� dimension n−3 or less, n being the dimension of the domain
(Schoen, Uhlenbeck [43, 45]). The phenomenon of singularities is now well-
understood in dimension 3, when singularities form a discrete set. In recent
years, there has been a substantial progress concerning the case n > 4. Naber
and Valtorta [37] have proved that the singular set has locally �nite (n − 3)-
dimensional Hausdor� measure and is (n−3)-recti�able, i.e., can be essentially

26



covered by countably many Lipschitz images of Rn−3; the latter was already
known (due to Simon [47]) in the case when the target manifold is real-analytic.

The results cited above are mostly concerned with the size of the singular set,
but do not imply lower bounds on the singular set. In particular, the possibility
that the singular set is an arbitrary subset of an (n− 3)-dimensional manifold
(with many small gaps) is not excluded by [37, 43, 45, 47].

Lower bounds on the size are indeed possible in the presence of a topological
obstruction; the following example is simple but instructive.

Example 3.1.1. Consider the smooth boundary map ϕ : S2×S1 → S2 given by
ϕ(x, y) = x and (some) u : B3× S1 → S2 minimizing the energy in the class of
maps equal to ϕ on the boundary. Restricting u to a slice B3×{y} and applying
Brouwer’s theorem, we see that each such slice contains a singular point. This
shows thatH1(sing u) > H1(S1) = 2π. In this particular case one can actually
prove that u(x, y) = x/|x|, but the presented reasoning applies also to every
ϕ′ : S2 × S1 → S2 homotopic to ϕ.

In the special case of maps u : B4 → S2, Hardt and Lin [19] obtained the fol-
lowing remarkable result.

Theorem 3.1.2. The singular set of an energy minimizer u : B4 → S2 is locally
a union of a �nite set and a �nite family of Hölder continuous closed curves with
a �nite number of crossings.

The same claim was obtained also for maps u : B5 → S3 (Lin-Wang [26]). To
the author’s knowledge, these are the only two cases where sing u was shown
to be essentially a manifold.

The above theorem relies on the classi�cation of tangent maps from R3 into S2

carried out by Brezis, Coron and Lieb [4] (see Theorem 2.4.1); for S3, a similar
classi�cation was obtained by Nakajima [39]. These maps describe the in�nites-
imal behavior of u at a typical point of sing u.
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Main results

In this chapter, we aim to extract the topological obstruction responsible for
preventing gaps in the singular set of maps into S2. To this end, we distinguish
particular homotopy classes of tangent maps R3 → N (called here indecompos-
able classes) for any closed Riemannian manifold N .

To each homotopy class α ∈ π2(N ) we assign its lowest energy level Θ(α) and
call α indecomposable if Θ(α) < ∞ and α cannot be represented as a sum of
homotopy classes αj ∈ π2(N ) with strictly smaller energy levels Θ(αj). We
then restrict our attention to singularites with �xed topological type α – we
de�ne singα u to be the set of points at which some tangent map of u has type
α. Rigorous de�nitions are given in Section 3.2.

Another goal is to generalize the result of Hardt and Lin [19] to higher dimen-
sional domains. The di�culty lies in the fact that the singular set is strati�ed
– it decomposes into parts of di�erent dimensions. For u : B4 → S2, there are
only two strata: one is formed by Hölder continuous curves and the other by
their crossing points and a �nite number of additional isolated points. In the
theorem below, we were only able to study the top-dimensional part sing∗ u of
the singular set. Again, the necessary notions are introduced in Section 2.2.

For simplicity, we only consider the standard Euclidean ball Bn as the domain,
but the results hold true for any manifold. This is due to the fact that we
only consider the in�nitesimal behavior of maps. A detailed explanation can
be found in [37] and [47, Sec. 8].

Theorem 3.1.3. Let u : Bn → N be an energy minimizing map into a closed
Riemannian manifold N , α ∈ π2(N ) be an indecomposable homotopy class, and
Θ(α) be its lowest energy level. Then for each exponent 0 < γ < 1 there is
δ(γ, n, α,N ) > 0 such that the set{

x ∈ singα u : lim
r→0

r2−n
∫
Br(x)

|∇u|2 < Θ(α) + δ

}
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forms an open subset of sing u and it is a topological (n−3)-dimensional manifold
of Hölder class C0,γ .

In the case whenN is a real-analytic manifold, Simon [47, Lemma 4.3] showed
that the set of possible energy densities limr→0 r

2−n ∫
Br(x) |∇u|

2 is discrete. This
allows us to slightly strenghten the statement above. The same conclusion holds
also if N satis�es the integrability assumption introduced in [48, Ch. 3.13].

Corollary 3.1.4. If u : Bn → N is an energy minimizing map into a real-
analytic manifold N and α ∈ π2(N ) is an indecomposable homotopy class, then{

x ∈ singα u : lim
r→0

r2−n
∫
Br(x)

|∇u|2 = Θ(α)

}
forms an open subset of sing u and it is a topological (n−3)-dimensional manifold
of Hölder class C0,γ with any 0 < γ < 1.

Specializing to the caseN = S2 and recalling the classi�cation of tangent maps
[4], we obtain a partial generalization of Theorem 3.1.2 [19] to arbitrary dimen-
sions:

Corollary 3.1.5. If u : Bn → S2 is an energy minimizing map, then the top-
dimensional part sing∗ u forms an open subset of sing u and it is a topological
(n− 3)-dimensional manifold of Hölder class C0,γ with any 0 < γ < 1.

An outline

Section 3.2 starts with the de�nition of indecomposable homotopy classes of
maps from S2 into N . Since Theorem 3.1.3 only concerns the singularities
of indecomposable types, it is worthwhile to investigate the existence of such
classes, which we do in Proposition 3.2.7. Indeed, we show that for any N the
second homotopy group π2(N , p) is generated (up to the action of π1(N , p) on
π2(N , p)) by indecomposable homotopy classes. This is very close to the clas-
sical (slightly weaker) result due to Sacks and Uhlenbeck [42] (see also [49]):
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smooth harmonic maps from S2 intoN generate the whole group π2(N , p) (up
to the action of π1(N , p)).

To obtain bi-Hölder-equivalence with a Euclidean ball, we employ Reifenberg’s
topological disc theorem [40] (see also [46]). We recall its statement and the
so-called Reifenberg �atness condition in Section 3.3. We also introduce a �at-
ness condition for an energy minimizer u which includes Reifenberg �atness
for sing u, but also forces u to be close to a tangent map.

The main results are proved in Section 3.4. The di�culty in applying Reifen-
berg’s theorem to sing u lies in showing that this set has no gaps. This is done
in Lemma 3.4.1; this is also the point where our topological assumptions play
a role. Then we are able to show that if u satis�es the �atness condition on
the ball B2(0), it also satis�es the same condition on each smaller ball Br(0)
(Corollary 3.4.5) and on each ball B1(z) centered at a point z ∈ B1 with enough
energy density (Proposition 3.4.7). Combining these results, we check the hy-
potheses of Reifenberg’s theorem and establish Theorem 3.1.3.

In addition, Section 3.5 we show that the δ-�atness property is stable with re-
spect to smallW 1,2-perturbations of the map. This simple result (�rst proved in
[30]) will play a crucial role in the proof of Theorem 4.2.2 (measure bound on
the Sn−4 stratum of the singular set) and Theorem 7.1.1 (stability of the singular
set).

Some other interesting observations not needed for the proof of Theorem 3.1.3
are gathered in Section 3.6.
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3.2 Indecomposable homotopy classes

Decompositions of tangent maps

Consider now a HCM ϕ0 : Rn → N with S(ϕ0) = Rn−3 × 0. This map actu-
ally depends only on 3 variables, i.e. ϕ0(x, y) = ϕ1(y) for some homogeneous
ϕ1 : R3 → N . By [19, Lemma 2.1], the map ϕ1 de�ned in this way is energy
minimizing if and only if ϕ0 is. Since ϕ1 is homogeneous, it is uniquely de-
termined by its restriction to the unit sphere ϕ2 : S2 → N , which is a smooth
harmonic map.

From now on, we shall abuse the notation and use the same symbol for all three
mapsϕ0, ϕ1, ϕ2; the precise meaning should be clear from the context. Note that
their energies di�er by a multiplicative constant:∫

S2

|∇ϕ2|2 =

∫
B3

1

|∇ϕ1|2 = C(n)

∫
Bn

1

|∇ϕ0|2,

so energy comparison does not lead to confusion.

Homotopy type of a HCM always refers to the map ϕ2 : S2 → N (as ϕ0, ϕ1 are
discontinuous and de�ned on contractible domains). For a general HCM ϕ0 we
may choose a rotation q that maps S(ϕ0) to Rn−3 × 0 and thus reduce to the
previous case. We then say that ϕ0 has homotopy type α if ϕ0 ◦ q−1 restricted
to 0× S2 has type α.
Remark 3.2.1. There is a subtle ambiguity here. Depending on the choice of
q, we may obtain two homotopy types that di�er by a composition with the
antipodal map, i.e. both [ϕ2(x)] and [ϕ2(−x)].

Using this terminology, singular points in sing∗ u can be classi�ed according to
their energy density and the homotopy type of a tangent map. Since we only
consider basepoint-free homotopies, we denote by π2(N ) the set of homotopy
classes of continuous maps S2 → N .
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Remark 3.2.2. To avoid confusion, we distinguish the set of basepoint-free
homotopy classes π2(N ) from the second fundamental group π2(N , p). Note
that in general π2(N ) does not carry a group structure, as it is the quotient of
the action of π1(N , p) on π2(N , p).

De�nition 3.2.3. For any homotopy type α ∈ π2(N ) we let

singα u = {y ∈ sing u : some tangent map of u at y is a HCM of type α} .

We also denote its lowest energy level by

Θ(α) := inf

{∫
Bn

1

|∇ϕ|2 : ϕ is a HCM of type α
}
.

A simple compactness argument shows that this in�mum is either in�nite (if
no HCM has type α) or achieved by some minimal HCM. We also let

sing>Θ u = {y ∈ sing u : θu(y, 0) > Θ} .

which is a closed set by upper semicontinuity of θu(·, 0).

At this point we cannot exclude the case when there are many homotopically
di�erent tangent maps at one point. However, this cannot happen under an
additional assumption described below (see Remark 3.4.10). Again, the decom-
position in De�nition 3.2.4 is to be understood up to the action of π1(N ), as
described in Section 3.2 (see also the formulation of [42, Thm. 5.9]).

De�nition 3.2.4. Consider α ∈ π2(N ) with Θ(α) < ∞. This homotopy class
is called decomposable if there is a decomposition

α = α1 + . . .+ αk in π2(N ),

where Θ(αj) < Θ(α) for each j = 1, . . . , k. Otherwise α is called indecompos-
able.

Note that the above criterion does not depend on the dimension n, but only on
the manifold N .
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As a special case, α is indecomposable if Θ(α) is the smallest among all non-
trivial homotopy types. In this case the proof is much easier (see the remark
below Lemma 3.4.1).

Remark 3.2.5. Similar decompositions of this type appear naturally as a result
of the bubbling phenomenon when one tries to minimize the energy in a given
homotopy class. More precisely, recall that by [42] (see also [44, 49]) any smooth
map ϕ : S2 → N can be decomposed as [ϕ] = [ϕ1] + . . .+ [ϕk], where each ϕj
is a harmonic map and

k∑
j=1

∫
S2

|∇ϕ2
j | 6

∫
S2

|∇ϕ2|.

Motivated by these decompositions, one could replace the condition Θ(α) >
maxj Θ(αj) in De�nition 3.2.4 by Θ(α) >

∑
j Θ(αj), thus enlarging the set of

indecomposable classes. A natural conjecture here would be that Theorem 3.1.3
continues to hold in this case, but the author was not able to verify it.

Example 3.2.6. By Theorem 2.4.1 (classi�cation of tangent maps from [4]), the
only HCMs into the sphere S2 are isometries ϕ : S2 → S2. Thus, for α ∈ π2(S2)
we have

Θ(α) =


0 for α = 0,

4π for α = [± id],

∞ otherwise.
By De�nition 3.2.4, the indecomposable classes here are 0, [id], [− id]. Note that
these classes generate the whole group π2(S2) (see Proposition 3.2.7 for the
general case).

An existence theorem

We show that the set of all indecomposable homotopy classes generates π2(N ).
Similarly to [42, Thm. 5.9], we only consider basepoint-free homotopies, so
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this statement should be understood as generating π2(N , p) up to the action
of π1(N , p). In other words, for any α ∈ π2(N ) there are indecomposable
homotopy classes α1, . . . , αk ∈ π2(N ) and a continuous map

u : B3 \
k⋃
j=1

Bj → N

such that u|∂B ∈ α and u|∂Bj
∈ αj , where Bj b B are smaller disjoint balls.

This can be divided into two steps as follows. The �rst one is due to Schoen
and Uhlenbeck [44, Prop. 3.3].
Proposition 3.2.7. Let N be a closed Riemannian manifold. Then

(a) the set of all HCMs ϕ : S2 → N generates π2(N ),
(b) each HCM ϕ : S2 → N as an element of π2(N ) can be decomposed into

indecomposable homotopy classes.

Proof. To show part (a), �x α ∈ π2(N ) and choose a smooth map ϕ : S2 → N
of this type. Then there exists (possibly non-unique) u ∈ W 1,2(B3

1,N ) such
that ∫

B1

|∇u|2 = min

{∫
B1

|∇v|2 : v ∈ W 1,2(B1,N ), v = ϕ on S2

}
;

note that the set of admissible maps is indeed non-empty, as it contains the map
x 7→ ϕ(x/|x|). Such a minimizer has at most a �nite number of interior sin-
gularities p1, . . . , pk ∈ B1. At each pj there is a (possibly non-unique) tangent
map ϕj , which is necessarily a HCM; by uniform convergence away from the
singularity, u restricted to ∂Br(pj) is homotopic toϕj for some arbitrary small r
(in consequence, also for all su�ciently small r). This yields the decomposition

[ϕ] = [ϕ1] + . . .+ [ϕk] in π2(N ).

Part (b) follows from the de�nition by a compactness argument, which allows
us to exclude in�nite decompositions. Consider any homotopy typeα ∈ N rep-
resented by a HCM, i.e. with Θ(α) < ∞. First let us show that there are only

34



�nitely many homotopy types β ∈ π2(N ) with Θ(β) 6 Θ(α). Indeed, other-
wise we would have an in�nite sequence of HCMs ϕk : B3

1 → N with distinct
homotopy types and uniformly bounded energy. Without loss of generality, ϕk
converges to some HCM ϕ in W 1,2(B1), but also in C0(S2). This shows that
almost all ϕk have the same homotopy type as ϕ, which is a contradiction.

If α is decomposable, we have α = α1 + . . . + αk, where Θ(αj) < Θ(α) for
each j. Decomposing further each αj whenever possible, and iterating this
procedure until all obtained homotopy types are indecomposable, we arrive at
claim (b). One only needs to note that this procedure stops after at mostN steps,
whereN is the number of homotopy types from the last paragraph. Indeed, any
branch of the decomposition tree is a sequence β0, β1, β2, . . . with β0 = α and
Θ(βj+1) < Θ(βj) for each j, so it contains at most N elements.

We remark that a similar decomposition was �rst obtained by Sacks and Uh-
lenbeck [42] (see also [49]): smooth harmonic maps from S2 into N generate
the whole group π2(N , p) up to the action of π1(N , p). It may be that some
homotopy classes in π2(N ) do not contain any harmonic map. Since here we
only consider harmonic maps ϕ : S2 → N for which the homogeneous exten-
sion ϕ : B3 → N is energy minimizing, the result discussed above is slightly
more general.

3.3 Notions of �atness and Reifenberg’s topological disc
theorem

Hölder regularity of the singular set will be obtained by an application of Reifen-
berg’s topological disc theorem [40] (see also [46]). To state it, we �rst need the
following notion of �atness (for our purposes restricted to codimension 3).

De�nition 3.3.1. A set A ⊆ Rn is said to be ε-Reifenberg �at in the ball Br(x)
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(with respect to L) if

A ∩Br(x) ⊆ BrεL and L ∩Br(x) ⊆ BrεA

for some (n− 3)-dimensional a�ne plane L through x.

The above condition means exactly that the normalized Hausdor� distance on
Br(x) from A to some (n− 3)-dimensional a�ne plane through x is not larger
than ε.

Theorem 3.3.2 (Reifenberg’s topological disc theorem). For each Hölder expo-
nent 0 < γ < 1 there is ε(n, γ) > 0 such that the following holds. If a closed
set A ⊆ Rn containing the origin is ε-Reifenberg �at in each ball Br(x) with
x ∈ A ∩B1 and r < 1, then the set A ∩B1 is bi-Hölder equivalent to the closed
unit ball Bn−3 ⊆ Rn−3 with exponent γ.

We shall also make repeated use of the following condition for energy minimiz-
ing maps.

De�nition 3.3.3. Fix an indecomposable homotopy class α ∈ π2(N ) and let
Θ = Θ(α) be its lowest energy level (as in De�nition 3.2.3). We say that an
energy minimizer u is δ-�at in the ball Br(x) (of type α) if

1. x is a singular point of u and Θ 6 θu(x, 0) 6 θu(x, r) 6 Θ + δ,
2. sing u is 1

10-Reifenberg �at in Br(x) with respect to some L, and u re-
stricted to (x+ L⊥) ∩ ∂Br/2(x) has homotopy type α.

Note that this de�nition is scale-invariant in the following sense: u is δ-�at in
Br(x) if and only if the rescaled map u(y) = u(x+ry) is δ-�at in B1. Also note
that u is smooth outside the tube around L by and thus the homotopy type is
well-de�ned.

