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Outline

� The operon concept

� Transcriptional regulation

� Simple model of a repressible operon

� Transcriptional bursting

� A genetic switch



Operon: Jacob & Monod (1960)

structural genesregulatory gene controlling sites

� structural genes - nucleotide sequences of DNA en-
coding proteins

� regulatory proteins (encoded by regulatory genes) -
proteins that affect the expression of structural genes;
activators stimulate gene transcription and repressors
inhibit the initiation of transcription

� controlling sites - binding sites for RNA polymerase
(promoters) and for repressors (operators)



The lactose (lac) operon

z y ap oip

mRNA

repressor lac

z y ap oip

mRNA mRNA

enzymes

lactose

effector (allolactose)



The tryptophan (trp) operon
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Transcriptional regulation

� negative control - a regulatory protein acts as a re-
pressor, binding to DNA and inhibiting transcription;

� positive control - a regulatory protein acts as an
activator, stimulating transcription;

� inducible operon - transcription is normally off and
must be turn on;

� repressible operon - transcription is normally on and
must be turn off.

The lac operon is a negative inducible operon. The trp
operon is a negative repressible operon.



No control

The simplest operon consists of one structural gene
and one promoter. The gene is constitutive, meaning
that it is expressed continuously by a cell
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where M and P denote mRNA and protein molecules.
Eventually fixed stationary levels are reached
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Deterministic rate equation

� Goodwin: (1965) Adv. Enz. Regul. 3, 425

� Griffith: (1968) J Theor. Biol. 20, 202

� Tyson & Othmer: (1978) Prog. Biophy. 5, 1

dM

dt
= bmaxϕ(E)− γMM,

dE

dt
= βEM − γEE,

bmax - maximum level of transcription, ϕ(E) - variation of
the DNA transcription rate with effector level E



Negative repressible operon

Reg O SG
Operon

R + E RE M

R - repressor, O - operator, E - effector, M - mRNA

ϕ(E) = ϕ̄m
1 +K1En

1 +KEn
, R+nE

K1


 REn, O+REn
K2


 OREn

n - number of effector molecules, K = K1(1 + K2Rtot),
Rtot = R +K1R · En +K2O · REn ≈ R(1 +K1En),
ϕ̄m - maximal DNA transcription rate



The equations

We scale variables (M,E) to (x1, x2) satisfying

dx1

dt
= γx1

(
κd f (x2)− x1

)
,

dx2

dt
= γx2(x1 − x2),

where γx1, γx2, κd > 0 and

f (x) =
1 + xn

1 + ∆xn
, ∆ ≥ 1.

There is only one steady state, it is globally stable and
it is the positive solution of

x2 = x1, x1 = κd f (x2).



Graphical investigation of the steady states
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Transcriptional/translational bursting

Experimentally observed that

� some organisms transcribe DNA/mRNA discontinu-
ously, Golding, Paulsson, Zawilski, Cox: (2005) Cell;
Cai, Friedman, Xie: (2006) Nature;

� the amplitude of molecules production through burst-
ing is exponentially distributed with density

h(y) =
1

b
e−y/b,

where b is the average burst size;

� the frequency of bursting ϕ is dependent on the level
of the molecules.



Dynamics with bursting

Transcription occurs at random times 0 < t1 < t2 < . . .,
in between, the process evolves according to

dx1

dt
= −γx1x1,

dx2

dt
= γx2(x1 − x2).

t

x2x1

Pr(θ1 > x) = e−x/b

Pr(t1 > t) = e
−
∫ t

0
ϕ(x2(s))ds

t1

θ1

t2

θ2



Dynamics with bursting

� When bursting is present, replace the deterministic
dynamics

dx1

dt
= γx1

(
κd f (x2)− x1

)
,

dx2

dt
= γx2(x1 − x2),

with stochastic dynamics
dx1

dt
= −γx1x1 + Ξ(h, ϕ(x2)),

dx2

dt
= γx2(x1 − x2),

� Ξ(h, ϕ) is a jump Markov process occurring at rate
ϕ = γx1κbf with amplitude distributed with density h.

