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We show that a typical toy model of an ordered quasicrystalline alloy has a range of stoichiometries.

We consider the low temperature ordered phases
of general classical statistical mechanical models,
allowing several species of structureless particles
interacting through translation invariant, short range
forces and with positions in R” (‘“‘continuous
models”) or Z” (““discrete models™).We do not con-
sider incommensurate models.

Until recently every such known model fell into one
of two classes: either the model had a unique peri-
odic ground state, as in the lattice gas on Z> with
nearest neighbor repulsion [1], or else it had a
degenerate ground state, as in the lattice gas on Z°
with nearest neighbor attraction and critical value of
the chemical potential [ 1]. By ground state we mean
the translation invariant zero temperature limit of the
(grand canonical) equilibrium ensemble, and the
ground state is degenerate if this limit is not unique.
Also, one determines the periodicity of a ground state
by its many body correlation functions in the usual
way [2,3]. Since ground states are nondegenerate for
generic interactions [4] we will only consider such
models in the following.

Consider a continuous model with two species of
opposite electric charge and with crystalline ground
state as in a toy model of NaCl. The addition of a
small uniform external electric field would deform
(polarize) the crystal continuously as the field
amplitude is varied. In particular the ground state
would change continuously with the perturbation and
it is important to note that this change is local - it
occurs uniformly over the state. Now consider some
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discrete model with nondegenerate periodic ground
state. A small change in the external conditions could
not produce such a local effect in the ground state; as
long as the period remains bounded with the pertur-
bation, there is a finite gap in energy density above
the original ground state which cannot be bridged by
a short range perturbation of sufficiently small
amplitude.

In this letter we note a new mode of behavior
exhibited by a relatively new class of models [5-7].
Using a discrete model with unique quasicrystalline
ground state we show that certain arbitrarily small,
short range perturbations change the ground state
(necessarily) nonlocally. Intuitively, in common
models (as in the toy model of NaCl) which have
nondegenerate periodic ground states a small pertur-
bation can only cause a local change in the ground
state, and therefore none at all in a discrete model,
whereas in quasicrystalline models where the ground
state has in some sense periodic components of arbi-
trarily large period, a (short range) perturbation can
couple to these long periods, entering at “infinite
period™ so to say, and thereby change the ground state
nonlocally.

The (toy) model we use is a nearest neighbor lat-
tice gas model on the square lattice, with many (56)
particle species allowed at each site. The general form
of the model is thus familiar, but to completely spec-
ify it we must list the energy of interaction for each
possible pair of nearest neighbor occupation states.
As there is no simple formula for these energies this
is rather involved. In our model all chemical poten-
tials are initially taken to be zero, and there is one
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particle species for each class of tiles in the tiling
example in ref. [9] (or alternatively, refs. [8,10]),
with interaction energy —1 if two titles match and
energy +1 if they do not match. Our argument is
based on one step in the middle of the proof that this
tiling example forces nonperiodicity. Therefore those
who wish to follow the details of our proofin the next
paragraph are referred to the argument in ref. [9] (or
ref. [10]); our conclusions are presented in our last
paragraph.

We know that our model has a nondegenerate
quasicrystalline ground state [4] and consider a per-
turbation of the model. The tiles, or corresponding
particle species, fall into five classes: “crosses™, up-
arms, down-arms, left-arms and right-arms. Con-
sider the perturbation which raises the chemical
potential of the left-arms by the.amount ¢> 0. We will
show that in the ground state for the perturbed model
the percentage of left-arms is lower than in the
unperturbed model. To see this note that if, in build-
ing up the “(2"—1)-squares” of an allowed tiling
(corresponding to the unperturbed model) we change
the tiles in the horizontal corridors between (27— 1)-
squares (for some fixed n) by replacing each left-arm
by the right-arm with reversed horizontal arrows but
unchanged vertical arrows, the energy density is
increased by an amount proportional to 2~2". How-
ever if the perturbed chemical potential is used, the
energy density is also decreased by an amount pro-
portional to 2", which proves that the ground states
of the perturbed and unperturbed models are differ-
ent for any €>0.
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So in our quasicrystalline model arbitrarily small
changes in chemical potentials lead to changes in sto-
ichiometries, even at zero temperature, in distinc-
tion with all previously known models and real alloys.
Now even though ours is only a toy model, the effect
we computed seems likely to hold in any low temper-
ature quasicrystalline model, and we therefore sug-
gest that it may well be true for real quasicrystalline
alloys such as AlggMn,, [11,12].
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