The main feature of De�nition 3.3.3 is that δ-�atness in a ball trivially ensures
that Condition 1 is satis�ed in all smaller concentric balls, and one only needs to
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check Condition 2 (see Corollary 3.4.5). This is why the constant 1
10 in Condition

2 was chosen independently of δ.

In fact, one could relax the 1
10-Reifenberg condition in 2 to the one-sided con-

dition sing u ∩ Br(x) ⊆ Br/10L. This gives e�ectively the same notion of δ-
�atness, as used in [30].

From now on, we consider a non-trivial indecomposable class α and its lowest
energy level Θ = Θ(α) to be �xed.

3.4 Regularity of the singular set

Persistence of indecomposable singularities

As a �rst step, we show that if an energy minimizer u restricted to some sphere
has homotopy type α, then sing u satis�es the �atness condition of De�nition
3.3.3 and the energy density of u cannot drop in a smaller ball. Note that the
claim of Lemma 3.4.1 is essentially stronger than the corresponding condition
L ∩B1 ⊆ Bε(sing>Θ u) appearing in De�nition 3.3.1.

Observe that some tubular neighborhood BηN ⊆ RM admits a continuous
retraction πN onto N . As a consequence, if two continuous functions f, g into
N ⊆ RM are close enough in supremum norm, then

(t, x) 7→ πN (tf(x) + (1− t)g(x))

yields a homotopy between them.
Lemma 3.4.1. Assume that sing u ∩ B1 ⊆ BεL for some 0 < ε < 1

5 and some
(n − 3)-dimensional plane L through 0. Assume further that u restricted to the
sphere L⊥ ∩ ∂B1/2 has homotopy type α. Then

L ∩B1−ε ⊆ πL(sing>Θ u ∩B1),
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where πL denotes the orthogonal projection onto L. In particular, sing>Θ u is ε-
Reifenberg �at in B1.

Before giving the full proof, let us consider the special case when Θ(α) is the
lowest among all non-trivial homotopy types; in particular, this property holds
if we consider maps into the standard sphere S2. In this case, the proof is simpler
and does not depend on the deep results of Naber and Valtorta [37].

For each y ∈ L ∩ B1−ε, the restriction of u to the sphere (y + L⊥) ∩ ∂Bε(y)
has homotopy type α, therefore it cannot be continuously extended to the ball
(y + L⊥) ∩Bε(y). This shows the weaker inclusionL∩B1−ε ⊆ πL(sing u∩B1).
Recall thatHn−3-a.e. point z ∈ sing u belongs to sing∗ u and hence θu(z, 0) > Θ
due to our additional assumption. Since sing>Θ u is a closed set, we obtain the
stronger inclusion.

Proof of Lemma 3.4.1. For simplicity, let us assumeL = Rn−3×0 (by composing
u with a rotation, if necessary). Assume for the contrary that L ∩ B1−ε is not
covered by the projection of sing>Θ u∩B1−ε/2. Since the latter is a compact set,
it has to be disjoint with some small cylinder Bn−3

δ (z)× R3 with |z| 6 1− ε.

Recall that by the recent important work of Naber and Valtorta [37] discussed
in the next chapter (see Theorem 4.1.1), the set sing u has �nite Hn−3 measure
(locally, away from the boundary). Moreover, the set sing u is (n−3)-recti�able
and forHn−3-a.e. y ∈ sing u there exists an (n− 3)-dimensional tangent plane
Tan(sing u, y) coinciding with S(ϕ) for every tangent map ϕ of u at y. Let us
temporarily assume that these tangent planes are transversal to 0× R3, i.e.

Tan(sing u, y) t 0× R3 forHn−3-a.e. y ∈ sing u ∩B1−ε/2. (3.4.1)

We shall need Eilenberg’s inequality, a Fubini-type inequality valid for any
Hn−3-measurable set A with �nite measure (see [28, 7.7-7.8] or [13, 2.10.25-
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27]): ∫
Bn−3
δ (z)

H0(A ∩ π−1
L (y)) dy 6 ωn−3Hn−3(A)

Applying the above inequality twice – once withA as the singular set and once
with A as its exceptional part of measure zero – we learn that for almost every
y ∈ Bn−3

δ (z) the slice sing u ∩ B1 ∩ π−1
L (y) consists of �nitely many points,

at each of them the tangent plane exists and is transverse to 0 × R3 (i.e. the
direction of slicing).

Let us choose one such y and denote these singular points by p1, . . . , pk. Let
also

Lj := Tan(sing u, pj), r0 := 1
2 min
i6=j

(|pi − pj|, ε− |pi − y|) .

For each j = 1, . . . , k, there is a HCM ϕj : Rn → N with S(ϕj) = Lj such
that the sequence of rescaled maps uri(x) = u(pj + rix) converges to ϕj in
W 1,2

loc (Rn) for some sequence ri → 0. Note that by our assumption, ϕj has
energy density strictly less than Θ. Since this convergence is uniform away
fromLj , maps uri and ϕj are homotopic onL⊥j ∩∂B1 for large enough i. Tilting
L⊥j to 0×R3 and rescaling, we get that for some small rj < r0 the restriction of
u to π−1

L (y)∩∂Brj(pj) has the homotopy type of ϕj . Recalling that u restricted
to 0× R3 ∩ ∂B1/2 (and hence also to π−1

L (y) ∩ ∂Bε(y)) has homotopy type α,
we conclude

α = [ϕ1] + . . .+ [ϕk] in π2(N ),

where each ϕj has energy density smaller than Θ, which is a contradiction with
the assumption that α is indecomposable.

To �nish the proof, we need to get rid of the additional assumption (3.4.1). This
is done by using the following simple transversality lemma.
Lemma 3.4.2. Let n = a+ b, consider the Grassmannian G(n, a) with the stan-
dard Haar measure λ andG(n, b) with a �nite positive Borel measure µ. Then the
set

{E ∈ G(n, a) : µ({F ∈ G(n, b) : E 6t F}) > 0})
has zero λ measure.
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Postponing its proof for the moment, we complete the reasoning as follows.
Choose a = 3, b = n − 3, and let µ be the measure Hn−3xsing u ∩ B1−ε/2
pushed-forward by the map Tan(sing u, ·), i.e.

µ(U) = Hn−3({y ∈ sing u∩B1−ε/2 : Tan(sing u, y) ∈ U}) for U ⊆ G(n, n−3).

Then the set in Lemma 3.4.2 has measure zero and in particular its comple-
ment is dense. In result, we can choose E ∈ G(n, 3) so that E t F for µ-a.e.
F ∈ G(n, n− 3), withE arbitrarily close to 0×R3. This amounts to satisfying
(3.4.1) with a slightly tilted direction of slicing. Recall that sing>Θ u∩B1−ε/2 is
disjoint with the cylinder Bn−3

δ (z)×R3, in consequence it is also disjoint with
some smaller cylinder in directionE⊥. It is easy to see that the rest of the proof
remains unchanged.

Proof of Lemma 3.4.2. First note that here E t F means these two linear sub-
spaces intersect only at the origin. Thus, for each F ∈ G(n, b) the set of all
E ∈ G(n, a) non-transversal to F is a �nite union of smooth submanifolds of
G(n, a) of positive codimension

{E ∈ G(n, a) : E 6t F} =

min(a,b)⋃
c=1

{E ∈ G(n, a) : dimE ∩ F = c},

hence it has zero λ measure. Applying Fubini’s theorem, we get∫
G(n,a)

µ({F ∈ G(n, b) : E 6t F}) dλ(E)

=

∫
G(n,a)

∫
G(n,b)

1E 6tF dµ(F ) dλ(E)

=

∫
G(n,l)

λ({E ∈ G(n, a) : E 6t F}) dµ(F )

= 0,

so the integrand has to be zero for λ-a.e. E ∈ G(n, a).
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Propagation of δ-�atness to �ner scales

In this section we investigate some important consequences of De�nition 3.3.3.
Assuming that an energy minimizing map u is δ-�at in B1 (with small δ > 0),
we shall see that sing u is actually more �at than a priori assumed (Lemma
3.4.3), u is also δ-�at in all smaller concentric balls (Corollary 3.4.5), and that
0 ∈ singα u (Corollary 3.4.6).

Lemma 3.4.3. For every ε > 0 there is δ1(ε) > 0 such that if u is δ1-�at in
B2, then ‖u − ϕ‖W 1,2(B1) 6 ε for some HCM ϕ of homotopy type α with energy
density Θ. Moreover, sing u is ε-Reifenberg �at inB1 with respect to the (n− 3)-
dimensional plane S(ϕ).

Remark 3.4.4. For clarity, the conclusion above is stated on the twice smaller
ball, but one can obtain a stronger conclusion (‖u − ϕ‖W 1,2(B2−ε) 6 ε and ε-
Reifenberg condition in B1−ε) by the same argument. However, restricting to
a smaller ball is necessary due to the local nature of the W 1,2-compactness the-
orem, as well as possible singularities on ∂B2.

Proof. We employ the usual contradiction argument. Let uk be a sequence of
minimizing harmonic maps such that uk is 1/k-�at inB2; we may assume sing u
is 1

10-Reifenberg �at with respect to a �xed plane L. Choosing a subsequence,
we have uk → ϕ in W 1,2

loc (B2) for some energy minimizing ϕ. By condition 1 in
De�nition 3.3.3, ϕ is homogeneous with energy density Θ. By Lemma 3.4.1, for
each k the set sing>Θ uk is 1

10-Reifenberg �at in B1 with respect to L. Taking
the limit and exploiting the upper semicontinuity of θ·(·, 0) with respect to both
the map and the point, we conclude that the set

S(ϕ) ≡ sing>Θ ϕ

is not contained in any (n−4)-dimensional plane. On the other hand, it is itself
a linear subspace of dimension at most n − 3, so we learn that ϕ is a HCM of
homotopy type α; the homotopy property follows from uniform convergence
away fromL. For large enough k, uk is ε-close to ϕ inW 1,2(B1) and its singular
set is contained in BεS(ϕ) (this is a consequence of upper semicontinuity of
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θ·(·, 0) and ε-regularity (2.1.2)), which �nishes the proof by another application
of Lemma 3.4.1.

Corollary 3.4.5. If δ 6 δ1(
1
20) and u is δ-�at in B2, then u is also δ-�at in any

smaller ball Br centered at 0 with 0 < r 6 1.

Proof. Condition 1 of De�nition 3.3.3 is trivially satis�ed. As for condition 2, it
follows from Lemma 3.4.3 that sing u is 1

20-Reifenberg �at in B1, hence 1
10-�at

in any ball Br with 1
2 6 r 6 1. In consequence, u is δ-�at in each of these

balls. Then the claim follows by iteration of Lemma 3.4.3 rescaled to smaller
and smaller balls.

Corollary 3.4.6. If δ 6 δ1(
1
20) and u is δ-�at in B1, then every tangent map to

u at 0 is a HCM of type α. In particular, 0 ∈ singα u.

Proof. Let ϕ be any tangent map to u at 0, i.e. a W 1,2
loc (Rn)-limit of rescaled

functions uk(x) = u(rkx) for some sequence rk → 0; any thus obtained ϕ is
homogeneous. By Corollary 3.4.5, each uk is δ-�at in B1 (with the set sing uk
1
10-Reifenberg �at with respect to some Lk), so the claim follows from Lemma
3.4.1 as in the proof of Lemma 3.4.3. The only di�erence is that the planes Lk
may change, but without loss of generality Lk → L in G(n, n − 3), which is
enough to conclude that sing>Θ ϕ spans an (n− 3)-dimensional plane.

Moving the ball center

Proposition 3.4.7. For every ε > 0 there is δ2(ε) > 0 such that if u is δ2-�at in
B2, then u is δ1(ε)-�at in each of the balls Br(z) with z ∈ sing>Θ u ∩ B1 and
0 < r 6 1/2. Moreover, the sets singα u and sing>Θ u restricted to the ball B1

coincide.

Proof. Choose δ2 := min(δ1(ε), δ1(η/2)) according to Lemma 3.4.3, where η > 0
is to be �xed in a moment. Applying Lemma 3.4.3 rescaled to the ball B2, denote
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by ϕ the approximating HCM and let L = S(ϕ); according to Remark 3.4.4, we
may assume the conclusion actually holds on the larger ball B3/2. To obtain the
�rst claim, we �rst show that θu(z, 1/2) 6 Θ + δ1(ε) for each z ∈ B1 ∩ BηL.
First, ∫

B1/2(z)

|∇u|2 6
∫
B1/2(z)

|∇ϕ|2 + Cη2,

by Lemma 3.4.3. If z′ = πL(z), then |z − z′| < η and∫
B1/2(z)

|∇ϕ|2 6
∫
B1/2+η(z′)

|∇ϕ|2 = (1 + 2η)n−2Θ

by L-invariance of ϕ in z′-direction. If η is chosen small enough (depending on
δ1(ε)), we obtain θu(z, 1/2) 6 Θ + δ1(ε).

Since each point z ∈ sing>Θ u ∩ B1 lies in BηL by Lemma 3.4.3, the above
reasoning shows that condition 1 of De�nition 3.3.3 holds for the ball B1/2(z).
Condition 2 is satis�ed by our assumptions, so this ball is δ1(ε)-�at. Then Corol-
lary 3.4.5 implies δ1(ε)-�atness of u also in all smaller balls Br(z) (to be precise,
δ1-�atness for radii in the interval (1

4 ,
1
2) comes from the assumption of Reifen-

berg �atness).

By Corollary 3.4.6 we now have z ∈ singα u for each z ∈ sing>Θ ∩B1. The
inverse inclusion singα u ⊆ sing>Θ u is evident from the de�nition of Θ(α).

Corollary 3.4.8. Under the assumptions of Proposition 3.4.7, the whole singu-
lar set sing u restricted to the ball B1/2 coincides with sing>Θ u (and hence with
singα u).

Proof. Assume that the ball B1/2 contains a point p ∈ sing u \ sing>Θ u. We
may choose a point z ∈ sing>Θ u closest to p (as it is a closed set) and set
r = 2|p− z|. Clearly z ∈ B1 and 0 < r 6 1, so u is δ1(ε)-�at in Br(z). Choose
L = L(z, r) according to De�nition 3.3.1. Then by Lemma 3.4.1 there is a point
z′ ∈ sing>Θ u ∩ Br(z) such that πL(z′) = πL(p). Since both |πL(p) − p| and
|πL(z′)− z| are less than r

10 , the triangle inequality yields a contradiction with
minimality of z.
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In order to apply the above results, one needs to know that u is δ-�at in at least
one ball.

Lemma 3.4.9. Let δ > 0. If 0 ∈ singα u and θu(0, 0) < Θ+δ, then there is r > 0
such that u is δ-�at in Br.

Proof. Note that condition 1 of De�nition 3.3.3 is trivially satis�ed for small
enough r.

By de�nition of singα u, some sequence of rescaled functions uk(x) = u(rkx)
converges in W 1,2

loc (Rn) to a HCM ϕ of homotopy type α for some sequence
rk → 0. For large enough k, we have sing uk ∩ B1 ⊆ B1/10S(ϕ). Since the
convergence is uniform away from S(ϕ), uk restricted to S(ϕ)⊥ ∩ ∂B1/2 has
homotopy type α, so condition 2 follows from Lemma 3.4.1. Rescaling, we see
that u is δ-�at in Brk for large enough k.

Remark 3.4.10. Combining Lemma 3.4.9 with Corollary 3.4.6, we see that some
can be changed to any in the de�nition of singα, if only we restrict ourselves
to points with energy density close to optimal. That is, if y ∈ singα u and
θu(y, 0) < Θ + δ1(

1
20), then every tangent map of u at y is a HCM of type α.

We are now ready to prove the main theorem.

Proof of Theorem 3.1.3. Fix the Hölder exponent 0 < γ < 1 and choose the value
ε(γ, n) > 0 according to Reifenberg’s topological disc theorem (Theorem 3.3.2),
then �x δ to be δ2(ε) from Proposition 3.4.7.

Choose a point p ∈ singα u such that θu(p, 0) < Θ + δ. According to Lemma
3.4.9, u is δ2(ε)-�at in some small enough ball B2r(p). By Proposition 3.4.7 we
now know that the set singα u ∩ Br(p) is closed and ε-�at in each ball Bs(z)
centered at z ∈ singα u ∩ Br(p) with radius 0 < s < r/2. Applying Theorem
3.3.2, we conclude that singα u∩Br(p) is bi-Hölder equivalent (with exponent γ)
to an (n− 3)-dimensional ball.
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By upper semicontinuity of θu(·, 0) we can ensure θu(y, 0) < Θ + δ for all
y ∈ Br(p) (just by taking r small enough), which together with Corollary 3.4.8
shows that the set in question forms an open subset of sing u.

3.5 Stability of δ-�atness

The following proposition states that the δ-�atness property is stable with re-
spect to smallW 1,2-perturbations of the map. This simple result will play a cru-
cial role in the proof of Theorem 4.2.2 (measure bound on the Sn−4 stratum of
the singular set) and Theorem 7.1.1 (stability of the singular set).

As before, consider an indecomposable homotopy type α ∈ π2(N ) and its low-
est energy level Θ = Θ(α).

Proposition 3.5.1 (Stability of δ-�atness). For each ε > 0 there is δ > 0 such
that the following holds. If u is δ-�at in the ball B1 and uk → u in W 1,2(B1),
then for k large enough there is xk ∈ sing uk∩Bε such that uk is ε-�at in the ball
B1−ε(xk).

Proof. Choose ε′(n, ε) > 0 small enough, more precisely such that

ε′ < ε/2, (1− 2ε′)2−n(Θ + ε/2) 6 Θ + ε.

