
Stochastic Regulation in Early Immune Response

Tomasz Lipniacki,*yz Pawel Paszek,y Allan R. Brasier,§ Bruce A. Luxon,z and Marek Kimmely{

*Institute of Fundamental Technological Research, Warsaw, Poland; yDepartment of Statistics, Rice University, Houston, Texas;
zBioinformatics Program, and §Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas;
and {Institute of Automation, Silesian Technical University, Gliwice, Poland

ABSTRACT Living cells may be considered noisy or stochastic biochemical reactors. In eukaryotic cells, in which the number
of protein or mRNA molecules is relatively large, the stochastic effects originate primarily in regulation of gene activity. Tran-
scriptional activity of a gene can be initiated by transactivator molecules binding to the specific regulatory site(s) in the target
gene. The stochasticity of activator binding and dissociation is amplified by transcription and translation, since target gene acti-
vation results in a burst of mRNAs molecules, and each copy of mRNA then serves as a template for numerous protein mol-
ecules. In this article, we reformulate our model of the NF-kB regulatory module to analyze a single cell regulation. Ordinary
differential equations, used for description of fast reaction channels of processes involving a large number of molecules, are com-
bined with a stochastic switch to account for the activity of the genes involved. The stochasticity in gene transcription causes
simulated cells to exhibit large variability. Moreover, none of them behaves like an average cell. Although the average mRNA
and protein levels remain constant before tumor necrosis factor (TNF) stimulation, and stabilize after a prolonged TNF stim-
ulation, in any single cell these levels oscillate stochastically in the absence of TNF and keep oscillating under the prolonged
TNF stimulation. However, in a short period of ;90 min, most cells are synchronized by the TNF signal, and exhibit similar
kinetics. We hypothesize that this synchronization is crucial for proper activation of early genes controlling inflammation. Our
theoretical predictions of single cell kinetics are supported by recent experimental studies of oscillations in NF-kB signaling
made on single cells.

INTRODUCTION

Typically, in mammalian cells, there are tens or hundreds of

mRNA molecules of a given species and thousands of corre-

sponding protein molecules, but typically only two homol-

ogous gene copies. This implies the discrete regulation of

mRNA transcription, governed by the stochastic events of

binding and dissociation of transcription factors to the regu-

latory site (1–6). Stochastic effects due to gene activation and

inactivation are amplified by mRNA synthesis and protein

translation. As a result, single gene activation may result in

production of thousands of protein molecules, influencing the

cell kinetics much more strongly than production and deg-

radation of single mRNA or protein molecules. It was often

assumed that the transcription rate of an inducible gene is a

function of the nuclear concentration of a transcription fac-

tor. Such an approach is justified when the binding and dis-

sociation events are very frequent, which may be assumed

for prokaryotes, but is not justified for higher organisms.

On the other hand, the large number of mRNA and protein

molecules allows for a deterministic reaction-rate approxi-

mation in description of the time evolution of mRNA and

protein levels, an approximation which is much more com-

putationally efficient than the discrete model. Therefore,

processes such as mRNA translation, formation, and deg-

radation of protein complexes, and catalytic and spontaneous

degradation, which involve a large number of molecules,

may be modeled by ordinary differential equations (ODEs).

As a contrast in prokaryotes, in which the mRNA molecules

are very unstable (half-life time is of order of 1 min) and much

less abundant, the stochasticity of formation, degradation,

and translation of single mRNAs is of great importance

(7–11). As a result, in prokaryotes there is a competition

between stochastic effects caused by gene activation and

mRNA processing.

Stochasticity in gene activation considerably influences

cell kinetics and potentially leads to large cell-to-cell var-

iability in mRNA and protein levels. Since each cell reacts to

its own mRNA and protein levels, and not to the average

levels in the population, the information about cell-to-cell

variability could be crucial in the analysis of kinetics of sin-

gle cell events like apoptosis. This is why, in this article on

regulation of early immune response, we modify our previous

simplified approach and model the transcriptional part of the

regulatory network using a stochastic switch.

Nuclear factor kB (NF-kB) regulates numerous genes

important for pathogen or cytokine inflammation, immune

response, cell proliferation, and survival (reviewed in (12)).

In mammals, the NF-kB family of transcription factors con-

tains five members but the ubiquitously expressed p50 and

RelA heterodimer constitutes the most common inducible

NF-kB binding activity. In resting cells, p50-RelA hetero-

dimers (referred to herein as NF-kB) are sequestered in the

cytoplasm by association with the members of another family

of proteins called IkB. This family includes several proteins

Submitted November 21, 2004, and accepted for publication September 12,
2005.

Address reprint requests to Tomasz Lipniacki, Dept. of Statistics, Rice

University, 6100 Main St., MS-138, Houston, TX 77005. E-mail: tomek@

rice.edu; or E-mail: tlipnia@ippt.gov.pl.

� 2006 by the Biophysical Society

0006-3495/06/02/725/18 $2.00 doi: 10.1529/biophysj.104.056754

Biophysical Journal Volume 90 February 2006 725–742 725



but most of the IkB-family inhibitory potential is carried

by IkBa, whose synthesis is controlled by a highly NF-kB-

responsive promoter, generating autoregulation of NF-kB

signaling (13). Activation of NF-kB requires degradation of

IkBa, which allows NF-kB to translocate into the nucleus,

bind to kB motifs present in promoters of numerous genes,

and upregulate their transcription. NF-kB activating signals

converge on the cytoplasmic IkB kinase (IKK), a multipro-

tein complex that phosphorylates IkBa, leading to its ubiq-

uitination and then to its rapid degradation by the proteasome

(reviewed in (14)). Activation of IKK kinase is induced by

various extracellular signals including tumor necrosis factor-

a (TNF) and interleukin-1 (IL-1) through complicated, not

fully resolved, transduction pathways. IKK inactivation is

controlled by the zinc finger protein termed A20, which, like

IkBa, is strongly NF-kB responsive and generates a second

autoregulatory loop in NF-kB signaling (15). Mice deficient

in A20 develop severe inflammation and cachexia, are hyper-

sensitive to TNF, and die prematurely (16). Nuclear NF-kB

activates groups of genes through a process initiated by its

binding to high affinity DNA binding sites in regulatory

regions of their promoters. Although NF-kB binding to some

genes results in rate-limiting complex formation of co-

activators, pre-initiation factors, and RNA polymerase II, the

mode of regulation for A20 and IkBa inhibitors appears to

be distinct. Interestingly, chromatin immunoprecipitation assays

have shown that the A20 and IkBa promoters are already

bound by general transcription factors, co-activators, and

RNA Pol II, waiting for the presence of NF-kB binding to

activate them (17,18). In these promoters, RNA polymerase

II is stalled in an activated state; upon NF-kB binding, RNA

polymerase enters a competent elongation mode and thus is

able to rapidly respond to NF-kB binding. In this manner,

these inhibitor members of the NF-kB feedback loop are

rapidly poised to respond to the presence of nuclear NF-kB.

The first attempt to mathematically analyze the IkB-NF-

kB signaling module was a one-feedback loop model that

concentrated on the interplay between three IkB isoforms

(19). In contrast, our two feedback loop model (20) incor-

porates inhibitors operating at two levels in the signaling

pathway: IkBa—the single species from IkB family whose

knockout is lethal (21), and which binds the majority of

cytoplasmic RelA; and A20—which inhibits activity of IKK

whose action leads to the second negative feedback loop in

NF-kB regulation. Incorporating the second inhibitor, A20,

this latter model accurately predicts the profile of IKK activity.

In this article, we apply a stochastic switch together with

deterministic reaction rate description by ODEs to model the

NF-kB regulatory network at the single cell level.

MOTIVATION, MODEL FORMULATION, AND
NUMERICAL IMPLEMENTATION

In the last few years, several important studies of NF-kB reg-

ation at the single cell level have been performed (22–25).

Using fluorescently tagged RelA and IkBa proteins, these

experiments enable observation of intercompartment trans-

locations of both proteins, showing a large heterogeneity in

kinetics of cell responses to TNF or IL-1 stimulation. Nelson

et al. (23) showed that the rate of nuclear RelA accumulation

in response to TNF stimulation depends on the initial RelA/

IkBa ratio. In cells with enhanced initial concentration of

IkBa, the nuclear import is considerably slower. In accordance

with Nelson et al. (23), Schooley et al. (25) found a broad

distribution of nuclear RelA levels in the cell population at

10–90 min after IL-1 stimulation. Although these cited

experiments indicate a large variability in cell kinetics, it is

not straightforward to determine to which extent this vari-

ability is caused by stochastic regulation of gene expression,

rather than being introduced by cell-to-cell variation in the

amount of transfected plasmids (or their expression levels).

In a recent experiment, Nelson et al. (26) proved the

existence of long persisting single cell oscillations in NF-kB

signaling. Since cell-to-cell synchronization decreases with

time, these oscillations either do not appear or appear

strongly damped when observed at the population level, but

as concluded by the authors they are important in control of

expression of numerous NF-kB-inducible genes. The point is

that NF-kB must circulate between nucleus and cytoplasm

where it may become activated by a post-translational modi-

fication, such as phosphorylation. Inhibition of its nuclear

export results both in NF-kB dephosphorylation at Ser-536

after ;3 h and in transitory kB-dependent luciferase reporter

gene expression that peaked after ;5 h (26).

The model involves two-compartment kinetics of the

activators IKK and NF-kB, the inhibitors A20 and IkBa, and

their complexes (Fig. 1). It is biologically justified to assume

that the cytoplasmic complex IKK may exist in one of three

forms (20):

1. Neutral (denoted by IKKn), synthesized de novo and

specific to resting cells without an extracellular stimulus

like TNF or IL-1.

