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Abstract
We analyze replicator dynamics with strategy-dependent time delays in a certain three-player
game with one pure and two mixed Nash equilibria. In such a model, new players are born
from parents who interacted in the past.We show that stationary states depend on time delays.
Moreover, at certain time delays, interior equilibria cease to exist.

Keywords Evolutionary game theory · Multi-player games · Replicator dynamics ·
Time delays

1 Introduction

Evolutionary game theory describes behavior of populations consisting of many individuals.
Usually their strategic interactions are decomposed into a sumof two-player games [13,14,21,
22,33,34]. Such a decomposition can be treated as an approximation of real social processes
involving multi-player games. One of the first papers investigating multi-player games is that
of Haigh and Cannings [12] where multi-player War of Attrition was discussed. Systematic
studies of multi-player games are presented in [5–9,18]. In particular, Kim [18] investigated
an asymptotic and stochastic stability of Nash equilibria in multi-player games, Broom,
Cannings, and Vickers [5] defined evolutionarily stable strategies for multi-player games and
analyzed their properties, Bukowski and Miȩkisz [8] provided a classification of symmetric
three-player games with two strategies, Broom and Cannings modeled dominance hierarchy
formation as a multi-player game [6], Broom and Rychtář [7] provided a general framework
for multi-player games in networks, and fixation probabilities in multi-player games were
discussed by Gokhale and Traulsen [9], see also [10,11]. Particular multi-player games were
also investigated; Pacheco et al. [29] analyzed a multi-player Stag Hunt game, and Souza et
al. [31] and Santos et al. [30] discussed a multi-player Snowdrift game. Stochastic stability
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of three-player games on lattice and in well-mixed populations were discussed by Miȩkisz
in [17,23],

All social and biological processes take a certain amount of time. It is natural, therefore, to
introduce time delays into evolutionary games. Effects of time delay in evolutionary games
were discussed in [1–3,15,16,24,25,27,28,32,35,36]. It was shown that for certain models
and time delays (above a critical value where the Hopf bifurcation appears), interior Nash
equilibria cease to be asymptotically stable and evolutionary dynamics exhibits oscillations
and cycles. However, it was pointed out in [1] that in the so-called biological model, where
it is assumed that the number of players born in a given time is proportional to payoffs
received by their parents in a certain moment in the past, the interior Nash equilibrium is
asymptotically stable for any time delay. Such a microscopic model gives rise to a system of
differential equations of replicator dynamics, one for a frequency of a first strategy and the
other one for a size of the population.

Recently, there were studied models with strategy-dependent time delays. In particular,
Moreira et al. [27] discussed multi-player Stag Hunt game with time delays, Ben Khalifa
et al. [3] investigated asymmetric games in interacting communities, and Wesson and Rand
[35] studied Hopf bifurcations in two-strategy delayed replicator dynamics.

Recently [26], strategy-dependent time delays were introduced in a biological-type model
of a two-player game presented in [1]. A novel behavior was reported, namely it was shown
that, unlike in all previous models, stationary states of the resulting replicator-type dynamics
depend on time delays.

Here, we discuss the effect of strategy-dependent time delays on the long-run behavior
of a biological-type model of a certain three-player game with two strategies and three Nash
equilibria, one pure and two interior ones. We show that stationary states depend on time
delays and at certain time delays, interior states may disappear and a pure strategy becomes
globally asymptotically stable.

In Sect. 2, we introduce our model and derive an equation for stationary states. In Sect. 3,
we present numerical solutions of this equation for a particular game. Some analytical results
concerning a number of stationary states are also presented. Discussion follows in Sect. 4.
Appendix contains proofs of analytical results.

2 Replicator Dynamics with Strategy-Dependent Time Delays

We consider a certain symmetric three-player game with two strategies, A and B, given by
the following payoff matrices: ((

a 0
0 b

)
,

(
0 b
b c + b

))

where the left matrix gives payoffs for the row player, when the third player uses A, whereas
the right matrix provides payoffs in the case of the third individual playing B.