By taking δ small enough, we may assume by Lemma 3.4.3 (and Remark 3.4.4)
that

sing u ∩B1−ε′/2 ⊆ Bε′/2(L)

for some (n − 3)-dimensional linear plane L. Since singular points converge
again to singular points (see (2.1.3)), we have for all large k,

sing uk ∩B1−ε′ ⊆ Bε′/2(L). (3.5.1)

Recall that uk → u locally uniformly outside the singular set, and thus

uk ⇒ u in B1−ε′ \Bε′/2(L).
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In particular, uk and u restricted to L⊥ ∩ ∂B1/2 have the same homotopy type
for large k.

By Lemma 3.4.1

L ∩B1−2ε′ ⊆ πL(sing>Θ uk ∩B1−ε′).

Combined with (3.5.1), this means that we may �nd xk ∈ singΘ uk such that
|xk| 6 1

2ε
′ and θuk(xk, 0) > Θ.

The last condition to show is θuk(xk, 1 − ε) 6 Θ + ε. By strong convergence,
for large enough k, ∫

B1−ε′

|∇uk|2 6 ε/4 +

∫
B1

|∇u|2.

Thus

(1− 2ε′)2−n
∫
B1−2ε′(xk)

|∇uk|2 6 (1− 2ε′)2−n
(
ε/4 +

∫
B1

|∇u|2
)

6 (1− 2ε′)2−n(Θ + δ + ε/4),

which does not exceed Θ + ε if only δ 6 ε/4. By the monotonicity formula, we
conclude that θuk(xk, 1 − ε) 6 θuk(xk, 1 − 2ε′) 6 Θ + ε and hence that uk is
ε-�at in the ball B1−ε(xk).

3.6 Additional results

In this subsection we discuss two elementary observations that give a better
description of δ-�atness, but were not needed earlier in the proof of Theorem
3.1.3. Again, we �x an indecomposable homotopy type α ∈ π2(N ) and its
lowest energy level Θ = Θ(α).

The following lemma shows that Condition 2 in De�nition 3.3.3 can be dropped
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if one assumes a priori that x ∈ singα u. This gives us an equivalent condition
for δ-�atness.

Lemma 3.6.1. Assume that 0 ∈ singα u. If δ 6 δ1(
1
20) and θu(0, 2) 6 Θ + δ,

then u is δ-�at in B1.

Proof. Inspecting the proof of Lemma 3.4.3, we see that condition 2 of De�ni-
tion 3.3.3 was only needed to ensure required symmetry of approximating ho-
mogeneous minimizer ϕ. Hence it would be enough to assume condition 2 of
De�nition 3.3.3 in a smaller ball B1/2, and δ-�atness in B1 follows as in Lemma
3.4.3.

By Lemma 3.4.9, there is r > 0 (possibly very small) such that u is δ-�at in
Br. Applying the reasoning above, we see it is also δ-�at in every ball Bs with
r 6 s 6 min(1, 2r). An iteration of this argument (as in Corollary 3.4.5, but in
the opposite direction) leads to the claim.

The last lemma gives a uniform bound (independent of u) for the rate of con-
vergence θu(x, r)→ θu(x, 0) when r → 0, assuming θu(x, r) is already close to
θu(x, 0). This assumption cannot be dropped, if only there exist tangent maps
ϕ : Rn → N with dimH singϕ = n− 3 which are not HCMs.

An additional assumption is needed to ensure that the energy density is not
greater than Θ. This assumption is automatically satis�ed if N is real-analytic
or integrable in the sense of [48, Ch. 3.13]; see the remark preceding Corollary
3.1.4.

Lemma 3.6.2. Let us assume that 0 ∈ singα u and θu(0, 1) 6 Θ + δ3 with
δ3(n, α,N ) > 0 su�ciently small, and assume additionally that Θ is an isolated
energy level for HCMs of type α. Then for every δ > 0 there is r(δ, n,N ) > 0
such that θu(0, r) 6 Θ + δ (in consequence, u is δ-�at in Br).
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Proof. We choose δ3 > 0 smaller than δ1(
1
20) from Lemma 3.4.3 and such that∫

Bn
1

|∇ϕ|2 /∈ (Θ,Θ + δ3]

for each HCM ϕ of type α.

For the sake of contradiction, assume there is a sequence of such energy mini-
mizing maps uk with

Θ + δ 6 θuk(0, 1/k) 6 θuk(0, 1) 6 Θ + δ3.

Taking a subsequence, we obtain a limit map u such that

Θ + δ 6 θu(0, 0) 6 θu(0, 1) 6 Θ + δ3.

It follows from Lemma 3.6.1 that each uk is δ1(
1
20)-�at in B1/2, hence so is u and

by Corollary 3.4.6 we infer 0 ∈ singα u. In particular the energy density θu(0, 0)
is either Θ or greater than Θ + δ3, a contradiction.
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Chapter 4

Regularity results of Naber and Valtorta

4.1 Important tools and results

Here we discuss the results of Naber and Valtorta [37] needed in the sequel.
A simpli�ed presentation of these is available in their later article [38].

The main result of [37] is the following more precise restatement of Theorem
1.3.6 discussed in the introduction. As in the previous chapter, all the cited
results also hold for local energy minimizers, and so we drop the distinction
between local and global minimizers.

Theorem 4.1.1 ([37, Thm. 1.5, 1.6]). Let u : B2r → N be energy minimizing
and r2−n ∫

B2r
|∇u|2 6 Λ. Then there exists a constant C(n,N ,Λ) > 0 such that

Hn−3(sing u ∩Br) 6 Crn−3.

Moreover, sing u is a recti�able (n−3)-dimensional set and forHn−3-a.e. singular
point p ∈ sing u there exists a unique (n−3)-dimensional planeL such that every
tangent map of u at p is symmetric with respect to L.

In the special case of N = S2, uniform boundedness of minimizers (Theorem
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2.5.4) implies that the energy assumption is redundant. The simple corollary
below is a key ingredient in the proof of Theorem 6.1.1.

Corollary 4.1.2. If u : B2r → S2 is an energy minimizer, then the uniform mea-
sure boundHn−3(sing u ∩Br) 6 Crn−3 holds with some constant C(n) > 0.

In order to prove the stability theorem (Theorem 7.1.1), one needs more re-
�ned measure estimates. Note that for the tangent map ψ, the singular set is
an (n− 3)-plane and soHn−3(singψ ∩Br) = ωn−3r

n−3. If u is close to ψ, one
could expect its singular set to have similar measure (see Lemma 7.4.1). To this
end, we will need two more results, which are essential ingredients of [37].

To state them, we �rst recall the de�nition of Jones’ height excess β-numbers.
Choosing a Borel measure µ in Rn, a dimension 0 < k < n and an exponent
p > 1, we can de�ne for each ball Br(x) the quantity

βµ,k,p(x, r) := inf
L

(
r−k−p

∫
Br(x)

dist(y, L)p dµ(y)

)1/p

,

where the in�mum is taken over all k-dimensional a�ne planes L ⊆ Rn. This
measures how far the support of µ is from a k-dimensional plane (on the ball
Br(x)).

The role of β in obtaining upper bounds is discussed in detail in Chapter 5. In
the applications however, we shall not work directly with this de�nition, but
rather rely on the two theorems below, since they encompass all the geometric
information we need.

The next two theorems are general geometric results. The �rst one plays a cen-
tral role in proving measure bounds on the singular set. The reasoning sketched
in the next section illustrates this application, and the whole Chapter 5 is de-
voted to various extensions of this theorem.

Theorem 4.1.3 (discrete Reifenberg [37, Thm. 3.4]). There are dimensional con-
stants C(n), δ(n) > 0 such that the following holds. Let {Brj(xj)} be a disjoint
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collection of balls inB2, and let µ =
∑

j ωkr
k
j δxj be its associated discrete measure.

If for each ball Br(x) ⊆ B2 we have∫
Br(x)

∫ r

0

β2
µ,k,2(y, s)

ds

s
dµ(y) 6 δrk,

then µ(B1) 6 C .

The second is concerned with the special case when µ is the Hausdor� measure
on some k-dimensional set S. In this case, the same assumptions yield recti�a-
bility and sharp measure estimates. Interestingly, these measure estimates were
not used at all in [37], but are essential for our stability theorem (Theorem 7.1.1).

Theorem 4.1.4 (recti�able Reifenberg [37, Thm 3.3]). For every ε > 0 there is
δ(n, ε) > 0 such that the following holds. Let S ⊆ Rn be aHk-measurable subset
and assume that for each ball Br(x) ⊆ B2∫

Br(x)

∫ r

0

β2
µ,k,2(y, s)

ds

s
dµ(y) 6 δrk,

where µ denotes the measure HkxS. Then µ(B1) 6 (1 + ε)ωk and S is a k-
recti�able set.

As a side remark, let us note that in our application (Chapters 6 and 7) the set S
will satisfy the so-called Reifenberg condition and so one could work with the
W 1,p-Reifenberg theorem [37, Thm 3.2] instead.

For the last main tool developed in [37], recall the notion of k-symmetric maps
from De�nition 2.2.2. Recall also that the tangent map Ψ from (2.4.1), which is
(n − 3)-symmetric but not (n − 2)-symmetric, hence it belongs to symn,k for
all k = 0, 1, . . . , n− 3 but not for k = n− 2. In future applications (Theorems
4.3.1, 7.4.1), we will �x

ε := 2 distL2(B10)(Ψ, symn,n−2)

and choose δ > 0 accordingly.
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Theorem 4.1.5 (L2-best approximation [37, Thm 7.1]). For every ε > 0 there
are δ(n, ε) > 0 and C(n, ε) > 0 such that the following holds. If u : B10 → S2 is
energy minimizing,

distL2(B10)(u, symn,0) 6 δ,

distL2(B10)(u, symn,k+1) > ε,

then for any �nite measure µ on B1 we have

β2
µ,k,2(0, 1) 6 C

∫
B1

(θu(y, 8)− θu(y, 1)) dµ(y).

Again, the formulation in [37] involves an energy bound. However, Theorem
2.5.4 shows a uniform bound on

∫
B9
|∇u|2 and thus we obtain the stronger for-

mulation above.

4.2 A measure bound on lower strata

The measure bound Hn−3(sing u ∩ Br) 6 Crn−3 in Theorem 4.1.1 concerns
the whole singular set, but estimates for lower strata Sk (introduced in Section
2.3) are also available. This section is devoted to discussion of these results and
their corollaries.

First, we need to re�ne the notion of k-symmetry (De�nition 2.2.2) to k-almost-
symmetry, and the strati�cation Sk (from Section 2.3) to quantitative strati�ca-
tion. Although it would make some statements more concise, I chose to avoid
these notions outside of this section.

A map f is called (k, ε)-symmetric on a ball Br(p) in its domain if∫
B1

|f(p+ rx)− f(x)|2 dx 6 ε2
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for some k-symmetric map f : B1 → N . In this language, the assumptions of
Theorem 4.1.5 could be stated as follows: u is (0, δ)-symmetric but not (k+1, ε)-
symmetric on B10.

Cheeger and Naber [6] introduced the following quantitative strati�cation:

Skε =

{
y ∈ sing u : u is not (k + 1, ε)-symmetric on any Bs(y) with s ∈ (0, 1]

}
=

{
y ∈ sing u :

∫
B1

|f(y + sx)− f(x)|2 dx > ε2

for each k-symmetric map f and s ∈ (0, 1]

}
.

In its full generality, the measure bound derived in [37] concerns a larger set
Skε,r (de�ned by restricting the radius above to r 6 s 6 1). One can check [37,
Sec. 9.3] that Skε,r ↘ Skε and Skε ↗ Sk, so the classical strati�cation is recovered.

Theorem 4.2.1 ([37, Thm 1.4]). Let u : B2r → N be energy minimizing and
r2−n ∫

B2r
|∇u|2 6 Λ. Then Skε is a k-recti�able set and Hn−3(Skε ∩ Br) 6 Crk

for some constant C(ε, n,N ,Λ) > 0.

For generalN , Theorem 4.2.1 does not imply that the k-th stratum Sk has �nite
k-dimensional measure. This is only possible for the top-dimensional stratum,
and the reason is that the ε-regularity theorem (2.1.2) can be rephrased as the
inclusion sing u ⊆ Sn−3

ε for some small ε; see [6, Thm. 2.4] and [37, Sec. 10.1].

The results of Chapter 3 can be employed in a similar fashion, implying the
inclusion Sn−4 ⊆ Sn−4

ε and hence the measure bounds.

Corollary 4.2.2. There is ε(n) > 0 such that the following holds. If u : B2r → S2

is a minimizing harmonic map, then Sn−4 ⊆ Sn−4
ε . In consequence, the uniform

measure boundHn−4(Sn−4 ∩Br) 6 Crn−4 holds for some constant C(n) > 0.

Proof. For the sake of contradiction, assume that such an inclusion is in gen-
eral not true. By rescaling, this means that there is a sequence of minimizers
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uk : B2 → S2 which are (n−3, 1
k)-symmetric on B2, but 0 ∈ Sn−4. By compos-

ing with a rotation, we may also assume that ‖uk − fk‖L2(B2) 6 2n/2ε for some
fk symmetric with respect to a �xed (n− 3)-dimensional plane 0× Rn−3.

By taking a subsequence, uk converges inW 1,2
loc (B2) to a minimizer u. It follows

from the assumptions that u is also symmetric with respect to 0 × Rn−3. By
Theorem 2.4.2, there are two possibilities:

Case 1. The mapu is constant. Then byW 1,2-convergence, the energy
∫
B1
|∇uk|2

tends to zero and by ε-regularity (2.1.2) uk is smooth around 0. This is a con-
tradiction, since 0 is assumed to be a singular point.

Case 2. The map u has the form (x, y) 7→ ± x
|x| . In this case, let us �x small

δ > 0 according to Proposition 3.4.7. By W 1,2-convergence and Proposition
3.5.1 (stability of δ-�atness) we infer that for large enough k the map uk is δ-�at
on a ball B1(pk) centered at some point pk ∈ B1/4. Now Corollary 3.4.8 implies
that any singular point in B1/4 ⊆ B1/2(pk) lies in the top-dimensional part
sing∗ uk. This is a contradiction, since 0 is a singularity in the lower stratum
Sn−4.

4.3 A measure bound on the singular set for N = S2

The following is a toy case of Theorem 4.1.1. We restrict our attention to the
target manifold N = S2, and to the case when u is close to the tangent map Ψ
(2.4.1) in the sense of De�nition 3.3.3. Its proof is meant to illustrate the meth-
ods of [37] and in particular emphasize the importance of the discrete Reifen-
berg theorem (Theorem 4.1.3) in the study of singularities. Thanks to results
of Chapter 3, the main tools described in the previous section can be applied
directly, without additional covering arguments.
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A closely analogous argument will be used to prove the local stability theorem
(Lemma 7.4.1). For this reason, I chose to make the following proof a bit sketchy
at parts where it coincides with the proof of Lemma 7.4.1.

Theorem 4.3.1. There are constantsC0(n) > 0, δ(n) > 0 such that the following
is true. If u : B80 → S2 is energy minimizing and δ-�at in B80 (see De�nition
3.3.3), then the (upper) Minkowski content estimateMn−3(sing u ∩ B1) 6 C0

holds.

The (upper) Minkowski content mentioned above can be de�ned as

Ms(A) = lim sup
ε→0

P (A, ε)εs, where

P (A, ε) = max

{
k : there exist k disjoint balls Bε(xi) centered at xi ∈ A

}
is the packing number. Estimates for Minkowski content Ms are harder to
obtain than for Hausdor� measureHs, sinceHs(A) .Ms(A) in general.

As an example, consider the set A = {0} ∪ {1/n : n ∈ N}, which has Haus-
dor� dimension 0 and Minkowski dimension 1/2; indeed, one can check that
P (A, ε) > (2ε)−1/2. See [28, Ch. 5] for a detailed discussion and comparison.

The use ofMs instead of Hs here is mostly for convenience, but it also helps
illustrate the power of these methods. Indeed, with just a little more e�ort one
can get here packing content estimates, which are even stronger than Minkow-
ski content estimates (again, see [28, Ch. 5]) and are crucial in some applications
[35].

Proof. We follow the general outline of Naber and Valtorta’s work [37, Sec. 1.4].

In order to derive a Minkowski content estimate, �x a �nite disjoint family of
balls Br0

(xj) with centers xj ∈ sing u∩B1 and radii r0 6 1/2. Denote the asso-
ciated discrete measure by µ :=

∑
j r

n−3
0 δxj . We choose C0 to be the constant

55



from the discrete Reifenberg theorem (Theorem 4.1.3) and prove inductively
that

µ(Br(x)) 6 C0r
n−3 for all x ∈ B2 with r0 6 r 6 r1. (4.3.1)

Once this is shown for r1 = 1 (with arbitrarily small r0 and an arbitrary family
of balls), the proof of the Minkowski content estimate is complete.

The induction takes place with respect to r1. For r1 = r0, (4.3.1) obviously
holds, even with constant 1 instead of C0. Without loss of generality, we focus
on the last inductive step – i.e., we assume that the estimate (4.3.1) is already
known for r1 = 1/2.

However, since any ball can be covered by at most C(n) balls of 8 times smaller
radius, we see (4.3.1) holds for 8r1 with a worse constant C(n) · C0. This weak
upper bound does not establish the inductive claim, but is enough to justify the
estimates that follow.

With δ1 > 0 to be �xed later, by Proposition 3.4.7 we can choose δ small enough
so that all singular points in B40 lie in the top-dimensional part sing∗ u, more-
over u is also δ1-�at in each ball Br(z) with z ∈ sing u ∩B40 and 0 < r 6 20.