2. Active (denoted by IKKa), arising from IKKn upon the

TNF or IL-1 stimulation.

3. Inactive, but different from the neutral form, arising from

IKKa possibly due to over-phosphorylation (denoted by

IKKi).

In resting cells, the unphosphorylated IkBa binds to NF-kB

and sequesters it in an inactive form in the cytoplasm. In

response to extracellular signals such as TNF, IKK is trans-

formed from its neutral form (IKKn) into its active form

(IKKa), capable of phosphorylating IkBa, leading to IkBa

degradation (Fig. 1 A). Degradation of IkBa releases the

main activator NF-kB, which then enters the nucleus and

triggers transcription of the two inhibitors and numerous

other genes. The newly synthesized IkBa leads NF-kB out

of the nucleus and sequesters it in the cytoplasm (Fig. 1 B),

while A20 inhibits IKK by converting IKKa into the inactive

form IKKi (Fig. 1 C), a form different from IKKn, but also
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not capable of phosphorylating IkBa. Considering IKK, we

assume that each form of IKK undergoes degradation with

the same degradation rate, and that IKKa can form transient

complexes with IkBa proteins or (IkBajNF-kB) complexes.

Formation of these complexes leads to IkBa phosphoryla-

tion, ubiquitination, and degradation in the proteasome. At

the same time, NF-kB is activated by RelA phosphorylation

(27). Degradation of IkBa enables activated NF-kB to enter

the nucleus, where it rapidly upregulates the transcription of

mRNAs of inhibitory proteins A20 and IkBa. The A20 and

IkBa mRNA transcripts are then translated into protein.

The inhibitor IkBa migrates between the nucleus and

cytoplasm and forms complexes with IKKa and NF-kB

molecules. The nuclear (IkBajNF-kB) complexes quickly

migrate into the cytoplasm. The second inhibitory protein

A20 is considered only in the cytoplasm where it triggers the

inactivation of IKK. It is assumed that the transformation rate

from IKKa into IKKi is a sum of a constant term and a term

proportional to the amount of A20. The total amount of NF-

kB is kept constant, i.e., it is assumed that the degradation

is balanced by synthesis, but the synthesis and degradation

terms are omitted. For IKK we have synthesis and degra-

dation terms, but since all IKK forms degrade with the same

degradation rate, after the equilibrium is reached the total

amount of IKK (i.e., IKKn 1 IKKa 1 IKKi) remains roughly

constant.

The transcriptional regulation of A20 and IkBa genes is

governed by the same rapid elongation regulatory mecha-

nism with rapid coupling between NF-kB binding and

transcription. The mechanisms for NF-kB-dependent regu-

lation of IkBa and A20 are based on control of transcrip-

tional elongation, described earlier. In this situation, stalled

RNA polymerase II is rapidly activated by NF-kB binding to

enter a functional elongation mode, and requires continued

NF-kB binding for reinitiation. This is represented in our

model by tight coupling of NF-kB binding to mRNA tran-

scription. In fact, our experimental analysis of the kinetics of

IkBa and A20 gene expression indicates that the patterns of

mRNA expression are tightly coupled with NF-kB presence

in the nucleus, without appreciable time delay (28). This

model cannot be extended to other NF-kB-dependent genes

that show distinct kinetics of induction. In this situation, the

so-called late genes, like Naf-1 or NF-kB2, show a peak of

induction 6 h after NF-kB binding. Activation of the late genes

apparently requires the activation or binding of other rate-

limiting regulatory factors (6). We assume that all cells are

diploid, and both A20 and IkBa genes have two potentially

active homologous copies, each of which is independently

activated due to binding of the NF-kB molecule to a specific

regulatory site in the gene promoter. Following the literature

(1–5,29), we made the simplifying assumption that each

gene copy may exist only in two states, active and inactive.

When the copy is active, the transcription is initiated at a high

rate; and when the copy is inactive, transcription is inhibited,

or it is initiated with some low basal rate. The gene copy

FIGURE 1 Two-component feedback model of NF-k B regulatory module.

(A) Activation of NF-kB module. NF-kB is found in an inactivated complex in

the cytoplasm with its inhibitor IkBa. TNF ligand acts as a switch to convert

neutral IKK (IKKn) to the activated form, IKKa. IKKa, in turn, phosphorylates

and degrades both free and NF-kB complexed IkBa. Liberated NF-kB enters

the nucleus to induce transcription of IkBa and A20 genes. (B) NF-kB-IkBa

autoregulatory loop. The IkBa protein is rapidly resynthesized, enters the

nucleus, and recaptures NF-kB back into the cytoplasm. In the continued pre-

sence of IKKa, however, the resynthesized IkBa is continuously degraded,

resulting in continued nuclear NF-kB translocation. (C) The NF-kB-A20

autoregulatory loop. A second level of negative autoregulation occurs with the

resynthesis of A20. A20 is a ubiquitin ligase that degrades signaling inter-

mediates coupling the TNF receptor with continuous IKK activation and directly

associates with IKKa, converting it to catalytically inactive IKKi.
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inactivates when the NF-kB molecule is removed from its

regulatory site. We expect that this is due to the action of the

IkBa molecules that bind to DNA-associated NF-kB, ex-

porting it out from the nucleus, rather than to thermal dis-

sociation. The last would be very sensitive to temperature.

The assumed mechanism of gene activation and inactivation

is simplified, but it is also limited by our current knowledge

of the subject. Fortunately, the details of activation mech-

anisms are not crucial for the model. The most important is

the single assumption that transcription of A20 and IkBa

genes turns on and off with probabilities determined by reg-

ulatory factors. This distinguishes the applied approach from

the deterministic one in which the transcription speed is a

function of concentrations of these factors.

The stochastic simulation algorithm (30) is an essentially

exact procedure for simulation of the time evolution of pro-

cesses like the ones described above. This exact algorithm

becomes computationally intensive when the number of re-

acting molecules is large as in our case, i.e., ;105. In the last

few years, several methods were proposed to accelerate the

Gillespie algorithm. One is the t-leap method (31,32), an

approximate acceleration procedure, in which time is divided

into t-long intervals. It is required that t is short enough so

that the propensity functions for all reactions remain almost

unchanged. Then, assuming that this condition is satisfied,

the number of reactions in each reaction channel is a Poisson

random variable, with parameter equal to the t-interval pro-

pensity for the reaction channel considered. Another method

is devised for the case when it is possible to separate system

into slow and fast reaction channels (33,34). The idea is

to approximate fast reactions either deterministically or as

chemical Langevin equations, and to treat the slow reactions

as stochastic events with time-varying reaction rates. Re-

cently this idea has been improved by Cao et al. (35), who

introduce a virtual fast system, being Markovian, which

makes its analysis simpler. This improves the analysis in the

cases when fast reactions are described by Langevin equa-

tions. In the case in which the fast reactions are fast enough

to be described by the deterministic-rate equations, the method

of Cao et al. (35) is reduced to that of Haseltine and Rawlings

(33).

In this work, as in our recent article (29), we follow the

method proposed by Haseltine and Rawlings (33) and split

the reaction channels into fast and slow. Namely, we con-

sider all reactions involving mRNA and protein molecules as

fast and the reactions of gene activation and inactivation as

slow. Fast reactions are approximated by the deterministic

reaction-rate equations. The justification of this approxima-

tion will be given in the Appendices, where we compare it

with the exact stochastic simulation algorithm in a simple

example involving gene activation and inactivation, mRNA

transcription, and protein translation. In this example, we

will use the same reaction rates as appearing in our model.

According to the above, the mathematical representation

of the model (see the Appendices) consists of 14 ordinary

differential equations (ODEs) accounting for formation of

complexes and their degradation, transport between nucleus

and cytoplasm, transcription and translation, and of four

algebraic equations accounting for propensity functions of

binding and dissociation of NF-kB molecules to regulatory

sites in A20 and IkBa promoters. We assume that both A20

and IkBa genes have two homologous copies independently

activated due to NF-kB binding. It is assumed that in an

infinitesimal time interval Dt, the probability Pb of NF-kB

binding to regulatory sites in each allele is proportional to the

nuclear amount of NF-kB,

P
bðt;DtÞ ¼ Dt3 q1 3NFkBnðtÞ: (1)

NF-kB dissociation probability, Pd, is a sum of a constant

term and a term proportional to nuclear concentration of

IkBa, which is capable of removing NF-kB from regulatory

sites in both A20 and IkBa genes,

P
dðt;DtÞ ¼ Dt3 ðq0 1 q2 3 IkBanðtÞÞ: (2)

It will be assumed that NF-kB binding and dissociation

proceed independently in each homologous gene copy and

that binding and dissociation propensities rb(t) ¼ Pb(t, Dt)/Dt
and rd(t) ¼ Pd(t, Dt)/Dt are equal for each copy. The state of

gene copy Gi (i ¼ 1, 2) is Gi ¼ 1 whenever NF-kB is bound

to the promoter regulatory site, and Gi ¼ 0 when the site is

unoccupied. As a result, the gene state G ¼ G1 1 G2 can be

equal to 0, 1, or 2. In this approximation, the stochasticity of

single cell kinetics solely results from discrete regulation of

transcription of A20 and IkBa genes.

We assume that the transcription rate Trate is the sum of

a steady term and of an inducible term,

Trate ¼ c2 1 c1 3 ðG1
1G

2Þ: (3)

Note that Eq. 3 naturally produces saturation in transcription

speed. When the nuclear amount of regulatory factor NF-kB

is very large, then the binding probability is much larger than

the dissociation probability, and the gene state would be

G ¼ 2 for most of the time. In such a case, the transcription

would proceed at a maximum rate, c2 1 2c1. This rate has

been measured for b-actin by single RNA transcript visu-

alization as 4 mRNA molecules per minute per one allele (2).