A complete classification of such games with respect to Nash equilibria and evolutionarily
stable strategies is provided in [8]. Here, we will present a case study of possible effects of
strategy-dependent time delays on the long-run behavior of three-player games in the repli-
cator dynamics. We choose payoff parameters such that our game has three Nash equilibria,
one pure (A, A, A) and two interior ones. In three-player games, there are at most two inte-
rior equilibria so this is the most complex situation in such games [8]. We know that a, b, c
should satisfy the following conditions: a > 0, c < 0 and b >

√|ac|. Then the mixed Nash
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equilibria, represented by probabilities x1 and x2 of playing the strategy A, are given by the
following formulas [8]:

x1 = (b − c) − √
b2 + ac

a + 2b − c
and x2 = (b − c) + √

b2 + ac

a + 2b − c
. (1)

To see possible effects of time delays on stationary states, we consider here only a special

case study, namely we set a = 1, b = 2 and c = −1; hence, x1 = 3−√
3

6 ≈ 0.21 and

x2 = 3+√
3

6 ≈ 0.79. Let us note that x0 = 1 and x1 are asymptotically stable Nash equilibria,
whereas x2 is an unstable one.

To construct replicator dynamics with strategy-dependent time delays, we repeat the pro-
cedure from [1]. Let pi (t), i = A, B, be the number of individuals playing at the time t
the strategy A and B, respectively, p(t) = pA(t) + pB(t) the total number of players, and
x(t) = pA(t)

p(t) the fraction of the population playing A. Individuals are randomly matched
to play a three-player game and receive average payoffs with respect to the state of the
population x(t):

UA(t) = ax2(t) + b(1 − x(t))2 and UB(t) = 2b(1 − x(t))x(t) + (c + b)(1 − x(t))2.

(2)

We assume that individuals replicate at time t due to payoffs obtained at some earlier time;
time delays depend on strategies and are equal to τA and τB respectively.

Let us assume that during a time interval of the length ε, only an ε-fraction of the population
takes part in competitions, that is plays games.

We propose the following equations:

pi (t + ε) = pi (t) + εpi (t − τi )Ui (t − τi ); i = A, B, (3)

p(t + ε) = p(t) + ε
(
pA(t − τA)UA(t − τA) + pB(t − τB)UB(t − τB)

)
. (4)

We divide (3) by (4) for i = A, obtain an equation for x(t + ε) ≡ xA(t + ε), subtract x(t),
divide the difference by ε, take the limit ε → 0, and get an equation for the frequency of the
first strategy,

dx

dt
= pA(t − τA)UA(t − τA)(1 − x(t)) − pB(t − τB)UB(t − τB)x(t)

p(t)
(5)

which can be also written as

dx

dt
= x(t − τA)p(t − τA)UA(t − τA))(1 − x(t)) − (1 − x(t − τB))p(t − τB)UB(t − τB)x(t)

p(t)
.

(6)

Let us notice that unlike in the standard replicator dynamics, the above equations are not
closed, there appear in them variables describing the size of the population at various times.
One needs corresponding equations for the population size. From (3) and (4), we have

dpi (t)

dt
= pi (t − τi )Ui (t − τi ); i = A, B, (7)

dp(t)

dt
=

(
pA(t − τA)UA(t − τA) + pB(t − τB)UB(t − τB)

)
. (8)

To trace the evolution of the population, we have to solve the system of Eqs. (6) and
(8) together with initial conditions on the interval [−τM , 0], where τM = max

{
τA, τB

}
. We

assume that
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x(t) = ϕx (t), p(t) = ϕp(t), for t ∈ [−τM , 0]. (9)

Proposition 1 If the initial functions ϕx , ϕp are continuous on [−τM , 0) and non-negative,
then there exists a unique, non-negative solution of system ((6), (8)) with initial condition (9)
well defined on the interval [0,+∞).