It follows from δ1-�atness that we can apply the L2-best approximation Theo-
rem 4.1.5 on each of these balls and obtain

β2(z, s) 6 C(n)s−(n−3)

∫
Bs(z)

(θu(y, 8s)− θu(y, s)) dµ(y)

for each ball Bs(z) ⊆ B2 with z ∈ sing u, where β denotes βµ,n−3,2.

Integrating this estimate over Br(x), exchanging the order of summation and
exploting the weak upper bound, we obtain∫

Br(x)

β2(z, s) dµ(z) .
∫
B2r(x)

(θu(y, 8s)− θu(y, s)) dµ(y).

When the above is integrated with respect to s, we obtain a telescopic sum. In-
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deed, the substitution s 7→ 8s together with monotone convergence θu(y, s)↘
θu(y, 0) give us∫ r

0

(θu(y, 8s)− θu(y, s))
ds

s
=

∫ 8r

r

(θu(y, s)− θu(y, 0))
ds

s

6 ln(8)δ1,

as θu(y, 8r)− θu(y, 0) 6 δ1 for all considered y and r.

Now we are ready to combine the above estimates:∫
Br(x)

∫ r

0

β2(z, s)
ds

s
dµ(z) .

∫ r

0

∫
B2r(x)

(θu(y, 8s)− θu(y, s)) dµ(y)
ds

s

6
∫
B2r(x)

ln(8)δ1 dµ(y)

. δ1r
n−3,

where we used the weak upper bound again in the last line. Assuming that
δ1 6 δ2(n)/C(n), where δ2(n) is chosen as in the discrete Reifenberg theorem
(Theorem 4.1.3), we see that the assumptions of this theorem are satis�ed and
we infer the upper estimate µ(B1) 6 C0.

Since the estimate does not depend on the choice of balls, we infer the packing
number bound P (sing u ∩B1, r0)r

n−3
0 6 C0. The estimate is also independent

of r0, thus the Minkowski content boundMn−3(sing u∩B1) 6 C0 follows.
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Chapter 5

Discrete Reifenberg-type theorem

5.1 Introduction

Reifenberg-type theorems

Classical Reifenberg’s theorem states that if a closed set S ⊆ Rn is well ap-
proximated by a�ne k-planes (in the sense of Hausdor� distance) at all balls
centered in S, then S is bi-Hölder equivalent with a plane. It was proved by
Reifenberg in 1960 [40] in his work on the Plateau problem (see also [46]).

Here we consider approximation in the sense of Hausdor� semi-distance, i.e.
sets with holes are allowed.

The quality of this approximation is measured by Jones’ height excess numbers
β. Fix natural numbers 1 6 k < n and let µ be a Radon measure on Rn; the
basic example is µ = HkxS, where S is a k-dimensional set and Hk is the
k-dimensional Hausdor� measure. We de�ne

βµ,q(x, r) = inf
V k

(
r−(k+q)

∫
Br(x)

dq(y, V k) dµ(y)

)1/q

. (5.1.1)
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This is the Lq norm of d(y, V k)/r on Br(x) with respect to the measure r−kµ,
where V k is the best a�ne k-plane.

In order to obtain an upper bound on the measure µ, a uniform bound on
βq(x, r) is not su�cient (see Example 5.2.1). The upper bound can follow from
a bound on Jones’ square function

Jµ,q(x, r) =

∫ r

0

β2
µ,q(x, s)

ds

s
. (5.1.2)

In dimension 1, Jones’ Traveling Salesman Theorem [23] shows the connec-
tion between a version of this function and 1-dimensional Hausdor� measure
bounds. The geometric importance of Jµ,q is also illustrated by Example 5.2.2.
The subscript µ shall be omitted when it is clear from the context.

There are many results concerning the consequences of a bound on Jones’
square function. David and Toro [7] showed that if S satis�es the assump-
tions of Reifenberg’s theorem and JHkxS,1(x, 1) is uniformly bounded, then the
parametrization of S obtained in Reifenberg’s theorem is Lipschitz continuous.
Azzam and Tolsa [50], [3] characterized recti�able measures by the condition
Jµ,2(x, 1) < ∞ µ-a.e., assuming that the upper-density is positive and �nite
µ-a.e.

Our aim here is to obtain upper bounds on the measure µ. In this direction,
Naber and Valtorta [37] proved that there is δ(n) > 0 such that if

r−k
∫
Br(x)

Jµ,2(y, r) dµ(y) 6 δ2

holds for any ball Br(x) ⊆ B2, then µ(B1) 6 C(n). This was proved in two
cases: when µ is a discrete measure and when µ = HkxS. In the latter case,
the authors also obtained recti�ability of S; see Chapter 4 for a more detailed
discussion of their results.

However, it was the discrete version (Theorem 4.1.3 [37, Th. 3.4]) that was used
to obtain an upper bound on the singular set Hk(sing u) of a harmonic map
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u in terms of its Dirichlet energy. Application to singular sets of solutions of
nonlinear PDEs is one of the main motivations of this chapter.

Recently, Azzam and Schul [2] have generalized Jones’ work to sets of higher
dimensions. One of their results bounds the k-dimensional Hausdor� measure
µ = HkxS of a closed set S ⊆ B1 ⊆ Rn in terms of Jµ,q(0, 2). The set S
is assumed to be lower content regular; this property implies that for some
c, r0 > 0

µ(Br(x)) > crk for all x ∈ S, 0 < r < r0.

The precise de�nitions and statements are slightly more involved, as they em-
ploy the outer measuresHk

δ instead ofHk; we refer the reader to [2] for details.
Thanks to this modi�cation the authors avoid assuming a priori that µ is �nite.

Similar results were also obtained by Edelen, Naber and Valtorta in their paper
[9], which improves their previous work [37]. They prove a variant of Theorem
5.1.1 under somewhat di�erent assumptions and also show recti�ability of the
measure in case the lower-density is suitably controlled.

Basic notation

The measure of k-dimensional unit ball is ωk and λBr(x) = Bλr(x) is used to
denote the scaled ball.

If S = {Bj} is a collection of balls, then Cent S stands for the set of centers
of these balls and λS = {λBj} is the collection of scaled balls with the same
centers. We denote the union by⋃

S =
⋃
j

Bj.
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As in [7], we use the normalized local Hausdor� distance

dx,r(E,F ) =
1

r
distH(E ∩Br(x), F ∩Br(x)),

where distH is the standard Hausdor� distance.

Statement of the main results

The following is a slightly improved version of Naber and Valtorta’s Theorem
4.1.3 [37, Th. 3.4]. The main di�erence is that the upper bound J is not assumed
to be small. Moreover, the theorem holds for any 2 6 q <∞.

Theorem 5.1.1 (discrete Reifenberg). Let S = {Brj(xj)} be a collection of dis-
joint balls in B2, µ =

∑
j ωkr

k
j δxj be its associated measure and let βq(x, r),

Jq(x, r) be de�ned as in (5.1.1), (5.1.2), where 2 6 q < ∞. Assume that for each
ball Br(x) ⊆ B2 we have

r−k
∫
Br(x)

Jq(y, r) dµ(y) 6 J. (5.1.3)

Then the following estimate holds:

µ(B1) =
∑
xj∈B1

ωkr
k
j 6 C(n, q) ·max

(
1, J

q
q+2

)
. (5.1.4)

The choice of the normalizing constant ωk is motivated by the comparison of µ
with k-dimensional Hausdor� measure, but has no importance for the theorem.

The proof of Theorem 5.1.1 follows the lines of [37]. This generalization is
made possible by relaxing the inductive claim in the construction and carefully
keeping track of the constant.

This observation also leads to other possible extensions, discussed in Section 5.5.
First, Theorem 5.5.1 and Remark 5.5.3 generalize the above to measures µ with
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controlled upper-density, in particular to the case µ = HkxS. Second, Theorem
5.5.4 shows that, with minor modi�cations, the proof applies also with (5.1.3)
replaced by a weaker assumption

−
∫
Br(x)

Jq(y, r) dµ(y) 6 J.

Outline of the proof of Theorem 5.1.1

The main tool is Reifenberg’s construction of surfaces T0, T1, T2, . . . approxi-
mating the support of µ. The bound on Jones’ square function Jq (5.1.3) enables
us to prove that this approximation is e�cient. There are three key properties
that we need:

• The total area |Ti| of the approximating surface is estimated from above
via βq numbers (see (5.4.1)).

• The measures µ andHkxTi are comparable on (at least some) balls Bri(x)
centered near Ti (see (5.4.2)).

• The region outside some neighborhood of Ti has small measure µ (see
(5.4.3)).

It is intuitive that these three imply some bound on the measure µ. Indeed, once
they are derived, we shall see at the end of Section 5.4 that the �nal estimate is
an easy consequence.

5.2 Examples

Reifenberg’s theorem states that any ε-Reifenberg �at set is α-Hölder equiva-
lent with a k-plane. This leads to �nite Hausdor� measure in dimension k/α.
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As ε → 0, α tends to 1 and the dimension bound k/α gets arbitrarily close to
k. The example below shows that under these assumptions this bound cannot
be improved.

Example 5.2.1 (�at snow�ake). Fix a small angle θ and consider a modi�cation
of the Koch curve (a snow�ake): each segment is divided into three segments
of equal length and the middle segment is replaced by two segments, each of
them at angle θ to the original segment (the original construction is obtained
for θ = π/6). We denote the curve obtained by starting with a unit segment
and iterating the above procedure by K .

If θ is small, K is ε-Reifenberg �at and α-Hölder equivalent with a segment.
For θ ≈ 0 we have ε ≈ θ ≈ 0 and α ≈ 1. Still, the Hausdor� dimension of K
is greater than 1. This example shows that Reifenberg’s theorem is optimal –
ε-Reifenberg �atness condition does not imply a bound on the k-dimensional
Hausdor� measure.

Since ε-Reifenberg �atness condition is not enough to imply a bound on the
k-dimensional Hausdor� measure, we investigate an improved example taken
from [7]. It suggests that the proper hypothesis is a bound on Jones’ square
function (5.1.2).

Example 5.2.2 (very �at snow�ake). Modify the previous example by taking
another angle θi at each stage i of the construction. After N stages we have
a curve of length

N∏
i=1

2 + 1
cos θi

3
=

N∏
i=1

(
1 +

1

6
θ2
i + o(θ2

i )

)
.

The product is convergent if and only if the sum
∑

i θ
2
i converges. The measure

λ1(K) of the limit curve can be bounded in terms of this sum.

Since the angles θi are comparable with βq numbers taken on the corresponding
balls, this shows that indeed the exponent 2 in the de�nition of Jones’ square
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function Jq (5.1.2) is natural. It also suggests that this function can be used
to bound the k-dimensional measure; indeed, a result of this type was proved
in [7]. In this paper we relax this assumption by concerning a bound on the
average −

∫
Br(x) Jq(y, r) dµ(y) or on r−k

∫
Br(x) Jq(y, r) dµ(y) for each ball Br(x).

5.3 Technical constructions

The tools discussed in this section are well known and most of them are cited
from [37]. Some technical corrections were made in Lemmata 5.3.2, 5.3.3 (coun-
terparts of [37, 4.7, 4.8]). These corrections come from the fact that the ball B1

cannot be covered by �nitely many balls Bρ(xi) contained in B1. Thus one is
forced to work with a weaker condition xi ∈ B1, in consequence the balls are
contained in a slightly larger ball B1+ρ.

Properties of β numbers

Recall the de�nitions

βqq (x, r) = inf
V k
r−(k+q)

∫
Br(x)

dq(y, V k) dµ(y), (5.1.1)

Jq(x, r) =

∫ r

0

β2
q (x, s)

ds

s
. (5.1.2)

Due to the factor r−(k+q) these quantities are scale invariant. Indeed, if ν is
a scaled version of µ, i.e. ν(·) = λ−kµ(λ·), then βν,q(0, r) = βµ,q(0, λr) and
Jν,q(0, r) = Jµ,q(0, λr). This scaling occurs e.g. if ν, µ are discrete measures
corresponding to collections of balls S, λS, or k-dimensional Hausdor� measure
restricted to sets S, λS.
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First we note the basic continuity property of βq. For any y ∈ Br(x) we have
Br(x) ⊆ B2r(y) and it follows from the de�nition that

βqq (x, r) 6 2k+2βqq (y, 2r) for y ∈ Br(x). (5.3.1)

This simple observation leads to an equivalent form of Jones’ square function.
Remark 5.3.1. Fix some ρ ∈ (0, 1) and let rα = ρα forα = 0, 1, 2, . . .. Then any
bound on Jones’ square function is (up to a constant depending on ρ) equivalent
to a bound on ∑

rα62r

β2
q (x, rα).

Proof. Similarly to (5.3.1), we have

βqq (x, r1) 6 (r2/r1)
k+qβqq (x, r2) for r1 6 r2.

Take arbitrary s ∈ (0, r) and choose α such that ρα+1 6 s < ρα. Then

c(ρ)β2
q (x, ρ

α+1) 6 β2
q (x, s) 6 C(ρ)β2

q (x, ρ
α)

and c(ρ) 6
∫ ρα

ρα+1

ds

s
6 C(ρ),

which shows the equivalence.

Denote the auxiliary numbers

δ2
q(x, r) = r−k

∫
Br(x)

β2
q (y, r) dµ(y). (5.3.2)

Note that assumption (5.1.3) together with Remark 5.3.1 yields a very rough
estimate δ2

q(x, r) 6 CJ . Moreover,

δ2
q(x1, r1) 6 C(r1/r2)δ

2
q(x2, r2) if Br1

(x1) ⊆ Br2
(x2).

Yet another corollary of (5.3.1) can be obtained by taking the average over all
y ∈ Br(x):

β2
q (x, r) 6 C(k, q)−

∫
Br(x)

β2
q (y, 2r) dµ(y).
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If one assumes a lower bound µ(Br(x)) > τ(n)Mrk (as it will be satis�ed in
the applications), this can be further estimated by

−
∫
Br(x)

β2
q (y, 2r) dµ(y) 6

1

τMrk

∫
Br(x)

β2
q (y, 2r) dµ(y)

= C(n, τ)M−1δ2
q(x, 2r). (5.3.3)

Finally, an estimate for βqq can be obtained by

βqq (x, r) =
(
β2
q (x, r)

)q/2
.

(
−
∫
Br(x)

β2
q (y, 2r) dµ(y)

)q/2
.
(
M−1δ2

q(x, 2r)
)q/2
.M− q2J

q−2
2 δ2

q(x, 2r), (5.3.4)

where the symbol. denotes an inequality up to a multiplicative constant, pos-
sibly dependent on n, q, τ, ρ.

Comparison of Lq-best planes via βq

Due to compactness of the Grassmannian G(k, n) and continuity of d(y, V ),
there exists a k-plane minimizing

∫
Br(x) d

q(y, V ) dµ (there may be more than
one). We choose any of the Lq-best planes and denote it by V (x, r).

We will estimate the distances between the Lq-best planes on di�erent balls
using βq numbers. More precisely, we want to prove that the distance between
V (x1, r1) and V (x2, r2) is estimated via βq numbers if r1, r2 are comparable and
controlled by |x1 − x2|.

In the case of the standard β∞ numbers this is an elementary geometric prob-
lem. As shown by simple examples in [37], in case of βq numbers one is forced
to assume some kind of Ahlfors-David regularity of the measure µ. Here we use
the condition τMrk 6 µ(Br) 6Mr because we want to study the dependence
on M with τ(n) �xed.
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Lemma 5.3.2. There exists ρ0(n, τ) such that for ρ 6 ρ0 the following holds. If

µ(Bρ(x)) 6 ρk

holds for all x ∈ B1 and µ(B1) > τ , then for every a�ne plane V 6 Rn of
dimension 6 k − 1, there exists a point x ∈ B1 such that

d(x, V ) > 10ρ, µ(Bρ(x)) > C(n, ρ) > 0.

Now we can prove the aforementioned tilt-excess result. We denote κ = 1
1−ρ so

that κBρ(x) ⊆ κB1(0) for any x ∈ B1(0).

Lemma 5.3.3. Fix τ ∈ (0, 1) and ρ(n, τ) as in Lemma 5.3.2; denote κ = 1
1−ρ . Let

µ be a positive Radon measure. Assume that µ(B1) > τM and that µ(Bρ2(y)) 6
Mρ2k for every y ∈ Bκ. Additionally, let x ∈ B1 be such that µ(Bρ(x)) > τMρk.

Then if d(x, V (0, κ)) 6 ρ/2 or d(x, V (x, κρ)) 6 ρ/2, then the distance between
the Lq-best planes is estimated by

dqx,ρ(V (0, κ), V (x, κρ)) 6 C(n, q, ρ, τ)M−1
(
βqq (0, κ) + βqq (x, κρ)

)
.

We present a sketch of proof, referring to [37, Lemma 4.8] for a more detailed
explanation.

Sketch of proof. We assume that d(x, V (0, κ)) 6 ρ/2; in the other case one has
to exchange the roles od V (0, κ) and V (x, κρ). Consider �rst the case M = 1.

We choose k + 1 points y0, . . . , yk ∈ Bρ(x) with µ(Bρ2(yi)) > c(n, τ). Denote
by pi the center of mass of Bρ2(yi) and let p′i be its projection onto V (0, κ). We
require p′i to e�ectively span V (0, κ) ∩Bρ(x), i.e.

d(p′i+1, span(p′0, . . . , p
′
i)) > 8ρ2.
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This is done by inductive application of Lemma 5.3.2 and the elementary in-
equality |yi − pi| 6 ρ2. Jensen’s inequality yields

dq(pi, V (0, κ)) 6 Cβqq (0, κ),

dq(pi, V (x, κρ)) 6 Cβqq (x, κρ),

hence all points p′i are close to V (x, κρ). Since these points e�ectively span
V (0, κ)∩Bρ(x), it can be shown that this k-plane is contained in a small neigh-
borhood of V (x, κρ)∩Bρ(x). Since these two planes have the same dimension,
the assumption d(x, V (0, κ)) 6 ρ/2 ensures that the inclusion works both ways
(see [37, Lemma 4.2]). This completes the case M = 1.

