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Biological motivation: the complexity of gene expression
process

Andrzej Tomski (University of Silesia in Katowice) On a stochastic gene expression with pre-mRNA, mRNA and protein contribution How (maybe) very trivial changes lead to (maybe) nontrivial effects



Introduction
Models

Long-time behaviour
Simulations: Gillespie’s algorithm

The adiabatic limit

Gene expression: three main stages
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Mathematical motivation: to investigate a model which
has three-dimensional phase space

It is still much easier to interest mathematicians with
three-dimensional problem, because:

it’s geometry is usually much harder to describe

some new quantitative effects are possible, which are not
present in R2

Modern programming environments (R, Mathematica, Python
and ”infinitely” many...) can reveal how even quite
complicated three-dimensional sets look like.

What with Rn?
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Our approach

We investigate the dependence between some types of substances
(particles, molecules, etc.),

Dynamics of these changes is described by dynamical systems, but
these systems switch stochastically,

Intensities of the switches depend on the state of the phase
space we currently are,

We want to know what is the behaviour of the process after
sufficiently long time,

We can solve this problem in the language of semigroups of
operators,

We can show that the density of this process is stabilisizing.
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Explosion of models based on PDMP (M.H.A Davis, 1984)
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Brief review ([1])
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Our model ([5])
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Model with pre-mRNA contribution

We just add third equation, considering pre-mRNA production.

0
q0(x1,x2,x3)−−−−−−−→ 1, 0

q1(x1,x2,x3)←−−−−−−− 1
dx1
dt

= A1γ(t)− d1x1
dx2
dt

= A2x1 − d2x2
dx3
dt

= A3x2 − d3x3,

(1)

gdzie Ai > 0 i di > 0. We can simplify this system to obtain:
dx1
dt = γ(t)− x1
dx2
dt = a(x1 − x2)
dx3
dt = b(x2 − x3),

(2)

gdzie a, b > 0.
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What is γ(t)?

Definition

Let i0 ∈ {0, 1}, T0 = 0, x = (x1, x2) (or x = (x1, x2, x3)) and then:

γ(t) =

{
i0, t ∈ [T0,T1)

1− i0, t = T1

T1 is called ”time of the first jump of the process” and it is a random
variable with the distribution:

Fx,i0(t) = Prob(T1 6 t) = 1− exp
(
−
∫ t
0

qi0(πi0(s, x))ds
)
.

Comment

With constant value of qi0 this distribution is just exponential distribution
with the parameter qi0 . In a similar way the following random variables:
Ti , i = 2, ..., are called ”times of the n-th jumps of the process”.
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Model with mRNA and proteins - deterministic flows
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Model with pre-mRNA contribution - deterministic flows
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Tools: Markov semigroups induced by PDMP

Let (X ,Σ,m) be a σ−finite measure space with measure m. By D we
denote the subset of L1 := L1(X ,Σ,m) which is the set of the densities,
i.e.:

D = {f ∈ L1 : f > 0, ||f ||L1 = 1}

Definicja

A linear D preserving mapping P : L1 → L1, (P(D) ⊂ D) is called a
Markov operator.

Andrzej Tomski (University of Silesia in Katowice) On a stochastic gene expression with pre-mRNA, mRNA and protein contribution How (maybe) very trivial changes lead to (maybe) nontrivial effects



Introduction
Models

Long-time behaviour
Simulations: Gillespie’s algorithm

The adiabatic limit

Markov semigroups

Definition

A family {P(t)}t>0 of Markov operators, which satisfies the following
conditions:

P(0) =Id (identity condition),

P(t + s) = P(t)P(s) for s, t > 0 (semigroup condition),

for each f ∈ L1 the function t → P(t)f is continuous with respect
to the L1 norm (strong continuity),

is called a Markov semigroup.

Andrzej Tomski (University of Silesia in Katowice) On a stochastic gene expression with pre-mRNA, mRNA and protein contribution How (maybe) very trivial changes lead to (maybe) nontrivial effects



Introduction
Models

Long-time behaviour
Simulations: Gillespie’s algorithm

The adiabatic limit

Asymptotic stability

Asymptotic stability in the sense of Lasota

A Markov semigroup {P(t)}t>0 is asymptotically stable if

there exists an invariant density for {P(t)}t>0, i.e. f ∗ ∈ D such that
P(t)f ∗ = f ∗ for all t > 0,

for every density f ∈ D :

lim
t→∞

||P(t)f − f ∗|| = 0. (3)

Conclusion

Markov semigroup generated by PDMP is asymptotically stable −→
distribution of the process converges to stationary distribution.
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Stochastic attractor

In applications, we construct a Markov semigroup {P(t)}t­0, in the
space L1(X × I ,B(X × I ), dx × di), where I = {0, 1}, and we restrict its
analysis to the set called stochastic attractor, i.e. a measurable subset
S of X , such that:

lim
t→∞

∫
S×I

P(t)f (x , i)dx di = 1 (4)

for every function f ∈ L1(X × I ). This will let us to restrict the domain of
{P(t)}t­0 only to functions f ∈ L1(S × I ). What is more, we want to
find an attractor, which plays the role of support of the invariant density.
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Model with mRNA and proteins - attractor
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Model with pre-mRNA contribution: attractor
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Theorem

Let qi (x) > 0, i = 0, 1 dla x ∈ [0, 1]3. Then a Markov semigroup
{P(t)}t>0 is asymptotically stable and the support of the invariant
density is A = A× {0, 1}, where A is expressed in the basis of the
eigenvectors:

A = {(x − y + z , xa− y a+ za, xb− yb+ zb) : 1 > x > y > z > 0}. (5)
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Projections on the plane
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Communications between states

Communications between states in A
We obtain the answer for the following question which could not be
solved by the standard control theory: is it possible to join any two points
in the interior of A combining the trajectories of both of the flows?
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Trajectories
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Trajectories (in R3)
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Estimation of stationary distribution
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We shall consider particularly interesting behavior of our model, when
both of the jump rates q0 and q1 tend to infinity, unlike their ratio. In
this case, we can replace the stochastic process γ(t) by its expected
value Γ := Eγ = q0

q0+q1
[?, ?] to obtain a state called deterministic or

adiabatic limit. Hence, the system ?? transforms to deterministic system
of three ODEs: 

dx1
dt

= Γ(x3)− x1
dx2
dt

= a(x1 − x2)
dx3
dt

= b(x2 − x3).

(6)

Depending on the values of the parameters a i b we investigate some
specific types of behavior [2]. We consider the case of the negative
autoregulation, i.e. when Γ jest a decreasing function of x3.
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A limit cycle in the adiabatic limit and negative
autoregulation (a=1, b=1)
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Bistability in the adiabatic limit and positive autoregulation
(a=1, b=1)
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Other models, perspectives

Non-linear model of stem cells differentiation (Paździorek).
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Other models, perspectives

The systems with stable and unstable points.

What about a general theory?

Multi-dimensional attractors?
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