Proof The local existence of the solutions follows immediately from a standard theory
of delay differential equations [20]. The non-negativity follows from [4]. To prove the
global existence, it is enough to use the step method and to observe that on the interval[
0,min{τA, τB}] system ((6), (8)) becomes a system of non-autonomous ordinary differen-
tial equations. The equation for p becomes linear and it can be solved and then the equation
for x is also linear with respect to x(t). �	

2.1 Stationary States

We derive here an equation for a stationary state of the frequency of the first strategy. Let us
assume that there exists a stationary frequency x̄ such that x(t) = x̄ for all t ≥ 0 and for
some suitably chosen function p(t). Then average payoffs of each strategy are constant and
are equal to

ŪA = a x̄2 + b(1 − x̄)2 and ŪB = 2b(1 − x̄)x̄ + (c + b)(1 − x̄)2. (10)

Thus, equation (8) becomes a linear delay differential equation

dp

dt
= x̄ŪA p(t − τA) + (1 − x̄)ŪB p(t − τB). (11)

Note, that solutions of (11)with non-negative initial conditions are non-negative. This implies
that the leading eigenvalue of this equation is real. The eigenvalues λ of (11) satisfy

λ = x̄ŪA e−λτA + (1 − x̄)ŪB e−λτB . (12)

Assume now that λ is a solution of (12) and p(t) = p0 exp(λt).
We plug such p into (6) and we get two stationary solutions of (6), x̄ = 0, 1 and possibly

interior ones – solutions of

ŪA e−λτA = ŪB e−λτB . (13)

If τA = τB , then (13) gives us mixed Nash equilibria of the non-delayed replicator
dynamics.

If τA �= τB , we have then λ = ln(ŪA/ŪB)/(τA − τB). Plugging it into (12), we conclude
that x̄ satisfies an equation F(x̄) = 0, where

F(x) = 1

τA − τB
ln

(
ax2 + b(1 − x)2

2b(1 − x)x + (c + b)(1 − x)2

)

−
(
2b(1 − x)x + (c + b)(1 − x)2

)τA/(τA−τB )

(
ax2 + b(1 − x)2

)τB/(τA−τB )
. (14)

First, we state a proposition that explains in which sense x̄ is a stationary state of the
replicator dynamics.

Proposition 2 Assume that τA �= τB, let x̄ be a solution of F(x) = 0, where F is defined
by (14) and let
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λ̄ = 1

τA − τB
ln

(
ax̄2 + b(1 − x̄)2

2b(1 − x̄)x̄ + c(1 − x̄)2

)
.

Then the functions

x(t) = x̄, p(t) = p0 e
λ̄t , t ≥ 0

are solutions of system (6)–(8) with initial conditions

ϕx (t) = x̄, ϕp(t) = p0 e
λ̄t , for t ∈ [−τM , 0].

3 Results

Here, we state some general results (proofs are given in the “Appendix”) concerning the
number of stationary states and provide numerical solutions for the equation for the stationary
state as a function of time delays, τA and τB .

To show a variety of possible behaviors, we limit ourselves to the special case when

a = 1, b = 2, c = −1. (15)

For such payoffs, the function F reads

F(x) = 1

τA − τB
ln

(
x2 + 2(1 − x)2

4(1 − x)x + (1 − x)2

)
−

(
4(1 − x)x + (1 − x)2

)τA/(τA−τB )

(
x2 + 2(1 − x)2

)τB/(τA−τB )
.

(16)

In order to formulate a theorem concerning the number of stationary states inside the interval
(0, 1)we need the LambertW functionWL that is a positive solution of the equation y = x ex .
Thus, y = WL(y) exp

(
WL(y)

)
.