Now consider a measure µ satisfying the assumptions for some M > 0. Then
the above reasoning can be applied for the measure ν = M−1µ, satisfying sim-
ilar assumptions with 1 instead of M . Since µ, ν have the same Lq-best planes
and βqµ,q(y, r) = Mβqν,q(y, r) on any ball Br(y), the claim follows.

In the proof of Theorem 5.1.1, the values of τ, ρ shall be �xed depending only
on the dimension n.

Bi-Lipschitz di�eomorphism construction

Here we introduce the construction later used to obtain the approximating sur-
faces in the proof of Theorem 5.1.1.

For some r > 0, let J = {Br(xi)} be a �nite collection of balls such that 1
2J

is disjoint. For each ball choose a k-dimensional a�ne plane Vi and denote
the orthogonal projection onto Vi by πi. As in [7], one can choose a locally
�nite smooth partition of unity λi : Rn → [0, 1] subordinate to the cover

⋃
4J

satisfying

1.
∑

i λi ≡ 1 in
⋃

3J,
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2. λi ≡ 0 outside 4Br(xi) for all i,

3. ||∇λi||∞ 6 C(n)/r,

4. the partition is completed with the smooth function ψ = 1 −
∑

i λi and
||∇ψ||∞ 6 C(n)/r.

De�nition 5.3.4. Given J, λi, pi, Vi as above, de�ne the smooth map

σ : Rn → Rn, σ(x) = ψ(x)x+
∑
i

λi(x)πi(x).

The map σ interpolates between the identity and the projections onto the a�ne
planes Vi. Note that σ = id outside of the union

⋃
4J, as on this region we have

ψ ≡ 1. On the other hand, if Vi are all close to some V , then σ is close to the
orthogonal projection onto V in the region

⋃
3J. This will be made precise in

Lemma 5.3.6.

Lemma 5.3.6 is a modi�ed version of [37, Lemma 4.12]. It is essentially a coun-
terpart of the squash lemma used to prove classical Reifenberg’s theorem. The
crucial additional part of the following is the bi-Lipschitz estimate for σ that is
quadratic in δ0, δ1; this should be compared to the measure estimate in Example
5.2.2 and the de�nition (5.1.2) of Jones’s square function. In order to obtain this
quadratic estimate, let us �rst consider the following geometric fact.
Lemma 5.3.5. Let V1, V2 be two linear k-planes and π1, π2 be the corresponding
orthogonal projections. If d0,1(V1, V2) 6 δ, then ||π1π2 − id ||V1→V1

6 C(n)δ2.

Proof. It follows that ‖π1π
⊥
2 ‖ 6 Cδ and ‖π⊥2 π1‖ 6 Cδ; in fact one can de�ne the

Grassmannian distance this way. Since π1 = id on V1, it is enough to estimate
the norm of π1π2π1 − π1:

‖π1π2π1 − π1‖ = ‖π1(π2 − id)π1‖
= ‖π1π

⊥
2 π1‖

= ‖(π1π
⊥
2 )(π⊥2 π1)‖

6 ‖π1π
⊥
2 ‖ · ‖π⊥2 π1‖ 6 (Cδ)2.
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The following lemma deals with graphs of functions that areC1 small at scale r.
To simplify the notation, we introduce the normalized C1 norm

||g||C1
r

:= r−1||g||∞ + ||∇g||∞.

Lemma 5.3.6 (squash lemma). Fix some ball Br(y) ⊆ Rn and a k-dimensional
a�ne plane V such that d(y, V ) 6 r/2. Suppose that for all balls Br(xi) ∈ J
centered in 10Br(y) we have

dxi,r(Vi, V ) 6 δ1.

Suppose also that G0 ⊆ Rn is the graph G0 = {x + g0(x) : x ∈ V } ∩ 5Br(y) of
a small function g0 : V → V ⊥, i.e. ||g0||C1

r
6 δ0. If δ0 6 1 and δ1 6 δ(n), then

1. The set G1 = σ(G0) restricted to 4Br(y) is a graph of a C1 function
g1 : V → V ⊥ with

||g1||C1
r
6 C(n)(δ0 + δ1).

There is ratio θ > 3− C(n)(δ0 + δ1) such that on each of the balls θBr(xi)
the previous bound is actually independent of δ0, i.e. ||g1||C1

r
6 C(n)δ1.

2. The map σ : G0 → G1 is a C1 di�eomorphism from G0 to G1 and

|σ(z)− z| 6 C(n)(δ0 + δ1)r for z ∈ G0.

Moreover, its bi-Lipschitz constant does not exceed 1 + C(n)(δ2
0 + δ2

1).

Proof. Note that Vi are also close to V on the larger ball: dy,10r(Vi, V ) 6 Cδ1

for all i. For x ∈ V denote z = x+ g(x) and

h(x) =
∑
i

λi(z) (πi(x+ g0(x))− x) ,

so that

σ(x+ g0(x)) = ψ(z)(x+ g0(x)) +
∑
i

λi(z)πi(x+ g0(x))

= x+ ψ(z)g0(x) + h(x).
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For simplicity, assume that 0 ∈ V . Then we can consider the decomposition of
σ obtained by projecting onto the linear plane V and its orthogonal complement
V ⊥:

σ(x+ g0(x)) = σT (x) + σ⊥(x),

σT (x) = x+ hT (x),

σ⊥(x) = ψ(z)g0(x) + h⊥(x).

Now we show that σT−id and σ⊥ areC1
r -small. Indeed, it is easily checked that

||πi(x+ g0(x))− x||C1
r
6 Cδ1 for all x ∈ V ∩ 5Br(xi) and hence for all x such

that λi(z) > 0. Note that this is independent of δ0, if only δ0 6 1. Therefore
||hT ||C1

r
, ||h⊥||C1

r
6 Cδ1.

The remaining term is estimated by ||ψ(z)g0(x)||C1
r
6 Cδ0, but it vanishes for

all x such that z ∈
⋃

3J.

Thus we obtained
||σT − id ||C1

r
6 Cδ1, ||σ⊥||C1

r
6 C(δ0 + δ1)

We choose δ1 6 δ(n) small in order to apply the inverse function theorem for
σT : V → V . Thus we obtain the inverse function φ satisfying ||φ − id ||C1

r
6

Cδ1 and φ = id outside
⋃

4J. The inverse enables us to write
σ(x+ g0(x)) = σT (x) + g1(σ

T (x)), where g1(x) = σ⊥(φ(x)).

This proves point (1) and the �rst part of point (2).

What is left is the estimate for the bi-Lipschitz constant of σ. To this end, we
decompose σ in the following way:

G0 3 x+ g0(x)
(id +g0)−1

7−−−−−→ x
σT7−→ σT (x)

id +g17−−−→ σT (x) + g1(σ
T (x)) ∈ G1

The Lipschitz constant of the map V id +g0−−−→ G0 is bounded by
√

1 + δ2
0 and its

inverse is a contraction. Similarly, the bi-Lipschitz constant of V id +g1−−−→ G1 is
bounded by

√
1 + C(δ2

0 + δ2
1).
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To obtain a quadratic bound for V σT−→ V , we need to improve the estimate
||∇hT ||∞ 6 Cδ1 derived before. To this end, compute

∇hT (x) =
∑
i

∇λi(z)∇z (πV πi(x+ g0(x))− x)

+
∑
i

λi(z) (πV∇πi(id +∇g0(x))− id)

In the second sum, the expression in parentheses is (πV∇πi∇g0)+(πV∇πi−id).
The �rst term is bounded by Cδ0δ1, while for the second Lemma 5.3.5 implies
the boundCδ2

1 . The estimates for the �rst sum are obtained analogously. Hence
||∇hT ||∞ 6 C(δ2

0 + δ2
1) and the bi-Lipschitz constant of σT is bounded by 1 +

C(δ2
0 + δ2

1). In consequence, we obtain the bound for σ as a composition.

We end with a related lemma, which shows that if G is a graph over V1 and
V1, V2 are close, then it is also a graph over V2.

Lemma 5.3.7. Let V1, V2 be two a�ne k-planes and dy,r(V1, V2) 6 δ, and let
G ⊆ Br be a graph over V1 of a function g1 with ||g1||C1

r
6 δ. If δ 6 δ(n), then

G∩θBr is also a graph over V2 of a function g2, ||g2||C1
r
6 Cδ. The ratio θ satis�es

1− Cδ < θ < 1.

Sketch of proof. We follow the proof of Lemma 5.3.6. The composition

V1
id +g17−−−→ G

πV27−−→ V2

is shown to be a di�eomorphism. If we denote its inverse by φ, then G ∩ θBr

is a graph over V2 of g2(x) = φ(x) + g1(φ(x))− x.
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5.4 Proof of the main theorem

Induction upwards

Fix τ(n) = 80−16−n, then choose ρ(n, τ) ∈ (0, 1) according to Lemma 5.3.2
applied with the value 2−kτ instead of τ , �nally denote κ = 1

1−ρ . Without loss
of generality we can assume that each of the balls in S has radius rj = ρj for
some natural j > 1. Otherwise we exchange each Br(x) ∈ S for Brj(x), where
we take j so that rj 6 r < rj−1 if r < ρ and j = 1 if r > ρ. This only changes
the values in (5.1.3) and (5.1.4) by a multiplicative constant. Similarly, we can
assume µ to be supported in B1, i.e. Cent S ⊆ B1 (βµ,q numbers are monotone
in µ).

Let Si denote those balls that have radius ri = ρi; we denote S6i = S1∪ . . .∪Si
and S>i etc. analogously. We can further assume S to be �nite. Otherwise
we proceed with the �nite truncated collection S6A and its associated measure
µ6A, which also satis�es the assumption (5.1.3):

µ6A =
∑

j: rj>ρA

ωkr
k
j δxj .

If we are able to obtain the claim (5.1.4) for µ6A with a constant independent of
A, then by passing to the limit A → ∞ we obtain the claim for µ. Thus let us
assume that the smallest radius in the collection is rA.

We focus on proving by induction the following claim:

Claim 5.4.1. For each j = A, . . . , 0 and any ball Brj(x) ⊆ B2 disjoint from
Cent S6j ,

µ(Brj(x)) 6Mrkj .

At the end of the proof, it shall be clear thatM(n, J) = C(n) ·max(1, J) works
here.
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Note that this estimate fails without the additional disjointness assumption, as
for any x ∈ Cent Si and arbitrarily large j we have µ(Brj(x)) = ωkr

k
i . Still,

Claim 5.4.1 implies our �nal claim. Indeed, the collection S60 is empty, thus
µ(B1) 6M .

On the other hand, for j = A any ball disjoint from Cent S6A has measure zero,
so the claim is trivial. This is the basis for our upwards induction.

Induction downwards. An outline of the construction

Here we assume that Claim 5.4.1 holds for all x ∈ B1 and scales j + 1, . . . , A
and consider a ball Brj(x). For simplicity let us assume j = 0 and work with
the ball B1 (i.e. the last step of the upwards induction).

We proceed with Reifenberg’s construction of coverings of Cent S ∩ B1 at all
scales i = 0, . . . , A. A covering at scale i will consist of the excess set E6i and
collections of balls Goodi, Badi, Fini, each of radius ri and centered in Cent S.
The balls Fini will be chosen from the collection Si (hence µ(B) = ωkr

k
i for

B ∈ Fini) and the other balls will be separated according to their measure:
µ(B) > τMrki for good balls and µ(B) < τMrki for bad balls.

As the �rst step, we de�ne the approximating surface to be
T0 = V (0, κ) 6 Rn.

The covering of Cent S ∩ B1 is obtained by just one good ball Good0 = {B1}.
Note that if this ball is in fact bad, there is nothing to prove.

The covering will satisfy the following properties:
Claim 5.4.2 (properties of the covering). The support of µ is covered by the col-
lections of balls Goodi, Bad6i, Fin6i and the excess set E<i, i.e.

Cent S ⊆
⋃

Goodi ∪
⋃

Bad6i ∪
⋃

Fin6i ∪ E<i.
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The collections 1
2Good

i, 1
2Bad

6i, 1
2Fin

6i taken together are disjoint. Moreover, the
collection Goodi is disjoint from Cent S6i.

A sequence of surfaces approximating Cent S will also be constructed, but it is
not used to obtain Claim 5.4.2.

Excess set

For each good ball Bri(y) ∈ Goodi we de�ne the excess set

E(y, ri) := Bri(y) \Bri+1/4(V (y, κri)).

This set is exactly what prevents the set Cent S from satisfying the uniform
Reifenberg condition β∞(y, ri) 6 ρ/4. Its measure will be estimated via Cheby-
shev’s inequality later on.

We sum up over all good balls to obtain

Ei :=
⋃
Goodi

E(y, ri).

We add it to the previous excess sets: E6i := E6i−1 ∪ Ei.

Denote the remainder set

R6i :=
⋃

Bad6i ∪
⋃

Fin6i ∪ E6i.

The measure of this set can be estimated in a straightforward way, hence we do
not need to cover it in the next steps of our inductive construction.
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Construction of the covering

In order to cover the set
⋃
Goodi \R6i at scale ri, we �rst choose the �nal balls

Fini+1 :=
{
Bri+1

(z) : z ∈ Cent Si+1 ∩
(⋃

Goodi \R6i
)}

,

so that Fini+1 ⊆ Si+1. Due to Claim 5.4.2, what is left to cover is the set

Cent S>i+1 ∩
(⋃

Goodi \R6i
)
. (?)

We choose any maximal ri+1-separated subset Cent Ji+1 of the set (?) and con-
sider the collection of balls

Ji+1 := {Bri+1
(z) : z ∈ Cent Ji+1}.

By maximality, the set (?) is covered by
⋃

Ji+1. We divide Ji+1 into two subcol-
lections:

Goodi+1 :=
{
B ∈ Ji+1 : µ(B) > τMrki+1

}
,

Badi+1 :=
{
B ∈ Ji+1 : µ(B) < τMrki+1

}
.

Proof of Claim 5.4.2. By inductive hypothesis, R6i covers Cent S6i. We covered
the rest of Cent Si+1 by Fini+1 and Cent S>i+1 by Goodi+1,Badi+1, thus we ob-
tained the desired covering. Since the balls in S are disjoint and Cent Ji+1 is an
ri+1-separated set, the rest of the claim follows.

Construction of the approximating surface

Here we apply the construction from De�nition 5.3.4 for the collection of balls
J = Goodi+1. Thus for each ball Bri+1

(ys) ∈ Goodi+1 there is an associated
function λs, which together with ψ forms a partition of unity. We choose Vs
as the L2-best plane V (ys, κri+1) on a slightly enlarged ball. This de�nes the
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smooth function

σi+1(x) = ψ(x)x+
∑
s

λs(x)πVs(x)

and the surface
Ti+1 = σi+1(Ti).

The construction is now complete. Our aim is to derive three crucial properties
(5.4.1), (5.4.2), (5.4.3). Once these are obtained, the �nal estimate is an easy
consequence. First we need some basic properties of the surfaces constructed
above.

Properties of the approximating surface

Proposition 5.4.3. (a) For y ∈ Ti,

|σi+1(y)− y| 6 1

10
ri+1.

(b) If Bri+1
(y) ∈ Goodi+1, then

|Ti+1 ∩ 5Bri+1(y)| 6 10 · ωk(5ri+1)
k,

(c) σi+1 : Ti → Ti+1 is bi-Lipschitz and for every Bri+1
(y) ∈ Goodi+1 its bi-

Lipschitz constant on 5Bri+1
(y) is bounded by

Lipi+1 6 1 + C(n, q, ρ, τ)M− q+2
q δ2

q(y, 6ri−1),

in particular Lipi+1 6 21/k.

(d) If Bri+1
(y) ∈ Goodi+1, the surface Ti+1 is a graph over V (y, κri+1) on

2Bri+1
(y) of a C1 function satisfying

||f ||C1
ri+1
6 C(n, q, ρ, τ)M− q+2

q δ2
q(y, 5ri).
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Proof. In order to derive these, we apply the squash lemma (Lemma 5.3.6) for
a ball Bri+1(y) ∈ Goodi+1. Its center y lies in some Bri(z) ∈ Goodi; we let
V := V (z, κri) be the reference plane. Consider any y′ ∈ Cent Goodi+1 such
that |y − y′| 6 5ri+1. Then y′ lies in B2ri(z) and we may apply Lemma 5.3.3
(with 2−kτ instead of τ ) and obtain

d2
y′,ri+1

(V (z, 2κri), V (y′, κri+1))

6 C(n, q, ρ, τ)M− 2
q

(
β2
q (y
′, κri+1) + β2

q (z, 2κri)
)

6 CM− q+2
q

(
δ2
q(y
′, 2κri+1) + δ2

q(z, 4κri)
)

6 CM− q+2
q δ2

q(y, 5ri)

6 CM− q+2
q J

Here we used again the pointwise estimate (5.3.3) and a very bad estimate
δ2
q(x, r) 6 J (the latter shall be re�ned in the next subsection). We can choose
M > C(τ)J

q
q+2 large enough so that the right-hand side is small. The planes

V (z, 2κri) and V (z, κri) are compared in the same way:

d2
z,ri

(V (z, 2κri), V (z, κri)) 6 CM− q+2
q δ2(y, 5ri) 6 CM− q+2

q J.