In our calculations we assumed c1 ¼ 0.075 mRNA/s, which

corresponds to 4.5 mRNA molecules per minute. It is worth

noting that the protein production rate is proportional to the

product of transcription and translation efficiencies. There-

fore having solely information about the amount of protein

one may not determine these two coefficients. When fitting

the model, we found that even if c2 ¼ 0, transcription is reg-

ulated satisfactorily, and therefore to minimize the number of

free parameters we assume c2 ¼ 0. For the same reason we

set q0 ¼ 0 in Eq. 2.

In model computations, the amounts of all the substrates

are specified in the numbers of molecules. Since we use the

ODEs to describe most of the model kinetics, amounts of
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molecules are not integer numbers, but since these numbers

are, in most cases, �1, such a description is reasonable.

The implemented numerical scheme follows that of

Haseltine and Rawlings (33), namely:

1. At simulation time t, for given states GA20 ¼ G1
A201G2

A20

and GIkBa ¼ G1
IkBa1G2

IkBa of the A20 and IkBa genes,

we calculate the total propensity function r(t) of occur-
rence of any of the binding or dissociation reactions,

rðtÞ ¼ r
b

A20ðtÞð2� GA20Þ1 r
b

IkBaðtÞð2� GIkBaÞ
1 r

d

A20ðtÞGA20 1 r
d

IkBaðtÞGIkBa: (4)

2. We select two random numbers p1 and p2 from the uni-

form distribution on (0, 1).

3. Using the fourth-order MATLAB solver we evaluate the

system of 14 ODEs accounting for fast reactions, until

time t 1 t such that

logðp1Þ1
Z t1t

t

rðsÞds ¼ 0: (5)

4. There are eight potentially possible reactions (NF-kB

may bind/dissociate to/from any of two alleles of A20

and IkBa genes), but at any given time, only four of them

have nonzero propensities. In this step, we determine

which one of eight potentially possible reactions occurs

at time t 1 t using the inequality

+
k�1

i¼1

riðt1 tÞ, p2rðt1 tÞ#+
k

i¼1

riðt1 tÞ; (6)

where ri(t 1 t), i ¼ 1, . . ., 8 are individual reaction

propensities and k is the index of the reaction to occur.

5. Finally time t1 t is replaced by t, and we go back to item 1.

Because of a large number of undetermined parameters,

model fitting is not straightforward. We decided to carry out

the fit manually, rather than to try to digitize the blot data and

then to apply one of the fitting engines available. The first

reason is that such quantification is by no means unique; the

second is that, when fitting, we have to take into account

diverse, and usually not precise, information coming from

different researchers as well as our own intuitive under-

standing of the process. We first performed the fitting for the

deterministic model (20), then for the stochastic model,

leaving most of the parameters unchanged. Fitting of the

deterministic model is considerably faster because it is not

necessary to average the outcome over many runs. We ap-

plied the following fitting method:

1. Start from a reasonable set of parameters, which produces

a correct steady state in the absence of TNF signal.

2. Proceed with the signal initiated by TNF along the auto-

regulatory loops.

3. Iterate item 2 until the fit to all the data is satisfactory.

The TNF signal first causes transformation of IKKn

into IKKa. IKKa catalyses degradation of cytoplasmic

(IkBajNF-kB), enabling the free NF-kB to enter the nucleus.

Once NF-kB builds up in the nucleus it upregulates the

transcription of the A20 and IkBa genes. After being

translated, A20 facilitates transformation of IKKa into IKKi,

while IkBa enters the nucleus, binds to NF-kB, and leads it

into cytoplasm. As stated in item 2, we first fit the coeffi-

cients regulating IKK activation (using data on IKK activity),

then the coefficients regulating degradation of the cytoplasmic

(IkBajNF-kB) and IkBa degradation, and so forth. If there

were no feedback loops in the pathway, the proposed method

would be quite efficient, but, since they exist, it is necessary

to iterate the signal tracing several times until the fit is

satisfactory. Once a satisfactory fit is found, we observe that

the set of parameters chosen to fit the data is by far not unique.

This ambiguity is mainly caused by the lack of measurements

of absolute values of protein or mRNA amounts. The action

exerted by some components of the model onto the rest of the

pathway is determined by their amounts multiplied by un-

determined coupling coefficients. Hence, once we have a

good fit, we may obtain another one using a smaller coupling

coefficient and by proportionately enlarging the absolute level

of the component. There also exist single parameters, the

value of which can be changed over a very broad range

without a significant influence on the time behavior of any

substrate or complex for which the data are at our disposal.

Values of all parameters are listed in the Appendices.

RESULTS

Stochasticity of the model implies that simulations per-

formed with the same model parameters and the same initial

conditions, are different. Since each simulation corresponds

to the evolution in a single cell, therefore only the outcome

averaged over many simulations corresponds to experimen-

tal data obtained for a population of cells in culture. As it will

be seen in the Appendices, with parameters fitted, the pro-

posed model is able to faithfully reproduce time-behavior of

all variables for which the data is available: nuclear NF-kB,

cytoplasmic IkBa, A20, and IkBa mRNA transcripts, and

total IKK and IKK kinase catalytic activity (IKKa) in both

wild-type and A20-deficient cells.

In this section, we discuss the solutions of the model using

the parameter set fitted to the experimental data from the

experiments of Lee et al. (16) and Hoffmann et al. (19) on

wild-type and A20-deficient mouse fibroblast cells.

Let us focus first on resting cell regulation. In the absence

of TNF signal, IKK remains in its neutral (inactive) form,

IKKn. This implies that it may not phosphorylate IkBa,

which itself degrades at a relatively slow rate due to natural

degradation. Until the amount of IkBa exceeds that of NF-

kB, which is assumed to be constant, equal to 60,000 mole-

cules (see Appendices), all NF-kB remains in cytoplasmic

complexes with IkBa. In Fig. 2, we may observe that,

because at t ¼ 0 the number of cytoplasmic complexes of

IkBa exceed 60,000 molecules, almost no NF-kB is in the
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nucleus. When, due to degradation, the amount of IkBa falls

below 60,000, some NF-kB (typically a small fraction of

cytoplasmic protein) enters the nucleus—where it may bind

in a stochastic way to regulatory sites of IkBa and A20

promoters. Binding to IkBa results in a burst of IkBa tran-

scription followed by an increase in IkBa protein level. In

turn, free IkBa enters the nucleus, takes NF-kB out of its

regulatory site, and leads almost all NF-kB back into the

cytoplasm. Binding to A20 promoter results in a burst of A20

transcription, but A20 may not terminate the NF-kB binding.

As a result, each time NF-kB enters the nucleus it causes

a burst of IkBa, but not necessarily of A20. This implies that

even if the (conditional) binding probabilities to IkBa and

A20 promoters are equal, NF-kB binds more frequently to

IkBa promoters. If, however, NF-kB binds to the A20 pro-

moter before it binds to IkBa, it may remain there longer

(since in this case binding does not lead to feedback reac-

tion), and therefore may cause a larger burst of mRNA

molecules. Although NF-kB may bind to both homologous

gene copies, in a resting cell (in which there are relatively few

NF-kB molecules in the nucleus), both copies are seldom

simultaneously active. Let us note that since all cells in the

population (in the absence of an external signal like TNF)

behave asynchronously, the average IkBa and A20 transcript

and protein levels in the cell population remain constant (plot

not shown). The relatively low transcript level observed for

IkBa and A20 in the population of unstimulated cells is

usually explained by the existence of some basal transcrip-

tion, independent of NF-kB. However, our model shows

that, even if the basal transcription rate is zero, the average

IkBa and A20 mRNA levels may be positive and constant in

time for unstimulated cells.

The time behavior of the main variables resulting from

simulation of a single, TNF-stimulated cell is presented in

Fig. 3. The simulation was performed for wild-type cells, in

which all genes were potentially active. At t ¼ 1 h, the

rectangular TNF signal is turned on for 6 h, i.e., until the

end of the simulation time. Under the TNF signal, IKK is

promptly transformed into the active state IKKa and then

into the inactive state IKKi. As a result, the persistent TNF

stimulation causes a pulse activation of IKK, followed by

a low tail. The pulse of IKKa initiates the cascade. First, the

free cytoplasmic IkBa and cytoplasmic complexes (IkBajNF-

kB) are degraded (Fig. 3 B). The released NF-kB builds up

in the nucleus, where it binds in a stochastic way to the

regulatory sites in IkBa and A20 promoters (Fig. 3, D and

E). We assume the same binding and dissociation proba-

bilities for the IkBa and A20 genes. However, due to sto-

chasticity, their activity in a single run may be considerably

different, although in general it coincides with high nuclear

levels of NF-kB. Due to the discrete regulation of tran-

scriptional efficiency, the IkBa and A20 transcript levels

(Fig. 3, F and G) look sawlike, with kinks corresponding to

binding and dissociation events. The newly synthesized

IkBa enters the nucleus and leads almost all NF-kB out of it

(Fig. 3 C), whereas A20 (Fig. 3 H) triggers IKK inactivation.

Let us note that since some NF-kB molecules are present

in the nucleus even in the absence of TNF stimulation and

may bind to regulatory sites, the system (single cell) does

not have a steady state, either in the presence or absence of

the TNF stimulation.