Theorem 1 For a = 1, b = 2 and c = −1, the equation F(x) = 0 has at most two solutions
in the interval (0, 1). Moreover, the following statements are true:

(i) For τA > τB, there always exists exactly one solution of the equation F(x) = 0 in the

interval

(
8

9 + √
33

, 1

)
. On the other hand, if

(
1 − ln 2

WL(2τA)

)
τA < τB ,

then there exists a solution of F(x) = 0 in the interval x ∈
(
0,

1

3 + √
3

)
. It implies

that if

τB ≤
(
1 − ln 2

WL (2τA)

)
τA,

then there exists only one solution to F(x) = 0 in the interval (0, 1).
(ii) For τA < τB and τB sufficiently close to τA (i.e., it is enough to take τA < τB <

τA + 4
3 ln

5
3 ), there exist two solutions of F(x) = 0 in the interval (0, 1). On the other

hand, for τB − τA sufficiently large (e.g., larger than 2 ln 1+√
33

4 ) there is no solution of
F(x) = 0 in the interval (0, 1).
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Fig. 1 Number of stationary
states inside the interval (0, 1) for
various values of τA and τB ,
a = 1, b = 2, c = −1

The proof is given in the “Appendix”.
In Fig. 1, we visually present the number of stationary states inside the interval (0, 1) for

various values of τA and τB .
To see the dependence of interior stationary states on time delays, we have solved numer-

ically (16) using formulas (17) and (18) derived in the Appendix, results are presented in
Fig. 2. We have also performed computer simulations of replicator dynamics to check stabil-
ities of stationary states. We solved numerically system ((6), (8)) for various values of time
delays. As initial functions, we took constant ones or constants ones for x and exponential
for p. We have not noticed any significant difference in asymptotic behavior of solution if
different initial functions were taken. We also checked the behavior of solutions for different
initial values of the population obtaining again no significant differences. The asymptotic
behavior of the strategy frequency depends on its initial value. In Fig. 2, we indicated stability
of the stationary states as it was suggested by numerical simulations. Results of exemplary
simulations are presented in Fig. 3.

First, we set τA = τ, τB = 1.5τ (see Fig. 2b). When τ increases, the stable stationary
state increases and the unstable one decreases until they disappear at a certain τ . Beyond that
point, x = 1 becomes globally asymptotically stable.

Now, we set τB = 4 (see Fig. 2c). For small τA, there are no interior states and x = 1 is
globally asymptotically stable. At a certain τA, there appear two interior states, a stable and
an unstable one. At another value of τA, the stable one disappears.

Finally, we set τA = 1 (see Fig. 2d). For small τB , there is one interior unstable state. At
a certain τB , there appears a stable interior state. At another value of τB , both interior states
disappear and x = 1 becomes globally asymptotically stable.

4 Discussion

Social and biological processes are usually described by ordinary or partial differential equa-
tions, or by Markov processes if we take into account stochastic perturbations. However,
interactions between individuals, players or molecules, naturally take time. It is therefore
important to study the effect of time structure of interactions on evolution of populations.
Recently, the effect of the duration of interactions between two players on their payoffs and
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(a) (b)

(c) (d)

Fig. 2 Dependence of stationary states on τA and τB , a = 1, b = 2, c = −1. Solid lines denote stable states,
dotted lines denote unstable states

Fig. 3 Time evolution of frequency of strategy A for τA = 1, τB = 1.5, a = 1, b = 2, c = -1

therefore on evolutionary outcomes were discussed by Křivan and Cressman [19]. In their
models, the duration of interactions depend of strategies involved. This naturally can be
interpreted as strategy-dependent time delays. They showed that interaction times change
stationary states of the system.