By the inductive assumption, Ti is a graph over V (z, κri) on 2Bri(z) hence we
can apply Lemma 5.3.6 with

δ1 :=
(
CM− q+2

q δ2
q(y, 5ri)

)1/2

, δ0 :=
(
CM− q+2

q δ2
q(z, 5ri−1)

)1/2

.

Thus we obtain (a) and (b), while (c) follows after an additional estimate on
δ0, δ1.

We also obtain an altered version of (d): Ti+1 is also a graph over V (z, κri) on
θBri+1

(y) with the desired C1 bound (one can take θ = 2.5). By an application
of Lemma 5.3.7, one can change the plane: Ti+1 is a graph over V (y, κri+1) on
2Bri+1

(y). This completes the proof of Proposition 5.4.3.
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Estimates on the approximating surfaces Ti

Combining the bound for the bi-Lipschitz constant of σi+1 : Ti → Ti+1 in Propo-
sition 5.4.3c with the elementary estimate (1 + x)k 6 1 + k2k−1x (valid for
x ∈ [0, 1]), we obtain

Lipki+1(x) 6 1 + CM− q+2
q δ2(ys, 6ri−1), x ∈ 5Bri+1

(ys)

for each ballBri+1
(ys) ∈ Goodi+1. Summing over all balls inGoodi+1 and noting

that σi+1 = id outside 5Goodi+1,

Lipki+1(x) 6 1 + CM− q+2
q

∑
s

δ2(ys, 6ri−1)χ5Bri+1
(ys)(x).

The measure of Ti+1 = σi+1(Ti) can be estimated by

|Ti+1| 6
∫
Ti

Lipki+1(x) dHk(x).

Applying the above estimate and Proposition 5.4.3b,

|Ti+1| 6 |Ti|+ CM− q+2
q

∑
s

|Ti ∩ 5Bri+1
|δ2
q(ys, 6ri−1)

6 |Ti|+ CM− q+2
q

∑
s

∫
B6ri−1

(ys)

β2
q (z, 6ri−1) dµ(z)

6 |Ti|+ CM− q+2
q

∫
B2

β2
q (z, 6ri−1) dµ(z).

In the last line we used the fact that any point z ∈ B2 belongs to at mostC(n, ρ)
balls B6ri−1

(ys), as the balls 1
2Good

i+1 are disjoint.

Applying this inductively, we arrive at the following bound:

|Ti| 6 |T0|+ CM− q+2
q

i−1∑
l=0

∫
B2

β2
q (z, 6rl) dµ(z)

6 ωk

(
1 + C2(n, q, ρ, τ)M− q+2

q J
)
. (5.4.1)

Here, the bound on the series follows from Remark 5.3.1, and equality |T0| = ωk
comes from the fact that T0 is a plane.
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Comparison of µ andHkxTi

Let B ∈ Badi+1 ∪ Fini+1 be bad or �nal. In either case, its center y lies in some
B(z, ri) ∈ Goodi and d(y, V (z, κri)) 6 ri+1/4, so Ti is a graph over V (z, κri)
on B. In particular,

|Ti ∩B/3| > 1

10
(ri+1/3)k.

Since |σi+1(y)− y| 6 1
10ri+1 and σi+1 has a bi-Lipschitz constant Lipi+1 6 21/k

due to Proposition 5.4.3, we have

|Ti+1 ∩B/2| > |Ti ∩B/3| · Lip−ki+1

> 20−13−krki+1.

By construction, the centers Cent Good>i+1 lie outside B, hence B/2 is disjoint
with 5Good>i+1 and σs = id on B/2 for s > i+ 1. Therefore

|Ts ∩B/2| > 20−13−krki+1

for s = i, i + 1, . . .. By de�nition, µ(B) 6 τMrki+1 if B is bad. We choose
M > ωk/τ , so that the same holds if B is �nal. Thus we obtain the following
comparison estimate

µ(B) 6 C1τM |Ts ∩B/2| (5.4.2)
for B ∈ Badi+1 ∪ Fini+1 and s = i, i + 1, . . .. It is essential that the constant
C1 = 20 · 3k does not depend on ρ, τ .

Estimates on the excess set

Since
E(y, ri) = {x ∈ Bri(y) : d(x, V (y, κri)) > ri+1/4},
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Chebyshev’s inequality yields

µ(E(y, ri)) 6
1

(ri+1/4)q

∫
Bri

(y)

dq(x, V (y, κri)) dµ

6 C(n, q, ρ)rki β
q
q (y, κri)

6 C(n, q, ρ, τ)M− q2J
q−2

2 rki δ
2
q(x, 2r)

where in the last line we applied the estimate (5.3.4). By construction, the balls
1
2Good

i are disjoint, hence any point x ∈ Rn belongs to at most C(n) of the
balls 2Goodi. Thus

µ(Ei) 6 C(n, q, ρ, τ)M− q2J
q−2

2

∫
B2

β2
q (x, 2ri) dµ

and by summing over i = 0, 1, . . . , A we obtain the bound

µ(E6A) 6 C3(n, q, ρ, τ)M− q2J
q
2 . (5.4.3)

Here we used again the assumption (5.1.3) together with Remark 5.3.1.

Derivation of the bound

Here we prove Claim 5.4.1 using the estimates (5.4.1), (5.4.2), (5.4.3). By con-
struction, the balls Goodi are disjoint from Cent S6i. This means that at the
A-th step of the construction we have GoodA = ∅, as this collection of balls is
disjoint with Cent S. Therefore µ is supported in the remainder set:

suppµ ⊆
⋃

Bad6A ∪
⋃

Fin6A ∪ E6A.

Recall that the collections 1
2Bad

6A, 1
2Fin

6A are disjoint, so we can use (5.4.2) for
all bad and �nal balls with s = A to obtain:

µ
(⋃

Bad6A ∪
⋃

Fin6A
)
6 C1τM |TA|.

Then the surface estimate (5.4.1) yields

µ
(
Bad6A ∪

⋃
Fin6A

)
6 ωkC1τM(1 + C2M

− q+2
q J).
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We add it with the estimate for the excess set (5.4.3) and arrive at

µ(B1) 6M
(
ωkC1τ(1 + C2M

− q+2
q J) + C3M

− q+2
2 J

q
2

)
.

Note that τ(n) = 80−16−n is chosen so that ωkC1τ 6 1/4. Now we choose the
smallest M satisfying

C2M
− q+2

q J 6 1, C3M
− q+2

2 J
q
2 6

1

2

and other lower bounds of the form M > C(n, q) imposed during the proof;
since τ(n) is �xed, we see that M = C(n) ·max

(
1, J

q
q+2

)
. Finally, we are able

to estimate
µ(B1) 6M

(
1

4
(1 + 1) +

1

2

)
= M.

This ends the proof of Claim 5.4.1 and Theorem 5.1.1.

5.5 Extentions of the theorem

Generalization to non-discrete measures

We assume that S ⊆ B2 is a Hk-measurable subset. Here we generalize Theo-
rem 5.1.1 to measures of the form µ = HkxS, i.e. we show that (5.1.3) implies
(5.1.4) in this case as well. This was done as a part of an independent theorem
in [37, Th. 3.3], but here we show it is a corollary of Theorem 5.1.1.
Theorem 5.5.1. Let S ⊆ B2 be aHk-measurable set and let βq(x, r), Jq(x, r) be
de�ned as in (5.1.1), (5.1.2) corresponding to themeasureHkxS and some exponent
2 6 q <∞. Assume that for each ball Br(x) ⊆ B2 we have

r−k
∫
S∩Br(x)

Jq(y, r) dHk(y) 6 J.

Then for each ball Br(x) ⊆ B1 the following estimate holds:

Hk(S ∩Br(x)) 6 C(n, q) ·max
(

1, J
q
q+2

)
· rk.
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Proof. It is su�cient to show the claim for the ballB1. Then for anyBr(x) ⊆ B1

we can apply the theorem to the scaled set S ′ = 1
r(S − x), which satis�es the

assumptions with the same value of J . Thus we obtain

Hk(S ∩Br(x)) = Hk(S ′ ∩B1) · rk 6 C(n) ·max
(

1, J
q
q+2

)
· rk.

As a �rst step we show that µ = HkxS is σ-�nite. Indeed, (5.1.3) yields in
particular ∫

B2

Jq(y, 2) dµ(y) 6 2k · J.

For �xed t > 0, the measure of the superlevel set St = {y ∈ S : Jq(y, 2) > tJ}
can be estimated by µ(St) 6 2k/t using Chebyshev’s inequality. On the other
hand, the set S0 = {Jq(y, 2) = 0} is clearly contained in a k-dimensional plane
and hence µ(S0) <∞. Since

S = S0 ∪
∞⋃
j=1

S1/j,

µ is σ-�nite. We can assume without loss of generality that µ is �nite. Indeed,
we can �rst consider the smaller sets S0 ∪ S1/j instead; since the bound (5.1.4)
depends on n and q only, in the limit we obtain the bound also for S.

Second, we recall the notion of upper k-dimensional density

Θ∗k(S, x) = lim sup
r→0

Hk(S ∩Br(x))

ωkrk

and its following property [28]:
Proposition 5.5.2. Let S ⊆ Rn be a set with Hk(S) < ∞. Then for Hk-a.e.
x ∈ S,

2−k 6 Θ∗k(S, x) 6 1. (5.5.1)

Consider the set S? of all points x ∈ S satisfying (5.5.1). We can replace S with
this possibly smaller set. Since the di�erence S \ S? has zero Hk measure, the
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obtained bound for S? holds also for S. From now on we assume that all points
x ∈ S satisfy (5.5.1).

For every x ∈ S choose a radius rx ∈ (0, ρ] such that

µ

(
1

10
Brx(x)

)
> 2−k−1ωk(rx/10)k,

µ(Br(x)) 6 2ωkr
k for all r 6 rx.

The set S is covered by balls Brx(x) and we can extract a countable Vitali sub-
covering Bj = Brj(xj), so that the balls 1

5Bj are disjoint. Choose pj to be the
center of mass of 1

10Bj and de�ne the collection

S := {Brj/10(pj)}.

Since pj ∈ 1
10Bj , we have Brj/10(pj) ⊆ 1

5Bj , thus the collection S is disjoint.
We consider the associated measure

ν :=
∑
j

ωk(rj/10)kδpj .

Our goal now is to reduce the problem for µ to the already solved problem for
the discrete measure ν. We will show that this is possible due to the following
comparison estimates:

µ(B1) 6 2 · 10kν(B1+2ρ)

βqν,q(x, s) 6 2k+13k+qβqµ,q(x, 3s).

For the �rst estimate, we observe that

µ(B1) 6
∑

xj∈B1+ρ

µ(Bj) 6 2 · 10k
∑

xj∈B1+ρ

ωk(rj/10)k 6 2 · 10kν(B1+2ρ).

As for the second, consider a ball Bs(x) such that 3Bs(x) ⊆ B2. If there is
some pj ∈ Bs(x) with rj/10 > 2s, then by disjointness of S this is the only
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point from supp ν in Bs(x) and βν,2(x, s) = 0. In the other case, rj/10 6 2s for
all pj ∈ Bs(x). Choose an a�ne k-plane V . On each 1

10Bj we apply Jensen’s
inequality for the function dq(·, V ):

dq(pj, V ) 6 −
∫

1
10Bj

dq(y, V ) dµ.

This yields
(rj/10)kωkd

q(pj, V ) 6 2k+1

∫
1
10Bj

dq(y, V ) dµ

and hence∫
Bs(x)

dq(y, V ) dν 6 2k+1
∑

pj∈Bs(x)

∫
1
10Bj

dq(y, V ) dµ 6 2k+1

∫
B3s(x)

dq(y, V ) dµ.

Taking the in�mum on the right-hand side,

βqν,q(x, s) 6 2k+13k+qβqµ,q(x, 3s).

Therefore the �atness condition (5.1.3) is satis�ed also for the measure ν and
we obtain our claim by an application of Theorem 5.1.1. To be more precise,
one �rst needs to apply an easy rescaling and covering argument, as one needs
to bound ν(B1+2ρ) instead of ν(B1), and also the obtained estimate works only
for balls Bs(x) such that 3Bs(x) ⊆ B2.
Remark 5.5.3. This proof shows that Theorem 5.1.1 actually works for all mea-
sures µ with the covering property resulting from Proposition 5.5.2. Consider
µ supported in the union of balls Brj(xj), each satisfying

µ

(
1

10
Brj(xj)

)
> cµ(rj/10)k,

µ (Br(xj)) 6 Cµr
k
j for all r 6 rj.

In particular, this is satis�ed by any µ such that

cµ 6 Θ∗k(µ, x) 6 Cµ for µ-a.e. x.

If µ satis�es the assumption (5.1.3), then µ(B1) is bounded as in (5.1.4). Natu-
rally, the constant obtained in the �nal estimate depends on cµ, Cµ.
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Weakened assumptions

The proof of Theorem 5.1.1 applies also with the assumption (5.1.3) replaced
by −
∫
B J2 6 J . This means that we consider the integral divided by µ(Br(x))

instead of rk. Since there is no a priori upper bound for µ, this assumption is
weaker.
Theorem 5.5.4. Let S = {Brj(xj)} be a collection of disjoint balls in B2 and
µ =

∑
j ωkr

k
j δxj be its associated measure and let βq(x, r), Jq(x, r) be de�ned as

in (5.1.1), (5.1.2), where 2 6 q < ∞. Assume that for each ball Br(x) ⊆ B2 we
have

−
∫
Br(x)

Jq(y, r) dµ(y) 6 J.

Then the following estimate holds:

µ(B1) =
∑
xj∈B1

ωkr
k
j 6 C(n, q) ·max

(
1, J

q
2

)
.

Sketch of proof. Proceeding as in the proof of Theorem 5.1.1, one obtains the
following counterparts of estimates (5.4.3), (5.4.1):

µ(E6A) 6 C3J
q
2 ,

|TA| 6 ωk

(
1 + C2M

− 2
qJ
)
.

The main di�erence lies in the last step of each estimate, where one needs to
bound the integral

∫
B2
Jq(x, r) dµ(x). A closer look at the proof shows that in

fact an integral over B1.5 is su�cient to bound these quantities (actually, any
ball larger than B1 is su�cient if ρ is small enough). In the case considered
in Theorem 5.1.1, this is bounded by J ; in this case, one has to use the rough
estimate µ(B1.5) 6 C(n)M to obtain∫

B1.5

Jq(x, r) dµ(x) = µ(B1.5)−
∫
B1.5

Jq(x, r) dµ 6 C(n)MJ.

This rough estimate can be derived as follows. Since the collection S = S>1

is disjoint, there are at most C(n, ρ) ball centers B1.5 ∩ Cent S1 and each has
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measure ωkρk. The rest of B1.5 can be covered by C(n, ρ) balls of radius ρ
disjoint from Cent S61. By the inductive assumption of Claim 5.4.1, each has
measure bounded by Mρk. This yields

µ(B1.5) 6 C(n, ρ)ωkρ
k + C(n, ρ)Mρk 6 C(n, ρ)M.

The proof of the estimate (5.4.2) carries over without changes:

µ(B) 6 C1τM |Ts ∩B/2| for B ∈ Badi+1 ∪ Fini+1 and s > i.

Similarly, these three estimates combined yield

µ(B1) 6M
(
ωkC1τ

(
1 + C2M

− 2
qJ
)

+ C3M
−1J

q
2

)
and the proof works for M = C(n) ·max

(
1, J

q
2

)
.
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Chapter 6

Linear bound on the measure of
singularities

6.1 Linear law

This chapter is devoted to the proof of Theorem 6.1.1, a higher-dimensional
counterpart for Almgren–Lieb’s linear estimate on the number of singularities.

Theorem6.1.1. Let u ∈ W 1,2(Ω,S2) be aminimizing harmonic map in a smooth
bounded domain Ω ⊆ Rn, and let ϕ := u|∂Ω be its trace. Then

Hn−3(sing u) 6 C(Ω)

∫
∂Ω

|∇ϕ|n−1 dHn−1. (6.1.1)

In contrast to Almgren and Lieb’s original proof, the one presented here does
not depend on the classi�cation of singularities (Theorem 2.4.1), and the only
necessary special property of S2 is the extension property (Theorem 2.5.1). As
already noted in Remark 2.5.2, it holds for all closed simply connected manifolds
(see [17]). Thus, we obtain the following more general result.

Corollary 6.1.2. Assume that N is a smooth closed simply-connected manifold.
Let u ∈ W 1,2(Ω,N ) be a minimizing harmonic map in a smooth bounded domain
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Ω ⊆ Rn, and let ϕ := u|∂Ω be its trace. Then

Hn−3(sing u) 6 C(Ω,N )

∫
∂Ω

|∇ϕ|n−1 dHn−1. (6.1.2)

Let us discuss why such an estimate is noteworthy. First, a non-linear estimate
on the measure of singularities follows easily from Naber and Valtorta’s interior
bounds. As an example, consider the following very simple result.
Theorem 6.1.3. Let Ω, u and ϕ be as before. Then

Hn−3(sing u) 6 C(Ω,Lip(ϕ)).

Proof. If the boundary map ϕ is Lipschitz continuous, there exists σ > 0 (de-
pending on the geometry of Ω and the Lipschitz constant of ϕ) such that any
minimizer u is smooth in the region {x ∈ Ω : dist(x, ∂Ω) 6 σ}; this was
proved in [18], but also follows from more general Corollary 2.6.5. For any ball
Bσ/2(p) centered outside this region, Corollary 4.1.2 implies an upper bound
Hn−3(sing u ∩ Bσ/2(p)) 6 C(n, σ). Since {x ∈ Ω : dist(x, ∂Ω) > σ} can be
covered by �nitely many such balls, we obtain an upper bound depending on
Ω and Lip(ϕ).