In Fig. 4, we compare oscillations in nuclear NF-kB level

predicted by our model with those measured in single cell

experiments by Nelson et al. (26). Since our model was fitted

based on data (16,19) collected in experiments on mouse

embryonic fibroblast, whereas Nelson et al. (26) did their

experiments on human S-type neuroblastoma (SK-N-AS)

cells (Fig. 4, B and C) and HeLa cells (Fig. 4 D), only a

qualitative comparison is possible. The cells analyzed were

transfected with plasmids expressing RelA fused to the red

fluorescent protein (RelA-DsRed) and IkBa fused to the

enhanced green fluorescent protein (Ik Ba-EGFP). In the

FIGURE 2 Numerical solution cor-

responding to a single (wild-type)

resting cell. The amounts of substrates

are given in numbers of molecules. D

shows total IkBa, i.e., the sum of free

and NF-kB bound substrate in both the

cytoplasm and nucleus.
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experiment shown in Fig. 4 C, the cells express control

EGFP instead of IkBa-EGFP. As reported, 91% of these

control cells (expressing control EGFP instead of IkBa-EGFP)

showed prolonged oscillations in RelA nuclear-cytoplasmic

localization (N-C oscillations). These oscillations appeared

quite synchronous between cells in the first few cycles, but

then they became out-of-phase—explaining why they appear

to be strongly damped when observed at the population level

(Fig. 7). We compare the kinetics of these control cells

(Fig. 4 C) with our theoretical prediction (Fig. 4 A). In this

FIGURE 3 Numerical solution correspond-

ing to a single wild-type cell. The persistent

TNF activation starts at 1 h. The amounts of

substrates are given in numbers of molecules. B

shows total IkBa, i.e., the sum of free and NF-

kB-bound substrate in both the cytoplasm and the

nucleus.

FIGURE 4 Model simulations and

measurements of Nelson et al. (26).

Four single cell simulations (or experi-

ments) are represented by differently

colored lines. (A) Model simulations:

nuclear NF-kB after a persistent TNF

activation starting at t ¼ 0. The total

amount of NF-kB was elevated to

120,000 for this simulation. (B–D)

Nuclear to cytoplasmic RelA-DsRed

fluorescence normalized to highest

peak intensity. Cells were treated with

continual 10 ng/ml TNFa. (B) SK-N-

AS cells co-expressing RelA-DsRed

and IkBa-EGFP. (C) SK-N-AS cells

expressing RelA-DsRed and EGFP

control. (D) HeLa cells expressing

both RelA-DsRed and IkBa-EGFP.
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simulation (Fig. 4 A), the level of total NF-kB was elevated

two times (with respect to the value measured by (22,36) for

fibroblast) to 120,000 to mimic transfection. Nelson et al.

(26) estimates that the average overexpression of RelA

fusion protein was 3–5 times that of the endogenous RelA

level. We found that the persistence, amplitude, and period

of these oscillations is not very sensitive to the total amount

of total NF-kB molecules (Fig. 5). This can explain why the

first oscillations in cells having possibly different levels of

RelA-DsRed, shown in Fig. 4 C, are so well synchronized. In

Fig. 5, the sixfold decrease and threefold increase in total

NF-kB, with respect to its normal level in fibroblasts, is

analyzed. Further increases of NF-kB level results in

cessation of oscillations. This, together with the fact that we

get the most convincing similarity to the Nelson et al. (26)

profiles (Fig. 4 A versus C) elevating NF-kB molecules

twofold (not 3–5-fold), could be because our model was

fitted to fibroblast cells, and may suggest that the endogenous

NF-kB is lower for SK-N-AS cells. The difference between

various cell types becomes evident when SK-N-AS cells are

compared with HeLa cells (Fig. 4, C versus D). As reported

by Nelson et al. (26), only 30% of HeLa cells exhibited up to

three detectable N-C oscillations that were markedly damped.

In Fig. 6, we compare the current model prediction of the

correlation of the peak-to-peak timing with the NF-kB level

to the data of Nelson et al. ((26), Fig. 1), where there is little

(first-to-second peak) or no correlation between the RelA-

DsRed expression level and subsequent peak timing for SK-

N-AS cells. According to the model, the 18-fold increase in

total NF-kB causes ;1.6-fold change in first-to-second peak

timing, but ,20% change in subsequent peak timing. Sim-

ilarly, timing of the first peak is not sensitive to the level of

NF-kB (Fig. 6).

Recently there was an interesting discussion between

Barken et al. (37) and Nelson et al. (38) concerning the de-

pendence of oscillation period and oscillation persistence to

the amount of NF-kB. Barken et al. (37), based on the model

of Hoffman et al. (19), showed that oscillation period strongly

depends on the assumed amount of total NF-kB, concluding

that oscillations recorded in the overexpressed feedback

system do not allow one to conclude that oscillations of the

same persistence, amplitude, and period occur in normal

genetically unaltered cells. In fact, according to the model of

Hoffman et al. (19), the fourfold NF-kB overexpression

causes the second peak in nuclear NF-kB, to appear not at 2 h

(as normally), but at 5.5 h of persistent TNF stimulation

((37), Fig. 1 A). Even the relatively small 1.5-fold NF-kB

overexpression causes substantial alternations in the NF-kB

nuclear profile. This prediction is not confirmed by experi-

ment ((38), Fig. 1). Following Nelson et al. (38), we expect

that the substantial delay of the second peak caused by the

NF-kB overexpression is an artifact of the Hoffmann model

resulting from the assumption that the inducible IkBa ex-

pression is a second-order polynomial in nuclear NF-kB.

As a result the fourfold change in NF-kB level causes a 16-

fold increase in IkBa expression, which becomes so abun-

dant that it would inhibit NF-kB nuclear re-entry for ;5 h.

Such large increase in IkBa expression seems to us to be

biologically unjustified: There is a maximal physiological

expression efficiency of ;4 mRNAs/min from a single gene

FIGURE 5 Oscillations of nuclear

NF-kB after a persistent TNF treatment

for six different levels of total NF-kB:

10,000 / 20,000 / 30,000 / 60,000 /

120,000 / 180,000.
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copy (2), which cannot be exceeded even if the regulatory

factor is fairly abundant. Our current model shows that even

the normal amount of NF-kB is capable of turning the IkBa

gene on (Fig. 3) for ;1/2 h during the first pulse, which

implies that further growth of NF-kB nuclear level does not

cause a significant rise in IkBa expression. Equation 3 in our

model provides the natural saturation in transcription speed,

but even the simple modification in which the second-order

polynomial is replaced by a linear term results in reduced

sensitivity of period to the NF-kB concentration ((20), Fig. 9)

and ((38), Fig. 2).

Finally, let us also note that the oscillations predicted by

any of the deterministic models (19,20,38) have essentially

a different character than those in single cells (as shown in

Fig. 4, B and C). Oscillation amplitude in deterministic models

decreases exponentially to zero, or some positive value with

time, as opposed to the single cell oscillations for which the

amplitude is not a monotonous function of the peak number.

FIGURE 6 Correlation of the total NF-

kB level with the peak-to-peak timing of

NF-kB oscillations. (Left column) Nelson

et al. (38) experiments on SK-N-As cells.

(Right column) Model predictions. The line

represents the average calculated based on

100 simulations performed at each point,

corresponding to the total amount of NF-

kB, equal to six different levels: 10,000 /

20,000 / 30,000 / 60,000 / 120,000 / 180,000.

The dots corresponds to 500 single simu-

lations, each done for the amount of total

NF-kB randomly selected from uniform

distribution on 10,000 and 180,000.
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For example, in Fig. 4 C, one can observe that the third peak

of a blue trajectory is higher than the second one, and that

fourth peak of a green trajectory is higher than the third one.

In Fig. 4 B, the peak amplitude of red trajectory is growing

starting from the second peak, and the green trajectory has

third and fourth peaks higher than the second one. In the

latter case, the fluctuations in peak amplitude can be also due

to the different kinetics of IkBa-EGFP and of endogenous

IkBa.

In a cell co-expressing IkBa-EGFP and RelA-DsRed (Fig.

4 B), one can observe large differences in duration of the first

peak. As stated by Nelson et al. (26), these differences are

due to the sensitivity of the system to variations in IkBa-

expression efficiency. Cells with higher expression of IkBa-

EGFP show statistically prolonged NF-kB nuclear activity

followed by a longer period in which NF-kB is absent in the

nucleus. We do not observe, however, such strong sensitivity

of the first peak duration to the IkBa expression efficiency

in our model (data not shown). It is possible that the strong

extension of the first peak duration and generally more-

complex pattern of peak amplitude is because the kinetics of

IkBa-EGFP is slower than the kinetics of endogenous IkBa.

One might expect that the fusion protein is degraded at a

lower rate (under the TNF stimulation) and it is not as strongly

induced by NF-kB. In Fig. 1 (26), we can observe that in

cells not expressing IkBa-EGFP (initially pure red), the

endogenous IkBa is degraded in the first 6 min (and as a

result RelA-DsRed enters the nucleus), but in cells expressing

IkBa-EGFP, it remains fairly abundant even after 60 min.

Similarly, in cells ((26); see Fig. 6S, in that article’s Supple-

mentary Data) which, at t ¼ 0, co-express IkBa-EGFP and

RelA-DsRed, the endogenous IkBa rebuilds more quickly

than IkBa-EGFP. At 300 min, RelA-DsRed is taken out

from the nucleus—suggesting that the endogenous IkBa

is rebuilt, but that the IkBa-EGFP is still absent (cells are

purely red).

In Fig. 7, we show the same kinetics as in Fig. 3, but

averaged over 500 simulation runs or over a population of

500 identical cells. The averaged kinetics is considerably

different from kinetics of a particular cell. Despite the fact

that each cell oscillates under extended TNF stimulation, all

quantities averaged over many cells converge to steady-state

levels. This effect is caused by a growing desynchronization

of cells. Before the TNF signal, the cells are desynchronized

(the single cell simulations are started at 20–30 h before the

TNF signal), and it is the TNF signal that induces cell syn-

chronization. The sharp decrease in total IkBa, followed by

buildup of nuclear NF-kB, is observed in all simulations

(Fig. 8). Thereafter, the stochastic nature of NF-kB binding

causes that the peaks of gene activity to not-match, and this

desynchronizes cell kinetics. The activity of the IkBa and

A20 genes, averaged over a relatively large population, cor-

responds much better to the nuclear NF-kB level than it does

in the single cell case.