� There is a unique stationary distribution of (x1, x2) but
we are unable to find its formula.



Reduced model

Typically the degradation rate of mRNA is much greater
than that of the effector so x1 ≈ κd f (x2) and the two
equations reduce to a single equation

dx

dt
= γ(κd f (x)− x), f (x) =

1 + xn

1 + ∆xn
.

When bursting is present we obtain

dx

dt
= −γx + Ξ(h, ϕ(x)), ϕ(x) = γκbf (x).

The stationary distribution has a density of the form

u∗(x) = Ce−x/bxκb−1(1 + ∆xn)θ, θ =
κb

n∆
(1− ∆) < 0.



Stationary distribution
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Model development of a genetic switch
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Equations for the switch

We introduce dimensionless variables (x1, x2, y1, y2) to
obtain

dx1

dt
= γx1[κd,x fx(y2)− x1], (1)

dx2

dt
= γx2(x1 − x2), (2)

dy1

dt
= γy1[κd,y fy(x2)− y1], (3)

dy2

dt
= γy2(y1 − y2), (4)

fx(y2) =
1 + y nx2

1 + ∆xy
nx
2

and fy(x2) =
1 + x

ny
2

1 + ∆yx
ny
2

. (5)



Steady states

The steady states of the system (1)-(4) are given by
x∗1 = x∗2 = x∗, y ∗1 = y ∗2 = y ∗ where (x∗, y ∗) is the solution
of

x2 = κd,x fx(y2) (6)

y2 = κd,y fy(x2). (7)

For each solution (x∗, y ∗) of (6)-(7) there is a steady
state W ∗ of the model, and the parameters

(κd,x , κd,y ,∆x ,∆y , nx , ny)

will determine whether W ∗ is unique or has multiple
values.



Graphical investigation of the steady states
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Graphical investigation of the steady states
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Graphical investigation of the steady states
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Reduced model with bursting

Two slow variables, one in each gene

The four equations reduce to
dx

dt
= γx [κd,x fx(y)− x ],

dy

dt
= γy [κd,y fy(x)− y ].

The stochastic analogs are
dx

dt
= −γxx + Ξ(h1, ϕ1(y)) with ϕ1(y) = γxκb,x fx(y),

dy

dt
= −γyy + Ξ(h2, ϕ2(x)) with ϕ2(x) = γyκb,y fy(x).



One slow variable

If there is a single dominant slow variable (assume it is
in the gene X) relative to all of the other three the full
switch reduces to a single equation

dx

dt
= γ[κd,x fx(κd,y fy(x))− x ],

where γ is the dominant (smallest) degradation rate.
The stochastic analog is

dx

dt
= −γx + Ξ(h, ϕ(x)) with ϕ(x) = γκb,xF(x),

F(x) = fx(κb,y fy(x)) =
1 + (κb,y fy(x))nx

1 + ∆x(κb,y fy(x))nx



Monomeric repression of one of the
genes

For nx = 1, F takes the simpler form

F(x) =
(1 + κb,y) + (∆y + κb,y)xny

Λ + Γxny
,

where Λ = 1+∆xκb,y > 0, Γ = ∆y+∆xκb,y > 0.

We have the explicit representation

u∗(x) = Ce−x/bxA−1[Λ + Γxny ]θ

with

A =
κb,x(1 + κb,y)

Λ
> 0, θ =

κb,xκb,y(∆x − 1)(∆y − 1)

nyΛΓ
> 0.
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Conclusions and further questions

� Analytic results are available for the stationary density
of molecular species only in one dimensional situations

� The presence of noise may induce bistability in gene
regulatory models

� Stochastic models are in terms of Markov processes.
How to approach if there is noise and memory?

� Transcriptional and translational time delays are ex-
pected to have a significant impact on the dynamics
of gene expression. The delays might be state depen-
dent
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Thank you for your attention!
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