The second improvement lies in the norm used for estimating sing u. A closer
look at the argument above shows that in fact Lip(ϕ) can be replaced by the
norm ‖ϕ‖W 1,p(∂Ω) for any p > n − 1. However, even a non-linear estimate in
terms of ‖ϕ‖W 1,n−1(∂Ω) has to involve some more sophisticated geometric con-
siderations – the singularities still have positive distance to the boundary, but
this distance cannot be estimated in terms of the norm alone.

As already mentioned in the introduction, one can hope for a further re�ne-
ment – replacing W 1,n−1(∂Ω) by W 1,p(∂Ω) with any p > 2 – but the analysis
becomes more challenging, as the singularities may approach the boundary.

Examples in [31] show, the W 1,p(∂Ω)-norm with p < 2 cannot control the
singularities, so Corollary 6.1.2 is sharp in dimension n = 3.
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6.2 Hot spots – re�ned boundary regularity

We start by re�ning further the boundary regularity theorems from Chapter 2.

Recall that Theorem 2.5.4 gives a bound on the energy of u : B+
1 → S2 in terms

of the energy
∫
T1
|∇ϕ|2 of its boundary map. In this section, we are considering

possible hot spots on the boundary. That is, we assume∇ϕ is controlled on most
of T1 except for a small ball, on which the integral may be arbitrarily large.

The �rst result states that in this case a uniform bound on the energy is also
available away from the hot spot (see [1, Thm. 2.3.]).

Theorem 6.2.1. Let Ω ⊆ Rn be a bounded domain with smooth boundary. There
exists a number r0 = r0(Ω) > 0 with the following property.

For p ∈ ∂Ω let A(r,s)(p) := {x ∈ Rn : r < dist(x, p) < s}. Suppose also that u
is a minimizer in Ω having boundary map ϕ. Then, whenever 0 < r < r0,

r2−n
∫

Ω∩A(r,2r)(p)

|∇u|2 dx 6 C + Cr3−n
∫
∂Ω∩A(r/2,5r/2)(p)

|∇ϕ|2 dHn−1,

where C(n) > 0 is a dimensional constant.

Proof. We choose r0 so that balls Br0
(q) ∩ Ω with q ∈ ∂Ω are C2-close to B+

1

after rescaling (see the remark preceding Corollary 2.5.3).

On any ball Br/4(q) with q ∈ ∂Ω ∩ A(r,2r)(p) we have the estimate∫
Ω∩Br/4(q)

|∇u|2 dx . rn−2 + r

∫
∂Ω∩A(r/2,5r/2)(p)

|∇ϕ|2 dHn−1

by Theorem 2.5.4. On the other hand, by the same theorem∫
Br/8(q)

|∇u|2 dx . rn−2
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for any q such that Br/4(q) ⊆ Ω. We can cover the annulusA(r,2r)(p) by �nitely
many balls of these two types, the number of balls depending only on the di-
mension. Summing up, we conclude the �nal estimate (compare [29, Theorem
6.1]).

With this uniform energy bound, we can actually show that boundary energy in
small balls cannot induce distant singularities [1, Thm. 2.4]. In the contradiction
argument, the hot spot tends to zero in size and disappears completely in the
limit.

Theorem 6.2.2 (regularity away from hot spots). There is ε(n) > 0 such that
the following holds. Suppose u ∈ W 1,2(B+

1 ,S2) is a minimizer with trace ϕ on T1,
and ∫

T1\Bε(p)

|∇ϕ|2 dHn−1 6 ε

for some ball Bε(p). Then u is smooth in

T1/2 × (λ/2, λ),

where λ(n) > 0 is a small dimensional constant.

Proof. We argue by contradiction. Assume that ui : B+
1 → S2 is a sequence of

minimizers with boundary maps ϕi such that∫
T1\Bεi

(pi)

|∇ϕi|2 dHn−1 6 εi

for a sequence of balls Bεi(pi) and εi
i→∞−−−→ 0. Setting ri := (εi)

1
n−2 > εi, we

obtain
(ri)

3−n
∫
T1\Bri

(pi)

|∇ϕi|2 dHn−1 < ri, (6.2.1)

where ri
i→∞−−−→ 0, and up to taking a subsequence, ri < 2−i.

Now, we assume (by contradiction) that each ui has at least one singularity
yi ∈ T1/2 × (λ/2, λ).
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By Theorem 6.2.1, for large enough i and for any r > 2−i

r2−n
∫
B+

1 ∩A(r,2r)(pi)

|∇ui|2 dx 6 C.

Thus, for every 1 6 k 6 i,∫
B+

1 ∩A(2−k,2−k+1)(pi)

|∇ui|2 dx 6 C 2−k(n−2).

Up to taking another subsequence we can assume that pi → p0, and for conve-
nience also |pi − p0| 6 2−i. Then, from the above estimate we have∫

B+
4/5\B2−i+13(p0)

|∇ui|2 dx 6 C
i∑

k=1

2−k(n−2) 6 C. (6.2.2)

In particular by a diagonal argument and the strong convergence of minimizers,
Theorem 2.6.1, we obtain a minimizer u in W 1,2(B+

3/4 \Br(p0)) for any r > 0.
Moreover, its trace, which we shall call ϕ ∈ W 1,2

loc (T1 \ {p0},S2) is the limit of
ϕi. Observe that ϕ is constant on T1 by (6.2.1).

Moreover, by (2.1.3) the sequence of singular points yi can be assumed to con-
verge to a singular point of u, which we call y ∈ T1/2 × [λ/2, λ].

To reach a contradiction with Theorem 2.6.4, one needs to solve the subtle is-
sue of minimality around p0. To this end, we note that by (6.2.2) the energy∫
B+

4/5\Br(p0) |∇ui|
2 is uniformly bounded for all r > 0, and hence by monotone

convergence u ∈ W 1,2(B+
3/4). In view of Lemma 6.2.3 below, the singularity p0

is removable, and so u is a minimizing harmonic map in B+
3/4) with a constant

boundary map ϕ. This contradicts the singularity at y.

To complete the proof of Theorem 6.2.2, we need the following removability
lemma.

Lemma 6.2.3 (Removability of points for minimizing harmonic maps). Assume
that u ∈ W 1,2(B+

1 ,S2) is a minimizer away from the origin, i.e., assume that for
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any δ > 0 and any v ∈ W 1,2(B+
1 ,S2) satisfying v = u on ∂B+

1 and v ≡ u on
B+
δ we have ∫

B+
1 \B

+
δ

|∇u|2 dx 6
∫
B+

1 \B
+
δ

|∇v|2 dx. (6.2.3)

Then u is a minimizing harmonic map in all of B+
1 .

Proof. Let w ∈ W 1,2(B+
1 ,S2) with u ≡ w on ∂B+

1 be a competitor. We need to
show that ∫

B+
1

|∇u|2 dx 6
∫
B+

1

|∇w|2 dx. (6.2.4)

For δ > 0, let ηδ ∈ C∞c (B2δ) be a standard cut-o� function satisfying ηδ ≡ 1 in
Bδ and |∇ηδ| . 1/δ. We de�ne w̃δ ∈ W 1,2(B+

1 ,R3) as

w̃δ := (1− ηδ)w + ηδu;

this function satis�es w̃δ = u on ∂B+
1 , w̃δ ≡ u in B+

δ and w̃δ ≡ w in B+
1 \B2δ.

By the extension property (Theorem 2.5.1) applied in B+
2δ \ Bδ we can correct

w̃δ to a map wδ ∈ W 1,2(B+
1 ,S2) such that

wδ =


u in B+

δ

w in B+
1 \B2δ

u on ∂B1

and ∫
B+

2δ\Bδ

|∇wδ|2 dx 6
∫
B+

2δ\Bδ

|∇w̃δ|2 dx.

In particular, w̃δ is a competitor in the sense of (6.2.3), and we have∫
B+

1 \Bδ

|∇u|2 dx 6
∫
B+

1 \Bδ

|∇wδ|2 dx

=

∫
B+

1 \B2δ

|∇wδ|2 dx+

∫
B+

2δ\Bδ

|∇wδ|2 dx

6
∫
B+

1 \B2δ

|∇w|2 dx+ C

∫
B+

2δ

|∇w̃δ|2 dx.
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Since u, and w ∈ W 1,2(B+
1 ) using the absolute continuity of the integral we

�nd that∫
B+

1

|∇u|2 dx 6
∫
B+

1

|∇w|2 dx+ C lim inf
δ→0

∫
B+

2δ

|∇w̃δ|2 dx. (6.2.5)

Now∫
B+

2δ

|∇w̃δ|2 dx 6
1

δ2

∫
B+

2δ

|u− v|2 dx+

∫
B+

2δ

|∇u|2 dx+

∫
B+

2δ

|∇v|2 dx.

Observe that we are in dimension n > 3 and S2 is compact, so
1

δ2

∫
B+

2δ

|u− v|2 dx 6 δ.

Thus, using again the absolute continuity of the integral and that u,w ∈ W 1,2

we �nd
lim
δ→0

∫
B+

2δ

|∇w̃δ|2 dx = 0.

Plugging this into (6.2.5) we conclude.

In the applications, we will use the following global version of Theorem 6.2.2
(see [1, Cor. 2.7]).
Theorem 6.2.4 (boundary regularity with hot spots). For each bounded smooth
domain Ω ⊆ Rn, there are small constants σ, ε, λ,Λ > 0 (σ depending on the
geometry of Ω, the others only on the dimension) so that the following statement
holds true for any minimizer u ∈ W 1,2(Ω,S2) with trace ϕ := u

∣∣∣
∂Ω
.

For any singular point p ∈ sing u with r := dist(p, ∂Ω) < σ and for any ball
Bλr(q) ⊆ Rn, we have

r3−n
∫
∂Ω∩(BΛr(p)\Bλr(q))

|∇ϕ|2 dHn−1 > ε.

Proof. In principle, this is a rescaled version of Theorem 6.2.2, only with non-�at
boundary – with Λ = 1/λ′ and λ = ε/λ′, where ε, λ′ are the values from Theo-
rem 6.2.2. By choosing σ > 0 small enough, we can ensure that after rescaling
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the balls to unit size, the boundary is arbitrarily close to �at. To consider this
more general case, one needs a bit di�erent contradiction argument based on
Theorem 2.6.1 (see Remark 2.6.2).

By Hölder’s inequality, the conclusion can be replaced by∫
∂Ω∩(BΛr(p)\Bλr(q))

|∇ϕ|n−1 dHn−1 > ε

and this is the formulation actually used in the sequel. However, it is impor-
tant to note that all boundary regularity theorems work with W 1,2, and the
scale-invariance of W 1,n−1-norm on the boundary is only needed for the �nal
covering argument.

6.3 Covering argument

As in the case n = 3, the study of singularities near the boundary involves the
following covering lemma, which we here cite from [1, Theorem 2.8, 2.9].

Theorem 6.3.1 (Covering lemma). Let B be a family of closed balls in Rn, µ
be a Borel measure over Rn, and let τ, ω ∈ (0, 1). Moreover, assume that the
following two hypotheses hold:

1. For any two di�erent Br(p),Bs(q) ∈ B we have

|p− q| > ωmin(r, s).

2. Suppose that Br(p) ∈ B and q ∈ Rn is an arbitrary point, then

µ (Br(p) \Bτr(q)) > 1.

Then
#balls in B 6 Cµ(Rn),

for a constant C(ω, τ, n) > 0.

95



Proof of Theorem 6.1.1. Choose σ > 0 (depending on the geometry of ∂Ω) ac-
cording to Theorems 2.6.3, 6.2.4. We �rst estimate the measure of the set

A1 := {p ∈ sing u : r(p) 6 σ}, where r(p) = 1
2 dist(p, ∂Ω),

which is covered by balls Br(p)(p). Then we choose a Vitali subcovering such
that the balls Brj(pj) cover A1 and the balls Brj/5(pj) are disjoint; let B be the
family of balls Brj/λ(pj) with λ as in Theorem 6.2.4. The �rst condition from
Theorem 6.3.1 with ω = λ/5 follows: for any two distinct balls in our collection
we have

|pi − pj| > 1
5(ri + rj) > λ

5 max(ri/λ, rj/λ).

Now let µ be the measure

µ =
1

ε
|∇ϕ|n−1Hn−1x∂Ω, i.e. µ(U) =

1

ε

∫
∂Ω∩U

|∇ϕ|n−1 dHn−1,

where ε > 0 is the constant from Theorem 6.2.4. If we set τ = λ2, then the
second condition of Theorem 6.3.1 follows from Theorem 6.2.4 and we infer
that

#B 6 C

∫
∂Ω

|∇ϕ|n−1 dHn−1.

On each ball Brj(pj), Corollary 4.1.2 impliesHn−3(sing u ∩Brj(pj)) 6 Crn−3
j .

Summing over all balls, we obtain

Hn−3(A1) 6 C

∫
∂Ω

|∇ϕ|n−1 dHn−1.

Next we estimate the set

A2 := {p ∈ sing u : r(p) > σ}.

For each ball Bσ(y) with dist(y, ∂Ω) > 2σ, Corollary 4.1.2 yields an upper
bound Hn−3(sing u ∩ Bσ(y)) 6 Cσn−3. The set A2 can be covered by �nitely
many such balls (the number of balls depending only on σ and the geometry of
Ω), which gives us an estimate

Hn−3(A2) 6 C0.
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Taking C0 as above and ε as in Theorem 2.6.3, we have two possibilities. Either
the smallness condition

∫
∂Ω |∇ϕ|

n−1 dHn−1 6 ε is satis�ed and Hn−3(A2) = 0
follows, or

Hn−3(A2) 6 C0 6
C0

ε

∫
∂Ω

|∇ϕ|n−1 dHn−1.

In both cases, combining the estimates for A1 and A2 ends the proof.
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Chapter 7

Stability of singularities

7.1 Statement of results

This chapter is concerned with stability of singularities. By this we mean that
if two boundary maps ϕ, ϕ′ : ∂Ω → S2 are close in the right Sobolev norm,
then the singularities of their corresponding minimizers u, u′ : Ω→ S2 are close
as well. Since minimizers are in general non-unique, the precise statement is
a little more subtle – e.g. by assuming uniqueness a priori.

In any case, let us discuss the right notions of closeness. In dimension n = 3,
when the singular set consists of �nitely many points, Hardt and Lin [18] proved
Theorem 1.4.2. They considered the Lipschitz norm for boundary data, and
showed that small perturbations do not change the number of singularities.
Moreover, they constructed a bi-Lipschitz di�eomorphism η : Ω → Ω (close to
identity in Lipschitz norm) such that u is close to u′◦η in someCβ norm. These
results were recently extended to the case of W 1,2-perturbations of boundary
data by Li [24].

In higher dimension n > 3, we consider perturbations in the W 1,n−1 norm.
Since the singular set is a recti�able set of codimension 3, we prove its stability
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with respect to Wasserstein metric (see [51])

dW (µ, ν) = sup
h : Rn→[−1,1]
|∇h|61

{∫
Rn
h dµ−

∫
Rn
h dν

}
, (7.1.1)

i.e., we show that the distance between measuresHn−3xsing u andHn−3xsing u′

is small. Since taking h ≡ 1 in the de�nition yields

|µ(Rn)− ν(Rn)| 6 dW (µ, ν),

we obtain in particular that the size of the singular set Hn−3(sing u) is also
stable under W 1,n−1-perturbations of boundary data.
Theorem 7.1.1 (stability of singularities). Let u ∈ W 1,2(Ω,S2) be a minimizer
in a bounded smooth domain Ω ⊆ Rn with boundary data ϕ ∈ W 1,n−1(∂Ω,S2).
If uk is a sequence of minimizers with boundary data ϕk and

uk → u inW 1,2(Ω), ϕk → ϕ inW 1,n−1(∂Ω), (7.1.2)

then
Hn−3xsing uk

dW−→ Hn−3xsing u,

in particularHn−3(sing uk)→ Hn−3(sing u).

For n = 3, we recover most of Hardt and Lin’s Theorem 1.4.2. Indeed, we see
that # sing uk = # sing u for large k (asH0 is simply the counting measure) and
that sing uk converges to sing u with respect to Hausdor� distance. However,
generalizing the di�eomorphism statement to higher dimensions seems very
challenging – note that bi-Lipschitz regularity of sing∗ u is an open problem for
n > 3.

If one assumes uniqueness, the statement becomes slightly simpler:
Corollary 7.1.2. Let Ω ⊆ Rn be a bounded smooth domain, and assume that for
boundary dataϕ ∈ W 1,n−1(∂Ω,S2) there is a uniqueminimizer u ∈ W 1,2(Ω,S2).
Then for each ε > 0 there is δ > 0 such that

‖ϕ′ − ϕ‖ 6 δ inW 1,n−1 ⇒ dW
(
Hn−3xsing u′,Hn−3xsing u

)
6 ε

for any minimizer u′ with boundary data ϕ′.
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Proof. For the sake of contradiction, let uk be a sequence of minimizers with
boundary data ϕk, with ϕk → ϕ in W 1,n−1(∂Ω,S2). Taking a subsequence, by
Theorem 2.6.1 we may assume that uk converges in W 1,2(Ω,S2) to a minimizer
u with boundary data ϕ. By uniqueness, u = u and Theorem 7.1.1 implies that
Hn−3xsing uk tends to Hn−3xsing u. Thus, we obtain a contradiction for large
enough k.

7.2 Outline

In analogy to the original argument of Hardt and Lin [18], the heart of the
argument lies in the special case when u is the tangent map Ψ as in (2.4.1)
given by

R3 × Rn−3 3 (x, y)
Ψ7−−−−→ x

|x|
∈ S2.