In Fig. 8, we present the scatter plots showing the rela-

tionship between nuclear NF-kB and total IkBa. In resting

cells, t ¼ 0, there is almost no nuclear NF-kB, which is

sequestered by IkBa in the cytoplasm. In most of cells, the

amount of total IkBa molecules is larger than the amount of

total NF-kB molecules, which is kept constant, equal to

60,000, during the time course of the simulation. At t ¼ 15

min and 30 min, almost all IkBa is degraded and most of the

NF-kB is present in the nucleus. Then at 90 min, IkBa

rebuilds and again leads most of the NF-kB out of the

FIGURE 7 Numerical solution averaged over

a population of 500 wild-type cells; all parame-

ters as in Fig. 3. The amounts of substrates are

given in numbers of molecules per cell.
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nucleus. Finally, 6 h after the beginning of TNF stimulation,

the cell population is at apparent equilibrium, characterized

by a relatively broad distribution of NF-kB and IkBa levels,

an effect caused by desynchronization of the cell population.

The inhibitory potential of IkBa and of the second NF-kB

inhibitor, A20, is clearly visible in Figs. 8 and 9. At the

crucial time, 30 min from the beginning of TNF stimulation,

the amount of nuclear NF-kB is smaller in cells with larger

amounts of any of the two inhibitors. In fact, levels of the two

inhibitors are strongly positively correlated (data not shown)

since the higher level of A20, implies lower level of (active)

IKKa, and thus a higher level of IkBa.

The scatter plots in Fig. 10 show abundance of Ik Ba and

A20 proteins compared to their mRNA at three time points.

We observe that initially there are relatively few (,100)

IkBa mRNA molecules per cell, although the IkBa protein

(which is mostly complexed with NF-kB) is abundant. Then

at 30 min most of the IkBa protein is degraded, but the

number of message molecules is large due to NF-kB-induced

transcription. The kinetics of A20 transcript and protein is

different. Initially there is a small amount of both protein and

mRNA, then a growing amount of transcript is followed by

the growing amount of protein. We observe broadening of

the distribution in time, caused by desynchronization of cells

FIGURE 8 Scatter plots of total IkBa versus

nuclear NF-kB at six times after start of TNF

stimulation.

FIGURE 9 Scatter plots of total A20 versus

nuclear NF-kB at six times after start of TNF

stimulation.
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due to stochasticity. Despite the fact that the scatter plots

presented in Figs. 7–9 reveal that variability among cells

grows in time, one may expect that there is a sizable fraction

of cells, the evolution of which is close to the averaged

evolution. In fact, however, none of the cells behave like the

average. In Fig. 11, we show that single cell trajectories keep

oscillating when the equilibrium distribution is reached,

whereas the average trajectory resulting from averaging over

500 simulated cells stabilizes.

DISCUSSION

This article, based on our earlier model (20), is the first to

analyze mathematically the NF-kB regulatory module at

a single cell level. We make use of an approach to gene

expression in which stochasticity originates in binding of

regulatory molecules. This idea was proposed over a decade

ago by Ko (1), but then it was abandoned for several years to

return recently (3–6,29). Other possible sources of stochas-

ticity are the production and degradation of single mRNA

molecules (8,39,40) or oligomerization reactions (41). These

sources are of great importance in prokaryotes in which the

number of mRNA and proteins molecules is small. However,

in our case of higher eukaryotes, in which the number of

mRNA and protein molecules is fairly large, the stochasticity

due to relatively slow switching of the gene status is

dominating.

The method of modeling molecular pathways applied

by us follows that of Haseltine and Rawlings (33) and splits

the reaction channels into fast and slow. It combines deter-

ministic reaction-rate description (ODEs) for fast reaction

channels (in this case, processes involving large number of

molecules) with a stochastic switch for gene activity. This

approach is computationally much more efficient than the

stochastic simulation algorithm (30), but still accurate enough

for our purposes (see Fig. 12).

After parameter fitting and averaging over population of

simulated cells the model properly reproduces data of Lee

et al. (16) and Hoffmann et al. (19) (see Fig. 13). The model

shows, however, that the dynamics of any single cell could

be much different than the average dynamics—a construct

resulting from averaging over entire cell population. In other

words, there is no such cell as an average cell that would

follow the average dynamics.

The difference between single cell dynamics and average

dynamics is already visible and is arguably important in

the absence of external stimuli. The average level of IkBa

FIGURE 11 Trajectories projected on the (total IkBa, nuclear NF-kB,

time) hyperplane. (Thin lines) Three single cell trajectories; (thick line)

average trajectory.

FIGURE 10 (Scatter plots, left) Total

IkBa protein versus IkBa message. (Scat-

ter plots, right) A20 protein versus A20

message at three times after start of TNF

stimulation.
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protein is ;50% larger than the level of NF-kB, which is

kept constant at 60,000 molecules (see Fig. 7 B, t ¼ 0). This

may suggest that the entire NF-kB is sequestered in cyto-

plasm; however, the single cell oscillations cause some

NF-kB genes to occasionally enter the nucleus and regulate

transcription of both A20 and IkBa, but also of other NF-

kB-inducible genes (12). This implies that stochasticity in

NF-kB kinetics could be necessary in the regulation of

numerous genes in resting cells (compare to (42)). To verify

this hypothesis, one should measure the distribution of basal

activity (with no stimuli) of NF-kB-dependent genes. The

broad distribution would imply that the activity of these

genes is intermittent, and that the low constant mRNA level

observed in microarray experiments (or in Northern blots)

results from averaging over cell population. The result pre-

sented in Fig. 11 is partly similar to that obtained for resting

cells; we show that although the equilibrium distribution is

reached, and the average trajectory stabilizes, single cell

trajectories keep oscillating. These single cell oscillations,

observed under extended TNF stimulation are, as shown by

Nelson et al. (26), crucial in maintaining NF-kB transcrip-

tional activity and thus are necessary for proper regulation of

late genes, which have their peak of activity several hours

after the beginning of the TNF signal.

Theoretical predictions of our model are confirmed by

experiments of Nelson et al. (26) on single cell oscillations in

NF-kB signaling. There is a qualitative agreement between

our simulations and oscillatory kinetics of SK-N-AS cells

expressing RelA-DsRed and control EGFP (Fig. 4, A versus

C). Behavior of these single cell oscillations is qualitatively

different from that predicted by any of the deterministic

models (19,20,38). According to the deterministic models,

the peak amplitude is a monotonous function of peak number,

which is in contrast to the single cell data ((26), Fig. 2),

where one can observe that, for some cells, the next peak is

higher than the previous one. The important property of the

model is the low sensitivity of the oscillation period to the

level of total NF-kB, which is in agreement with Nelson et al.

(38). Previous models suggested the strong elongation of the

oscillation period with the NF-kB level. This was due to the

assumed quadratic (19,37) or linear (20,38) dependence of

IkBa transcription speed to the NF-kB nuclear concentra-

tion. The current model has saturation naturally imbedded in

transcriptional efficiency (Eq. 3), which prevents it exceed-

ing the physiological limit. Obviously, such a saturation can

be introduced to the deterministic models as well, but here

it appears in the most natural way.

According to Nelson et al. ((26), Fig. 2) SK-N-AS cells

expressing both RelA-DsRed and IkBa -EGFP show faster

desynchronization, due to cell-to-cell variability in the number

IkBa-EGFP gene copies. Cells with higher expression of

IkBa-EGFP show statistically prolonged NF-kB nuclear

activity followed by a longer period in which NF-kB is

absent in the nucleus. We do not observe such strong sen-

sitivity of the first peak duration to the IkBa expression

efficiency in our model. One can expect, based on Nelson

et al. (26) experimental data, that the strong extension of the

first peak duration is due to the fact that the kinetics of IkBa-

EGFP are slower than those of endogenous IkBa, i.e., that it

is degraded with smaller rate and is not as NF-kB-inducible

as endogenous IkBa. The combination of slower IkBa-

EGFP and faster endogenous IkBa could explain the

generally more complex pattern of N:C NF-kB oscilla-

tions for cells co-expressing RelA-DsRed and IkBa-EGFP

(Fig. 4 B).

Contrary to the large variability in cell kinetics observed

for resting cells and cells under extended TNF stimulation,

application of the TNF signal causes cell synchronization.

Also, most (but not all) cells behave similarly in the first

90 min of TNF stimulation (Figs. 4, 5, and 11). All analyzed

cells (26, Fig. 2) show this TNF-induced synchronization,

which is then lost in the course of time. It is only due to this

TNF-induced synchronization that the averaged trajectory

in Fig. 11 exhibits some oscillations. Since desynchronizing

stochastic effects are ubiquitous, it appears to be a general

rule that oscillations of the averaged trajectory must imply

both the oscillatory character of regulation and the existence

of some extracellular signal, which synchronizes the whole

population. From the evolutionary perspective, the TNF-

induced cell synchronization may result from the fact that

all the cells follow the only path in which they could sur-

vive under the potentially lethal stimulation. The most

critical period in this response is the first 90 min, in which

the transcription of early genes like A20, IkBa, IL-6, or

IL-8 must be initiated and then terminated (by NF-kB

leaving the nucleus) to prevent an unabated inflammatory

response.

