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Rodzaje odziaływań miedzygatunkowych

Podstawowe oddziaływania międzygatunkowe w ekologii
- konkurencja
- mutualizm
- drapieżnictwo
- pasożytnictwo
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Odpowiedź funkcjonalna Hollinga

-d -odległość reakcji
-Ts - czas poszukiwania ofiar
-V - prędkość przemieszczania się drapieżnika
-a - efektywność ataków
-Th- ”handling time”
Liczba schwytanych ofiar w czasie poszukiwań Ts

czest.spotk.︷ ︸︸ ︷
(a2dV v) Ts

Liczba ofiar zjedzonych w jedn. czasu

F (v) =
a2dVTsv

Ts + 2adVTsvTh
=

(2adV )v
1 + (2adVTh)v

.

Funkcja Hollinga II typu (1952)
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Najprostszy model drapieżnik-ofiara

v(t)—zagęszczenie populacji ofiar,
dv
dt

= rv(1− v
k

)− F (v)U .

U stałe zagęszczenie drapieżnika
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Optymalizacja prędkości poruszania się
drapieżnika
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Modele drapieżnik -ofiara (dynamika obu
populacji)

Pierwsze modele matematyczne
Lotka- Volterra (1925-6), Kołmogorow (1936), Gause (1935)
Hasło ”predator-prey” wpisane w MathSciNet daje 2850 pozycji
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Model Lotki-Volterry

a

du
dt

= −du + cbvu

dv
dt

= rv − bvu ,
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Model Lotki-Volterry

źródło:Frank Hoppensteadt (2006), Scholarpedia, 1(10):1563
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Model Lotki-Volterry

źródło:Frank Hoppensteadt (2006), Scholarpedia, 1(10):1563
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Paradoks pestycydów

v ofiara (owad, szkodnik upraw) , u drapieżnik (owad)
Stan stacjonarny (ū, v̄):

ū =

∫ T

0
u(t)dt =

r
b
,

v̄ =

∫ T

0
v(t)dt =

d
cb

.

w wyniku działania pestycydów rośnie d i maleje r .
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Uogólnienie modelu Lotki Volterry

Model Gause-go (1935) i Rosenzweiga-McArthura (1963)

du
dt

= −du + cF (v)u ,

dv
dt

= R(v)− F (v)u ,

wzrost logistyczny :

R(v) = rv(1− v/k)

F(v)–odpowiedź funkcjonalna (Holling 1959) liczba ofiar

zjadanych w jednostce czasu przez jednego drapieżnika przy
zagęszczeniu ofiar v . Dla klasycznego modelu Lotki-Volterry
mamy zatem F (v) = bv
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Bifurkacja Hopfa-cykle graniczne

Bifurkacji Hopfa-utrata stabilności punktu krytycznego typu ognisko,
przy pewnej krytycznej wartości parametru bifurkacyjnego powoduje
pojawienie się cyklu granicznych wokół tego punktu

limitcycle.jpg

źródło:Van der Hoff et al. S. Afr. J. Sci.(2013)
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Cykle graniczne

K.-S. Cheng, Uniqueness of a limit cycle for predator-prey
system, SIAM J. Math. Anal. (1981)

J. Hofbauer, J.W So, Multiple limit cycles for predator-prey
models, Math. Biosci.(1990)

D.W, Limit cycles in predator-prey models, Math. Biosci. (1990)
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Model Hollinga-Tannera
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Współdziałanie drapieżników
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Populacja ze strukturą i selekcja

D. Wrzosek Układ



Model z Am Nat
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Układ drapieżnik -ofiara z migracją (dyfuzją)

E. Conway, J.A. Smoller, Diffusion and the predator-prey
interactions, SIAM J. Appl Math (1977)
u , v : Ω× (0 ,+∞)→ R

ut = du∆u − du + cF (v)u ,
vt = dv ∆v + R(v)− F (v)u ,

uν(x , t) = vν(x , t) = 0 dla x ∈ ∂Ω i t > 0
( ν -zewnętrzny normalny do brzegu ∂Ω )
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układ chemotaksji Kellera-Segel

Keller-Segel J. Theor. Biology (1970)

ut = du∆u −div(χu∇w),

wt = dw ∆w −w+αu

uν(x , t) = vν(x , t) = 0 dla x ∈ ∂Ω i t > 0
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układ drapieżnik -ofiara z migracją i taksją w
kierunku ofiar

Kareiva P, Odell G. (1987) Swarms of predators exhibit
preytaxis if individual predators use are-restricted search. Am
Nat 130: 233-270
J. M Lee, T. Hillen, M. Lewis(2009) Pattern formation in
prey-taxis systems. J Biol Dyn 3: 551-573
Wang X, Wang W, Zhang G (2015) Global bifurcation of
solutions for a predator-prey model with prey-taxis. Math. Meth
in Appl Math
Aiseba B, Bendahmane M, Noussair A (2008) A
reaction-diffusion system modeling predator-prey with
prey-taxis. Nonlinear Anal.RWA

ut = du∆u +÷(χ∇v)− du + cF (v)u ,
vt = dv ∆v + R(v)− F (v)u ,
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układ drapieżnik -ofiara z migracją i chemotaksją I

J.I Tello, D.W

ut = du∆u − div(χu∇w),

wt = dw ∆w − µw + αvf (u),

vt = λr(1− v
K )− vf (u),
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układ drapieżnik -ofiara z migracją i chemotaksją II

J.I Tello, D.W

ut = du∆u − div(χu∇w),

wt = dw ∆w − µw + αv ,
vt = λr(1− v

K )− vf (u),
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