Establishing a stability result for the singular set (which for Ψ is an (n − 3)-
dimensional plane) requires some care. Here we adopt the notion of δ-�atness
introduced in Chapter 3, which combines topological and analytic conditions
for a minimizer to be close to Ψ. In Section 7.3 we cite some of the necessary
results in our case.

With this in hand, we are able to modify the original arguments of Naber and
Valtorta [37] and improve their measure estimates in the special case of maps
into S2. In result, we obtain the stability result for Ψ mentioned earlier (Lemma
7.4.1).

Since aroundHn−3-almost every singular point, any energy minimizer is close
to the map Ψ (composed with an isometry), this stability result can be seen
as a local case for Theorem 7.1.1. Indeed, in Section 7.5 we cover most of the
singular set of u by balls on which Lemma 7.4.1 can be applied. An argument
based on Proposition 3.5.1 then shows that the same covering works for both
sing u and sing uk, and the global estimate follows.
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7.3 Behavior of top-dimensional singularities

This section recapitulates the results of Chapter 3 in the special case of the
target manifold N = S2. These results will allow us to study further the top-
dimensional part of the singular set.

Recall that by Theorem 2.4.2, the map Ψ: R3 ×Rn−3 → S2 given by Ψ(x, y) =
x/|x| (2.4.1) is the only locally minimizing (n − 3)-symmetric harmonic map
from Rn to S2 (up to linear isometries of Rn). In particular, its energy density
Θ =

∫
B1
|∇Ψ|2 from (2.4.2) is the only energy density on the top-dimensional

part of the singular set – i.e., θu(x, 0) = Θ for each x ∈ sing∗ u. As already
noted in Chapter 3, this implies that the homotopy class [id] is indecomposable
in the sense of De�nition 3.2.4.

From now on, we shall use the notion of δ-�atness (see De�nition 3.3.3) with
this �xed homotopy class and its (lowest) energy level Θ.

Below we summarize the main consequences of δ-�atness from Chapter 3 in
the special case N = S2. For simplicity, we only deal with the ball B2, but
one can easily obtain the corresponding statement for any ball using the scale-
invariance.
Theorem 7.3.1. For each ε > 0 there is δ > 0 such that the following holds. If u
is δ-�at in B2, then

1. for some tangent map of the form Ψ = Ψ ◦ q (with Ψ as in (2.4.1) and some
linear isometry q) we have

‖u−Ψ‖2
W 1,2(B1) 6 ε,

2. for the (n− 3)-dimensional linear plane L := sing Ψ,

sing u ∩B1 ⊆ Bε(L) and L ∩B1−ε ⊆ πL(sing u ∩B1),

3. all singular points in B1 lie in the top-dimensional part sing∗ u, and u is
ε-�at in each of the balls Br(z) with z ∈ sing u ∩B1 and 0 < r 6 1/2.
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Proof. Points (1) and (2) are essentially the content of Lemma 3.4.3, except for
the condition L ∩ B1−ε ⊆ πL(sing u ∩ B1), which follows from Lemma 3.4.1.
Point (3) comes from combining Proposition 3.4.7 and Corollary 3.4.8.

7.4 Local case

The lemma below can be thought of as a local version of the stability theorem.
It says that perturbing the tangent map Ψ a little does not change the size of
the singular set much.
Lemma 7.4.1. For each ε > 0 there is δ > 0 such that the following is true. If
u : B80 → S2 is energy minimizing and δ-�at in B80 (see De�nition 3.3.3), then

(1− ε)ωn−3 6 Hn−3(sing u ∩B1) 6 (1 + ε)ωn−3.

Here ωn−3 = Hn−3(sing Ψ ∩B1) is the volume of the (n− 3)-dimensional ball.

It is natural that in order to conclude the right estimate on B1, one needs to
make assumptions on a larger ball. The ball B2 would be enough here, but
working with B80 saves us from an additional covering argument.

Proof. The lower bound follows from a simple topological argument (compare
with [37, Lemma 6.1]). Fix ε′ = ε

n−2 , then apply Theorem 7.3.1 to �nd that there
is an (n− 3)-dimensional linear plane L such that

L ∩B1−ε′ ⊆ πL(sing u ∩B1),

provided δ is small enough. Since the orthogonal projection πL is 1-Lipschitz,
this shows
Hn−3(sing u ∩B1) > Hn−3(L ∩B1−ε′) = (1− ε′)n−3ωn−3 > (1− ε)ωn−3.

A rough upper bound follows from Naber and Valtorta’s work [37], namely
Corollary 4.1.2:

Hn−3(sing u ∩Br(z)) 6 C(n)rn−3 (7.4.1)
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for each ball B2r(z) ⊆ B2.

To obtain the sharp upper bound, we will follow the general outline of Naber
and Valtorta’s work [37, Sec. 1.4]. When the target manifold is S2, the original
reasoning can be made signi�cantly easier due to topological control of singu-
larities (analyzed in Chapter 3). In particular, we will be able to apply Recti�able
Reifenberg Theorem 4.1.4 to the whole singular set in B1, without decomposing
it into many pieces.

With δ1 > 0 to be �xed later, by Theorem 7.3.1 we can choose δ small enough so
that all singular points in B40 lie in the top-dimensional part sing∗ u, moreover
u is also δ1-�at in each ball Br(z) with z ∈ sing u ∩B40 and 0 < r 6 20.

We can now apply the L2-best approximation Theorem 4.1.5 on these balls; for
simplicity, we consider the ball B10 �rst. By Theorem 7.3.1, u is W 1,2-close to
a map of the form Ψ = Ψ ◦ q (with Ψ as in (2.4.1) and some linear isometry q).
Note that Ψ lies in symn,0 and the value

ε0 := distL2(B10)(Ψ, symn,k+1) > 0

depends only on the dimension n (not on the choice of q). Hence, by taking δ1

small enough we can ensure that

distL2(B10)(u, symn,0) 6 δ,

distL2(B10)(u, symn,k+1) > 2ε0

with δ = δ(2ε0) chosen according to Theorem 4.1.5. Then we obtain

β2(0, 1) 6 C(n)

∫
B1

(θu(y, 8)− θu(y, 1)) dµ(y),

where µ := Hn−3x(sing u ∩B2) and β = βµ,n−3,2. Similarly,

β2(z, s) 6 C(n)s−(n−3)

∫
Bs(z)

(θu(y, 8s)− θu(y, s)) dµ(y) (7.4.2)

for each ball Bs(z) ⊆ B2 with z ∈ sing u. To see this, one simply needs to
consider the rescaled map u(x) = u(z + rx) and apply scaling-invariance of
δ-�atness and β-numbers.
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Now we verify the hypotheses of Recti�able Reifenberg Theorem 4.1.4. Fix a ball
Br(x) ⊆ B2; we only need to check that∫

Br(x)

∫ r

0

β2(z, s)
ds

s
dµ(z) 6 δ2r

n−3 (7.4.3)

with δ2(ε) > 0 chosen according to Theorem 4.1.4,

First, we integrate the estimate (7.4.2) over Br(x) and exchange the order of
summation:∫

Br(x)

β2(z, s) dµ(z) . s−(n−3)

∫
Br(x)

∫
Bs(z)

(θu(y, 8s)− θu(y, s)) dµ(y) dµ(z)

6 s−(n−3)

∫
B2r(x)

∫
Bs(y)

(θu(y, 8s)− θu(y, s)) dµ(z) dµ(y)

.
∫
B2r(x)

(θu(y, 8s)− θu(y, s)) dµ(y).

Note that in the last step we used the weak upper bound (7.4.1) on the ball
Bs(y).

When the above is integrated with respect to s, we obtain a telescopic sum. In
order to estimate it, �rst recall that u is δ1-�at in each ball B8r(y) such that
y ∈ sing u and Br(y) ⊆ B2, in particular

θu(y, 8r)− θu(y, 0) 6 δ1

on the support of µ. Thus, the substitution s 7→ 8s together with monotone
convergence θu(y, s)↘ θu(y, 0) give us∫ r

0

(θu(y, 8s)− θu(y, s))
ds

s
=

∫ 8r

r

(θu(y, s)− θu(y, 0))
ds

s

6 ln(8)δ1.
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Now we are ready to combine the above estimates:∫
Br(x)

∫ r

0

β2(z, s)
ds

s
dµ(z) .

∫ r

0

∫
B2r(x)

(θu(y, 8s)− θu(y, s)) dµ(y)
ds

s

6
∫
B2r(x)

ln(8)δ1 dµ(y)

. δ1r
n−3,

where we used (7.4.1) again in the last line. Assuming δ1 6 δ2(ε)/C(n), we
have veri�ed the assumption (7.4.3) and we infer the upper estimate

Hn−3(sing u ∩B1) = µ(B1) 6 (1 + ε)ωn−3.

7.5 Global case

The idea of the proof is to cover most of sing u by good balls, on which u is δ-
�at and thus the measure of sing u is controlled by Lemma 7.4.1. The rest of the
singular set is to be covered by bad balls, whose total mass is small. To achieve
this, we will need the following simple covering lemma.

Lemma 7.5.1. Let S ⊆ Rn be a compact set of �nite Hk-measure and let B be
a family of open balls such that for each point p ∈ S, all small enough balls around
p belong to B. Then, given any ε > 0, S can be covered by the union of two �nite
families of open balls Good, Bad, where Good ⊆ B consists of pairwise disjoint
balls and Bad = Brj(pj) is a small family in the sense that∑

j

rkj 6 ε. (7.5.1)

Proof. One way to construct this covering is by using Vitali’s covering theorem
for Radon measures (see e.g., [28, Theorem 2.8]). Applying it to the measure
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µ := HkxS, we obtain a countable family of pairwise disjoint closed balls A ={
Brs(ps)

}
, covering µ-almost all S and satisfying B2rs(ps) ∈ B for each s.

Since the measure µ is �nite, we can divideA into two subfamilies Good′, Bad′,
where Good′ is �nite and Bad′ is small, i.e., µ

(⋃
Bad′

)
6 ε. To obtain the

desired properties, we still need to alter these families a little.

First, we de�ne Good to be the balls of Good′ slightly enlarged to open balls,
but still pairwise disjoint and still belonging to B.

Now, the remaining part S \
⋃

Good is a compact set and

µ
(
S \

⋃
Good

)
6 µ

(⋃
Bad′

)
6 ε.

By de�nition of Hausdor� measure, this set can be covered by a �nite family of
open balls Bad satisfying the smallness condition (7.5.1).

Proof of Theorem 7.1.1. Fix ε > 0. For the sake of clarity, we focus on showing
that the di�erence |Hn−3(sing uk)−Hn−3(sing u)| is controlled by ε for k large
enough. The estimate for Wasserstein distance follows the same lines; it is
brie�y discussed at the end of the proof.

Step 1 (boundary regularity). Choose ε0 > 0 according to the boundary
regularity theorem (Theorem 2.6.6). Fix r > 0 such that∫

Br(x)

|∇ϕ|n−1 6 ε0/2

for every ball Br(x) centered at ∂Ω. Then u is smooth in a λr-neighborhood of
∂Ω (with λ(n) > 0 as in Theorem 2.6.6). By strong convergence of ϕk to ϕ in
W 1,n−1(∂Ω), we may assume that

∫
∂Ω |∇ϕk|

n−1 6 ε0

2 +
∫
∂Ω |∇ϕ|

n−1 and thus∫
Br(x)

|∇ϕ|n−1 6 ε0

for every ball Br(x) centered at ∂Ω. As a consequence, we may assume each
uk is also smooth in the same �xed neighborhood of ∂Ω.
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Step 2 (covering the low-dimensional part). Recall the strati�cation from
Section 2.3

S0 ⊆ . . . ⊆ Sn−4 ⊆ Sn−3 = sing u,

in which the k-th stratum Sk has Hausdor� dimension k or smaller. We will
consider separately the set Sn−4 and the top-dimensional part

sing∗ u := Sn−3 \ Sn−4.

Since sing u is compact and sing∗ u is an open subset of sing u by Theorem 7.3.1,
Sn−4 is also compact. At the same time, it has a uniform distance from ∂Ω and
Hn−3(Sn−4) = 0, so it can be covered by a �nite family Bad1 = {Bri(pi)} of
open balls satisfying the smallness condition (7.5.1)∑

i

rn−3
i 6 ε

and such that B2ri(pi) ⊆ Ω for each i.

On each such ball Corollary 4.1.2 yieldsHn−3(sing u ∩Bri(pi)) 6 Crn−3
i , with

C depending only on the dimension n. Summing over all balls, we obtain

Hn−3
(

sing u ∩
⋃

Bad1

)
6 Cε.

The same estimate holds verbatim for each uk, by the same application of Corol-
lary 4.1.2.

Step 3 (covering the top-dimensional part and estimatingHn−3(sing u)).
Here, we use the covering lemma (Lemma 7.5.1) for the set S := sing u\

⋃
Bad1.

Thanks to Step 1, sing u has positive distance from the boundary, so it is a com-
pact set of �niteHn−3-measure due to Corollary 4.1.2. We choose B to be

B =

{
Br(p) : p ∈ sing∗ u, u is δ-�at in B81r(p)

}
,

where δ(ε) > 0 is chosen according to Lemma 7.4.1. Since Sn−4 is already
covered by Bad1, we know that S ⊆ sing∗ u and hence small enough balls
around each point in S lie in B by Lemma 3.4.9 and Corollary 3.4.5.
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Having checked the properties required by Lemma 7.5.1, we can cover S by
the union of a �nite disjoint family Good ⊆ B and another �nite family Bad2

satisfying (7.5.1). We add the latter to Bad1 to obtain the family of bad balls
Bad := Bad1 ∪ Bad2, which still satis�es the smallness condition (7.5.1).

Repeating the reasoning from Step 2, we have again via Corollary 4.1.2,

Hn−3
(

sing u ∩
⋃

Bad
)
6 2Cε, (7.5.2)

Hn−3
(

sing uk ∩
⋃

Bad
)
6 2Cε for all k.

By assumption, the map u is δ-�at in B80rs(ps) for each ball Brs(ps) ∈ Good.
By Lemma 7.4.1, we now obtain

(1− ε)ωn−3r
n−3
s 6 Hn−3(sing u ∩Brs(ps)) 6 (1 + ε)ωn−3r

n−3
s

for each s. To �nish the proof, we need to show that a similar comparison holds
for uk if k is large.

Step 4 (estimating Hn−3(sing uk)). Since uk → u in W 1,2(Ω) and sing u is
covered by the open families Good,Bad, by (2.1.3) the same holds for uk if k is
large enough (from now on we assume it is). For bad balls, the rough estimate
(7.5.2) will be enough, so we focus on good balls.

By Proposition 3.5.1, we can assume (by taking k large and δ small) that for
each Brs(ps) ∈ Good there is pks ∈ sing uk such that |pks − ps| 6 εrs and uk is
δ′-�at in the ball B80(1+ε)rs(p

k
s). Here, the value of δ′ is chosen to be δ(ε) from

Lemma 7.4.1.

Applying Lemma 7.4.1 to uk on balls B(1−ε)rs(p
k
s) and B(1+ε)r(p

k
s), we obtain

(1− ε)n−2ωn−3r
n−3
s 6 Hn−3(sing uk ∩B(1−ε)rs(p

k
s))

6 Hn−3(sing uk ∩Brs(ps))

6 Hn−3(sing uk ∩B(1+ε)rs(p
k
s))

6 (1 + ε)n−2ωn−3r
n−3
s ,
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which is only slightly worse that the estimate forHn−3(sing u).

Step 5 (comparison). Recalling that Good is a disjoint family, we can sum the
above estimate over all s to obtain

(1− ε)n−2A 6 Hn−3(sing uk ∩
⋃

Good) 6 (1 + ε)n−2A,

where A :=
∑

s ωn−3r
n−3
s . Combining it with the estimate for bad balls (7.5.2),

we �nally obtain

(1− ε)n−2A 6 Hn−3(sing uk) 6 (1 + ε)n−2A+ 2Cε.

Exactly the same estimate is true for u. Combining these two yields∣∣Hn−3(sing uk)−Hn−3(sing u)
∣∣ 6 ((1 + ε)n−2 − (1− ε)n−2

)
A+ 2Cε

6

(
(1 + ε)n−2

(1− ε)n−2
− 1

)
Hn−3(sing u) + 2Cε.

Evidently the right-hand side tends to zero when ε→ 0, which ends the proof
of stability ofHn−3(sing u).

Step 6 (Wasserstein distance estimate). With just a little bit more care, the
reasoning above leads to the Wasserstein distance estimate. Let us consider the
measure µ = Hn−3xsing u and decompose it into µ = µb +

∑
s µs, where

µb = µ x
(⋃

Bad \
⋃

Good
)
,

µs = µ xBrs(ps) for each ball Brs(ps) ∈ Good.

The estimate for µb is simply dW (µb, 0) 6 µ (
⋃

Bad) 6 2Cε, whereas on each
good ball Brs(ps) we have the inequalities∫

Rn
h dµs − ωn−3r

n−3
s h(ps)

=

∫
Brs(ps)

(h− h(ps)) dµ+
(
µ(Brs(ps))− ωn−3r

n−3
s

)
h(ps)

6 rsµ(Brs(ps)) + |µ(Brs(ps))− ωn−3r
n−3
s |

6 (rs + 2ε)ωn−3r
n−3
s
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for any function h : Rn → R satisfying |h| 6 1 and |∇h| 6 1. If only each
radius is smaller than ε, it follows that dW (µk, ωn−3r

n−3
s δps) 6 3εωn−3r

n−3
s . By

triangle inequality, dW (µ, ν) 6 3εA + 2Cε, where ν =
∑

s ωn−3r
n−3
s δps is the

packing measure associated to Good and once again A = ν(Rn). Applying the
same reasoning to uk, we conclude as before.
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