FIGURE 12 Exact stochastic simulation (thin line) compared with

stochastic-deterministic approximation (thick line). (A) mRNA profile; (B)

protein profile. The transcription, translation, and degradation rates are the

same as for A20 gene; see Table 2.
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APPENDIX I: JUSTIFICATION OF DETERMINISTIC
APPROXIMATION FOR TRANSCRIPTION AND
TRANSLATION PROCESSES

Let us consider a simple example of a single gene having two copies

independently activated and inactivated with equal and constant pro-

pensities, rb and rd, respectively. Let us also assume that rb ¼ rd ¼ 5 3

10�4, which results in the expected allele activation/inactivation time of

order of 0.5 h. Let the transcription, mRNA degradation, translation,

and protein degradation rates, c1, c3, c4, and c5, be equal to those of

the A20 gene (Table 2). In Fig. 12 we compare the time evolution of

mRNA and protein, simulated using exact stochastic simulation algo-

rithm (thin line) with the stochastic-deterministic approximation (bold

line). To compare these two evolutions in the stochastic-deterministic

simulation the gene state was changed in the time points following from

stochastic simulation algorithm. One can observe that the stochastic-

deterministic approximation gives a satisfactory mRNA profile, while

the protein profile is almost exactly followed. This latter is the most

important to us since the rest of reactions in our model involve proteins

only.

FIGURE 13 Model predictions based on average over 500 runs versus the measurements of Hoffman et al. (19) and Lee et al. (16) on wild-type cells and

A20-deficient cells. (A and B) Correspondence between an active pool of IKK, i.e., IKKa, and the data of Lee et al. (16) on IKK kinase activity for wild-type

and A20�/– cells, assessed using the GST-IkBa substrate. (C) Level of total IKK (16) for wild-type (upper blots) and A20�/� cells (lower blots) remains almost

constant—which, in our model, results from the assumption that degradation of all IKK forms proceeds at the same rate. (D and E) Total cytoplasmic IkBa,

respectively, for wild-type cells and A20�/� cells, from the experiments of Hoffman et al. (19) and Lee et al. (16). (F and G) Nuclear NF-kB (EMSA assay),

respectively for wild-type cells and A20�/� cells (16,19). (H and I) IkBa mRNA from Lee et al. (16), for, respectively, wild-type and A20�/� cells. (J) A20

mRNA level (16). (K and L) nuclear NF-kB in wild-type cells for, respectively, 60-min- and 15-min-long TNF stimulations (19).
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APPENDIX II: MODEL EQUATIONS

The mathematical representation of the model (see (20) for derivation)

consists of 14 ODEs and four equations accounting for binding and dis-

sociation probabilities of NF-kB molecules to regulatory sites in A20 and

IkBa promoters. All the substrates are quantified by the numbers of mole-

cules. The upper-case letters denote substrates or their complexes. Nuclear

amount is represented by subscript n, while subscript c denoting amount of

substrate in the cytoplasm is now omitted, to simplify the notation. Amounts

of the mRNA transcript of A20 and IkBa are denoted by subscript t.

Notation guide

IKK in the natural state IKKn

The first term describes IKKn synthesis de novo; the second describes

degradation; and the last one describes depletion of IKKn due to its signal-

induced transformation into active form IKKa,

d

dt
IKKnðtÞ ¼ kprod2kdeg 3 IKKnðtÞ2TR 3 k1 3 IKKnðtÞ: (7)

IKK in the active state IKKa

The first line represents formation of IKKa from IKKi upon the signal

activation, depletion of IKKa due to its transformation (spontaneous

and induced by A20) into inactive form IKKi, and its degradation. We

assumed that the signal (TR¼ 1) is needed for the catalytic action of A20 and

that this action is proportional to the amount of A20, without any saturation.

The second line describes depletion of free IKKa due to formation of

complexes (IKKajIkBa) and its recovery after catalytic degradation of these
complexes. The third line represents changes in IKKa due to formation and

catalytic degradation of trimolecular complexes,

IKK in the inactive state IKKi

The first two terms correspond to the formation of inactive IKKi from IKKa

upon spontaneous inactivation and the catalytic action of A20, while the

third term describes degradation,

d

dt
IKKiðtÞ ¼ k3 3 IKKaðtÞ1TR 3 k2 3 IKKaðtÞ3A20ðtÞ

2kdeg 3 IKKiðtÞ: (9)

IKKajIkBa complexes

This equation represents formation of (IKKajIkBa) complexes and their

degradation. Protein IkBa is catalytically degraded due to phosphorylation

caused by IKKa, while free IKKa is recovered (see the last term in the

second line of Eq. 8),

d

dt
ðIKKajIkBaÞðtÞ ¼ a2 3 IKKaðtÞ3 IkBaðtÞ

2t1 3 ðIKKajIkBaÞðtÞ: (10)

(IKKajIkBajNF-kB) complexes

Described by their formation due to association of IKKa and (IkBajNF-kB)
and degradation due to catalytic activity of IKKa,

d

dt
ðIKKajIkBajNFkBÞðtÞ ¼ a33 IKKaðtÞ3ðIkBajNFkBÞðtÞ

2t23ðIKKajIkBajNFkBÞðtÞ:
(11)

Free cytoplasmic NF-kB

The first line represents liberation of free NF-kB due to dissociation of

(IkBajNF-kB) complexes and its depletion due to formation of these

complexes. The first complete term in the second line accounts for liberation

of NF-kB due to the catalytic activity of IKKa. The term in the third line

describes transport of free cytoplasmic NF-kB to the nucleus,

d

dt
NFkBðtÞ ¼ c6a 3 ðIkBajNFkBÞðtÞ2a1 3NFkBðtÞ

3 IkBaðtÞ1 t2 3 ðIKKajIkBajNFkBÞðtÞ
2i1 3NFkBðtÞ:

(12)

Free nuclear NF-kB

The first term describes transport into the nucleus. The second term

represents depletion of free nuclear NF-kB due to the association with

nuclear IkBa and is adjusted, by multiplying the synthesis coefficient a1
by kv ¼ V/U, to the smaller nuclear volume resulting in a larger concen-

tration,

d

dt
NFkBnðtÞ ¼ i13NFkBðtÞ2a13kv3 IkBanðtÞ3NFkBnðtÞ:

(13)

G1
a ;G

2
a Logical variables, status of IkBa promoter in first and

second homologous gene copy,

G1 ¼ 1, NF-kB attached and G1 ¼ 0, NF-kB absent.

G1, G2 Logical variable, status of A20 promoter in first and

second homologous gene copy.

IKKa Cytoplasmic amount of active form of IKK.

IKKi Cytoplasmic amount of inactive form of IKK.

IKKn Cytoplasmic amount of neutral form of IKK kinase.

IkBa Cytoplasmic amount of IkBa.

IkBan Nuclear amount of IkBa.

IkBat Amount of IkBa mRNA transcript.

(IKKajIkBa) Cytoplasmic amount of complexes of IKKa and IkBa.

kv ¼ V/U The ratio of cytoplasmic to nuclear volume.

(NFkBnjIkBan) Nuclear amount of complexes of NF-kB and IkBa,

notation for the remaining complexes is analogous

(we will write NFkB instead of NF-kB in equations).

TR Logical variable, TR ¼ 1 if signal (e.g., TNF or IL-1)

is present, TR ¼ 0 if no signal is present.

d

dt
IKKaðtÞ ¼ TR 3 k1 3 IKKnðtÞ � k3 3 IKKaðtÞ � TR 3 k2 3 IKKaðtÞ3A20ðtÞ � kdeg 3 IKKaðtÞ

� a23 IKKaðtÞ3 IkBaðtÞ1 t13 ðIKKajIkBaÞðtÞ
� a3 3 IKKaðtÞ3 ðIkBajNFkBÞðtÞ1 t2 3 ðIKKajIkBajNFkBÞðtÞ: (8)
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A20 protein

Described by its mRNA synthesis and constitutive degradation,

d

dt
A20ðtÞ ¼ c4 3A20tðtÞ2c5 3A20ðtÞ: (14)

A20 transcript

The first term stands for constitutive A20 mRNA synthesis and the second

term for NF-kB inducible synthesis, while the last term describes

degradation of the transcript,

d

dt
A20tðtÞ ¼ c21c1 3 ðG1

1G2Þ2c3 3A20tðtÞ: (15)

Free cytoplasmic IkBa protein

The first line accounts for association with IKKa and NF-B, respectively.

The second line describes formation of the IkBa protein due to the mRNA

synthesis and the constitutive degradation of IkBa. The last line represents

transport into and out of the nucleus,

d

dt
IkBaðtÞ ¼ 2a2 3 IKKaðtÞ3 IkBaðtÞ2a1 3 IkBaðtÞ

3NFkBðtÞ1c4a 3 IkBatðtÞ2c5a 3 IkBaðtÞ
2i1a 3 IkBaðtÞ1e1a 3 IkBanðtÞ: (16)

Free nuclear IkBa protein

The first term corresponds to the association with nuclear NF-kB (adjusted,

by multiplying the synthesis coefficient a1 by kv, for the smaller nuclear

volume resulting in larger concentration), and the other terms represent the

transport into and out of the nucleus,

d

dt
IkBanðtÞ ¼ 2a1 3 kv 3 IkBanðtÞ3NFkBnðtÞ

1i1a 3 kv 3 IkBaðtÞ2e1a 3 IkBanðtÞ:
(17)

IkBa transcript

The first term stands for constitutive IkBa mRNA synthesis and the second

term for NF-kB inducible synthesis, while the last term describes

degradation of transcript,

d

dt
IkBatðtÞ ¼ c2a1c1a 3 ðG1

a1G
2

aÞ2c3a 3 IkBatðtÞ: (18)

Cytoplasmic (IkBajNF-kB) complexes

The first line describes formation of the complexes due to IkBa and NF-kB

association and their subsequent degradation. The first term in the second

line represents depletion of the (IkBajNF-kB) complexes due to the catalytic

activity of IKKa. The last term represents transport of the complex from the

nucleus,

Nuclear (IkBajNF-kB) complexes

Described by their formation due to IkBa and NF-kB association (adjusted,

by multiplying the synthesis coefficient a1 by kv, to the smaller nuclear

volume resulting in larger concentration) and their transport out of the

nucleus,

d

dt
ðIkBan jNFkBnÞðtÞ ¼ a1 3 kv 3 IkBanðtÞ3NFkBnðtÞ

2e2a 3 ðIkBan jNFkBnÞðtÞ:
(20)

The total amount of NF-kB (60,000 molecules; see Table 2) is kept constant

in the course of simulation, and it is set by assuming the initial concentration

of cytoplasmic complexes (IkBajNF-kB).
The occupancy of IkBa and A20 regulatory sites (in each of the two

homologous gene copies) changes in a stochastic way according to the

probabilities calculated, based on time-dependent nuclear amounts of NF-

kB (binding probabilities) and of IkBa (dissociation probabilities).

Probability of binding of the NF-kB molecule to the IkBa regulatory site in

an infinitesimal time interval Dt,

P
b

aðt;DtÞ ¼ Dt3 q1a 3NFkBnðtÞ: (21)

Probability that NF-kB dissociate from the IkBa site in an infinitesimal time

interval Dt,

P
d

aðt;DtÞ ¼ Dt3 ðq0a1q2a 3 IkBanðtÞÞ: (22)

Probability of binding of the NF-B molecule to the A20 regulatory site in an

infinitesimal time interval Dt,

P
bðt;DtÞ ¼ Dt3 q1 3NFkBnðtÞ: (23)

Probability that NF-kB dissociate from the A20 site in an infinitesimal time

interval Dt,

P
dðt;DtÞ ¼ Dt3 ðq0 1 q2 3 IkBanðtÞÞ: (24)

APPENDIX III: MODEL PARAMETERS

The average volume of a fibroblast cell is V1 U¼ 2000 mm3 ¼ 23 10�12 l

(22), and we adopted this value to convert concentrations of substrates (used

previously in (20)) into numbers of molecules. We will also assume that

the ratio of cytoplasmic to nuclear volume is kv ¼ V/U ¼ 5. Therefore the

cytoplasmic concentration of 1 mM corresponds to N ¼ 10�6 (mol/l)3 V3

Av � 106 molecules, where Av ¼ 6.022 3 1023 molecules/mol is the

Avogadro number. Respectively, the same nuclear concentration corre-

sponds to 2 3 105 molecules.

In Tables 1–4, we collect values of the measured, assumed, and fitted

parameters (see (20) for discussion). When fitting the model one can find that

d

dt
ðIkBajNFkBÞðtÞ ¼ a1 3 IkBaðtÞ3NFkBðtÞ � c6a 3 ðIkBajNFkBÞðtÞ

� a3 3 IKKaðtÞ3 ðIkBajNFkBÞðtÞ1 e2a 3 ðIkBanjNFkBnÞðtÞ:
(19)

TABLE 1 Two- and three-component interactions between

IkBa, NF-kB, and IKKa

Symbol Values Units Description Comments

a1 0.0000005 s�1 IkBa-NFkB association (19)

a2 0.0000002 s�1 IKKa-IkBa association Assumed

t1 0.1 s�1 IKKajIkBa catalysis Any large

a3 0.000001 s�1 IKKa-(IkBajNF-kB) association Assumed

t2 0.1 s�1 (IKKjIkBajNF-kB) catalysis Any large
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not all parameters may be determined by fitting to the existing data. This is

why we restrict our freedom and assume values of part of parameters (in

accordance to available data and our intuition). For example, we assumed

that most of the parameters accounting for IkBa and A20 kinetics are equal.

We also assumed that coefficients c2a, c2, q0a, and q0 equal zero, and one

may expect that they are small but positive. It is not, however, possible to

deduce their value from the data at our disposal. By such an approach we

show how much information can be inferred from available experimental

data. All but three parameters in Tables 1–3 are adopted (after translation the

concentrations into the numbers of molecules) from our previous article

(20). The IkBa transport coefficients i1a and e1a are now twice larger, while

IKK inactivation rate coefficient k2 is twice smaller. Coefficients c1a and c1
account for mRNA synthesis per one active allele, correspondingly for IkBa

and A20 genes.

APPENDIX IV: MODEL VALIDATION

To validate the proposed model, we analyzed its ability to reproduce the data

from Lee et al. (16) and Hoffmann et al. (19), experiments on mouse

fibroblasts (see Fig. 13). Lee et al. (16) measured the response of wild-type

and A20-deficient cells to a persistent TNF signal. For both types of cells,

Lee et al. (16) collected data on IkBa mRNA, cytoplasmic IkBa, nuclear

NF-kB, IKKb (the key component of IKK), and IKK kinase activity—this

latter estimated in an immunoprecipitation-kinase assay using GST-IkBa as

a substrate. Additionally, for wild-type cells, they measured A20 mRNA

levels. Hoffmann et al. (19) measured NF-kB binding (EMSA assay) and

cytoplasmic IkBa level in response to persistent and pulselike TNF

activation in wild-type cells. The most important data we miss for mouse

fibroblast is the evolution of the level of protein A20. Whereas additional

data could remove the ambiguities of the model, the data already collected

enable us to trace the time behavior of the majority of the most important

variables in the pathway considered.

Typical experimental data at our disposal consist ofmeasurementsmade at

time points that are not uniformly distributed. Therefore, to compare our

solutions to experimental data, we rescale the time coordinate, i.e., we

calculate the values of corresponding functions in the same time points as in

the experiment, and then to guide the eye we connect the resulting discrete

points by straight-line segments, thus obtaining a sawlike graph. The IKK

kinase activity time-profile, measured using the GST-IkBa substrate in Lee

et al. (16), is compared with active pool of IKK, i.e., IKKa (see Fig. 13, A and

B). The transient nature of IKK activity is not due to the change in the amount

of total IKK (IKKn 1 IKKa 1 IKKi). The amount of total IKK remains

constant, which, according to our model, results from the assumption that

degradation of all IKK forms proceeds at the same rate. Let us note the inverse

correspondence between the amounts of mRNA and protein: In wild-type

cells the level of protein is high (Fig. 13D) and level ofmessage is low (Fig. 13

H), while in A20�/� cells there is much of IkBa mRNA (Fig. 13 I) resulting
from high nuclear NF-kB activity (Fig. 13 G), but the IkBa protein is

degraded due to the prolonged IKK activity (Fig. 13 B) and its level is low

(Fig. 13E). This inverse correspondence betweenmessage and protein shows

that the assumption of proportionality betweenmessage and protein, which is

often made in the analysis of microarray experiments, may not be valid.

The MATLAB program written to perform the simulations will be available

at the website: http://www.stat.rice.edu/mathbio/stochastic_immunity after

the article is published.
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TABLE 2 A20 and IkBa synthesis and degradation, IKK dynamics, and total amount of free and complexed NF-kB

Symbol Values Units Description Comments

c1a 0.075 s�1 IkBa -inducible mRNA synthesis Assumed

c2a 0.0 s�1 IkBa -constitutive mRNA synthesis Assumed, any small

c3a 0.0004 s�1 IkBa mRNA degradation Fitted, (43)

c4a 0.5 s�1 IkBa translation rate Fitted

c5a 0.0001 s�1 Spontaneous IkBa (free) protein degradation (44)

c6a 0.00002 s�1 IkBa degradation (complexed to NF-kB) (44)

c1 0.075 s�1 A20-inducible mRNA synthesis Assumed

c2 0.0 s�1 A20-constitutive mRNA synthesis Assumed

c3 0.0004 s�1 A20 mRNA degradation Assumed

c4 0.5 s�1 A20 translation rate Assumed

c5 0.0003 s�1 A20 protein degradation Fitted

k1 0.0025 s�1 IKK activation rate caused by TNF Fitted

k2 5 3 10�8 s�1 IKK inactivation rate caused by A20 Fitted

k3 0.0015 s�1 IKK spontaneous inactivation rate Fitted

kprod 25 s�1 IKKn production rate Fitted

kdeg 0.000125 s�1 IKKa, IKKn and IKKi degradation Fitted

NF 60,000 Total amount of free and complexed NF-kB Assumed (22,36)

TABLE 3 Transport between compartments, and assumed

kv = V/U, ratio of cytoplasmic and nuclear volumes

Symbol Value Units Description Comments

kv ¼ V/U 5 Cytoplasmic to nuclear volume Assumed

i1 0.0025 s�1 NF-kB nuclear import Fitted

e2a 0.05 s�1 (IkBajNF-kB) nuclear export Fitted

i1a 0.002 s�1 IkBa nuclear import Fitted

e1a 0.005 s�1 IkBa nuclear export Assumed

TABLE 4 Parameters of NF-kB binding at A20 and IkBa sites

Symbol Value Units Description Comments

q1a 1.5 3 10�7 s�1 Binding at IkBa site Fitted

q0a 0 s�1 Constitutive dissociation

at IkBa site

Assumed,

any small

q2a 10�6 s�1 IkBa inducible dissociation

at IkBa site

Fitted

q1 1.5 3 10�7 s�1 Binding at A20 site Assumed

q0 0 s�1 Constitutive dissociation

at A20 site

Assumed

q2 10�6 s�1 IkBa inducible dissociation

at A20 site

Assumed

Stochasticity in Immune Response 741

Biophysical Journal 90(3) 725–742



REFERENCES

1. Ko, M. S. H. 1991. Stochastic model for gene induction. J. Theor. Biol.
153:181–194.

2. Femino, A. M., F. S. Fay, K. Fogarty, and R. H. Singer. 1998.
Visualization of single RNA transcripts in situ. Science. 280:585–590.

3. Kepler, T. B., and T. C. Elston. 2001. Stochasticity in transcriptional
regulation: origins, consequences, and mathematical representations.
Biophys. J. 81:3116–3136.

4. Blake, W. J., M. Kaern, C. R. Cantor, and J. J. Collins. 2003. Noise in
eukaryotic gene expression. Nature. 422:633–637.

5. Raser, J. M., and E. K. O’Shea. 2004. Control of stochasticity in
eukaryotic gene expression. Science. 304:1811–1814.

6. Paszek, P., T. Lipniacki, A. R. Brasier, B. Tian, D. E. Novak, and M.
Kimmel. 2005. Stochastic effects of multiple regulators on expression
profiles in eukaryotes. J. Theor. Biol. 233:423–433.

7. McAdams, H. H., and A. Arkin. 1997. Stochastic mechanisms in gene
expression. Proc. Natl. Acad. Sci. USA. 94:814–819.

8. Arkin, A., J. Ross, and H. H. McAdams. 1998. Stochastic kinetics
analysis of developmental pathway bifurcation in l-phage infected
Escherichia coli cells. Genetics. 149:1633–1648.

9. Thattai, M., and A. Oudenaarden. 2001. Intrinsic noise in gene
regulatory networks. Proc. Natl. Acad. Sci. USA. 98:8614–8619.

10. Kierzek, A. M., J. Zaim, and P. Zielenkiewicz. 2001. The effect of
transcription and translation initiation frequencies on the stochastic
fluctuations in prokaryotic gene expression. J. Biol. Chem. 276:
8165–8172.

11. Swain, P. S., M. B. Elowitz, and E. D. Siggia. 2002. Intrinsic and
extrinsic contributions to stochasticity in gene expression. Proc. Natl.
Acad. Sci. USA. 99:12795–12800.

12. Tian, B., and A. R. Brasier. 2003. Identification of a nuclear factork
b-dependent gene network. Recent Prog. Horm. Res. 58:95–130.

13. Sun, S.-C., P. A. Ganchi, D. W. Ballard, and W. C. Greene. 1993. NF-
kB Controls expression of inhibitor IkBa: evidence for an inducible
autoregulatory pathway. Science. 259:1912–1915.

14. Karin, M. 1999. The beginning of the end: IkB kinase (IKK) and NF-
kB activation. J. Biol. Chem. 274:27339–27342.

15. Krikos, A., C. D. Laherty, and V. M. Dixit. 1992. Transcriptional
activation of the tumor necrosis factor a-inducible zinc finger protein,
A20, is mediated by kB elements. J. Biol. Chem. 267:17971–17976.

16. Lee, E. G., D. L. Boone, S. Chai, S. L. Libby, M. Chien, J. P. Lodolce,
and A. Ma. 2000. Failure to regulate TNF-induced NF-kB and cell
death responses in A20-deficient mice. Science. 289:2350–2354.

17. Ainbinder, E., M. Revach, O. Wolstein, S. Moshonov, N. Diamant, and
R. Dikstein. 2002. Mechanism of rapid transcriptional induction of
tumor necrosis factor a-responsive genes by NF-kB. Mol. Cell. Biol.
22:6354–6362.

18. Ainbinder, E., L. Amir-Zilberstein, Y. Yamaguchi, H. Handa, and R.
Dikstein. 2004. Elongation inhibition by DRB sensitivity-inducing
factor is regulated by the A20 promoter via a novel negative element
and NF-kB. Mol. Cell. Biol. 24:2444–2454.

19. Hoffmann, A., A. Levchenko, M. L. Scott, and D. Baltimore. 2002.
The IkB-NF-kB signaling module: temporal control and selective gene
activation. Science. 298:1241–1245.

20. Lipniacki, T., P. Paszek, A. R. Brasier, B. Luxon, and M. Kimmel.
2004. Mathematical model of NF-kB regulatory module. J. Theor.
Biol. 228:195–215.

21. Gerondakis, S., M. Grossmann, Y. Nakamura, T. Pohl, and R.
Grumont. 1999. Genetic approaches in mice to understand Rel/NF-kB
and IkB function: transgenics and knockouts. Oncogene. 18:6888–6895.

22. Carlotti, F., R. Chapman, S. K. Dower, and E. E. Qwarnstrom. 1999.
Activation of nuclear factor kB in single living cells. J. Biol. Chem.
274:37941–37949.

23. Nelson, G., L. Paraoan, D. G. Spiller, G. J. C. Wilde, A. M. Browne,
P. K. Djali, J. F. Unitt, E. Sullivan, E. Floettmann, and M. R. H. White.

2002. Multi-parameter analysis of the kinetics of NF-kB signalling and
transcription in single living cells. J. Cell Sci. 115:1137–1148.

24. Yang, L., K. Ross, and E. E. Qwarnstrom. 2003. RelA control of Ik Ba
phosphorylation. J. Biol. Chem. 278:30881–30888.

25. Schooley, K., P. Zhu, S. K. Dower, and E. E. Qwarnstrom. 2003.
Regulation of nuclear translocation of nuclear factor-kB RelA:
evidence for complex dynamics at the single cell level. Biochem. J.
369:331–339.

26. Nelson, D. E., A. E. C. Ihekwaba, M. Elliot, J. R. Johnson, C. A.
Gibney, B. E. Foreman, G. Nelson, V. See, C. A. Horton, D. G. Spiller,
S. W. Edwards, H. P. McDowell, J. F. Unitt, E. Sullivan, R. Grimley,
N. Benson, D. Broomhead, D. B. Kell, and M. R. H. White. 2004.
Oscillations in NF-kB signaling control the dynamics of gene
expression. Science. 306:704–708.

27. Jiang, X., N. Takahashi, N. Matsui, T. Tetsuka, and T. Okamoto. 2003.
The NF-kB Activation in lymphotoxin receptor signaling depends on the
phosphorylation of p65 at serine 536. J. Biol. Chem. 278:919–926.

28. Tian, B., D. E. Nowak, M. Jamaluddin, S. Wang, and A. R. Brasier.
2005. Identification of direct genomic targets downstream of the NF-
kB transcription factor mediating TNF signaling. J. Biol. Chem. 280:
17435–17448.

29. Lipniacki, T., P. Paszek, A. Marciniak-Czochra, A. R. Brasier, and
M. Kimmel. 2005. Transcriptional stochasticity in gene expression.
J. Theor. Biol. In press.

30. Gillespie, D. T. 1977. Exact stochastic simulations of coupled chemical
reactions. J. Phys. Chem. 81:2340–2361.

31. Gillespie, D. T. 2001. Approximate accelerated stochastic simulation of
chemically reacting system. J. Phys. Chem. 115:1716–1733.

32. Cao, Y., L. R. Petzold, M. Rathinam, and D. T. Gillespie. 2004. The
numerical stability of leaping methods for stochastic simulation of
chemically reacting systems. J. Chem. Phys. 121:12169–12178.

33. Haseltine, E. L., and J. B. Rawlings. 2002. Approximate simulation
of coupled fast and slow reactions for stochastic chemical kinetics.
J. Chem. Phys. 117:6959–6969.

34. Rao, Ch. V., and A. P. Arkin. 2003. Stochastic chemical kinetics and
the quasi-steady-state assumption: application to the Gillespie algo-
rithm. J. Chem. Phys. 118:4999–5010.

35. Cao, Y., D. T. Gillespie, and L. R. Petzold. 2005. The slow-scale
stochastic algorithm. J. Chem. Phys. 122:014116.

36. Carlotti, F., S. K. Dower, and E. E. Qwarnstrom. 2000. Dynamic shut-
tling of nuclear factor kB between the nucleus and cytoplasm as a con-
sequence of inhibitor dissociation. J. Biol. Chem. 275:41028–41034.

37. Barken, D., C. J. Wang, J. Kearns, R. Cheong, A. Hoffman, and A.
Levchenko. 2005. Comment on ‘‘Oscillations in NF-kB signaling
control the dynamics of gene expression’’. Science. 308:52a.

38. Nelson, D. E., C. A. Horton, V. See, J. R. Johnson, G. Nelson, D. G.
Spiller, D. B. Kell, and M. R. H. White. 2005. Response to comment
on ‘‘Oscillations in NF-kB signaling control the dynamics of gene
expression’’. Science. 308:52b.

39. Ackers, G. K., A. D. Johnson, and M. A. Shea. 1982. Quantitative
model for gene regulation by l-phage repressor. Proc. Natl. Acad. Sci.
USA. 79:1129–1133.

40. Gilman, A., and A. P. Arkin. 2002. Genetic code: representation and
dynamics models of genetic components and networks. Annu. Rev.
Genomics Hum. Genet. 3:341–369.

41. Pirone, J. R., and T. C. Elston. 2004. Fluctuations in transcription
factor binding can best explain the graded and binary responses
observed in inducible gene expression. J. Theor. Biol. 226:111–121.

42. Rao, Ch. V., D. M. Wolf, and A. P. Arkin. 2002. Control, exploitation
and tolerance of intracellular noise. Nature. 420:231–237.

43. Blattner, C., P. Kannouche, M. Litfin, K. Bender, H. J. Rahmsdorf, J.
F. Angulo, and P. Herrlich. 2000. UV-induced stabilization of c-Fos
and other short-lived mRNAs. Mol. Cell. Biol. 20:3616–3625.

44. Pando, M. P., and I. M. Verma. 2000. Signal-dependent and
-independent degradation of free and NF-kB-bound IkBa. J. Biol.
Chem. 275:21278–21286.

742 Lipniacki et al.

Biophysical Journal 90(3) 725–742