Another approach is to consider ordinary differential equations with time delays [32]. It
was shown there that for small time delays, the stationary state is asymptotically stable and at a
certain critical time delay the systemundergoes theHopf bifurcation—the interior state looses
stability, oscillations arise. However, it was pointed out in [1] that in the so-called biological
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model, where it is assumed that the number of players born in a given time is proportional
to payoffs received by their parents at a certain moment in the past, the interior state is
asymptotically stable for any time delay. Strategy-dependent time delays were introduced to
this model in [26]. A novel behavior was observed. It was shown that strategy-dependent time
delays change stationary states in two-player games. Here, we analyzed replicator dynamics
with strategy-dependent time delays in a certain three-player game with one pure and two
mixed Nash equilibria (the most complex behavior in such games). We showed that interior
stationary states depend on time delays. Moreover, at certain time delays, interior equilibria
cease to exist. Our results are qualitatively similar to those obtained in [19].

Here, we considered only a special case study, more systematic investigations are needed,
especially concerning classic multi-player games describing social dilemmas.

It would be also interesting to analyze strategy-dependent time delays in stochastic dynam-
ics of finite populations.

Acknowledgements Wewould like to thank the National Science Centre, Poland for a financial support under
the Grant No. 2015/17/B/ST1/00693.

Appendix

Proof of Theorem 1. Let us denote α = τA
τA−τB

. The equation F(x) = 0 is equivalent to
FL(x) = FR(x), where

FL(x) = α

τA
ln

(
x2 + 2(1 − x)2

4(1 − x)x + (1 − x)2

)
,

FR(x) =
(
x2 + 2(1 − x)2

)(
4(1 − x)x + (1 − x)2

x2 + 2(1 − x)2

)α

.

First, we consider the case τB > τA. We calculate the second derivative of FL with respect
to x and we get

F ′
L(x) = −2α

τA

3x2 − 9x + 4

(1 − x)(3x + 1)
((
x
√
3 − 2√

3

)2 + 2
3

) ,

F ′′
L (x) = α

τA

(
1

(x − 1)2
+ 9

(3x + 1)2
+ 8

(3x2 − 4x + 2)2
− 6

3x2 − 4x + 2

)
.

After some computations (reducing the expression in brackets to a common denominator and
plotting—or estimating—a polynomial of the fifth degree of the numerator) it is possible to
show that F ′′

L (x) < 0 for all x ∈ (0, 1) and α < 0. Thus, FL is concave. On the other hand,
the derivatives of FR read

F ′
R(x) =

(
4(1 − x)x + (1 − x)2

)α−1

(
x2 + 2(1 − x)2

)α

(
2α

(
x2 − 5x2 + 2

) + 2(x(x − 1)(3x + 1)
)
,

F ′′
R(x) = 2

(
4(1 − x)x + (1 − x)2

)α−2

(
x2 + 2(1 − x)2

)α+1 h(x),

where

h(x) = 2α2 (
3x2 − 9x + 4

)2 − α
(
54x5 − 171x4 + 120x3 + 111x2 − 156x + 50

)

+ 3(x − 1)2
(
3x2 − 4x + 2

)
(3x + 1)2.
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Plotting the polynomial of the fifth degree shows that the coefficient in α is positive for
x ∈ (0, 1), and therefore, h(x) < 0 for x ∈ (0, 1). Thus, FR is convex. This proves that
equation FL(x) = FR(x) has at most two solutions in (0, 1).

Note that in this case (τA < τB ), we have

lim
x→0+ FL(x) = −|α|

τA
ln 2 < 0, lim

x→1− FL(x) = −∞,

and

lim
x→0+ FR(x) = 21−α > 0, lim

x→1− FR(x) = 0.

If we compare the value of FL and FR at x = 1
2 , we deduce that if

τA < τB < τA + 4

3
ln

5

3
,

then FL( 12 ) > FR( 12 ) so there are exactly two solutions of FL(x) = FR(x) in the interval
(0, 1).

On the other hand, one can easily estimate that

FL(x) ≤ α

τA
ln

√
33 − 1

8

for all x ∈ (0, 1). Because (1− x)2 + 4x(1− x) ≤ 4/3 and x2 + 2(1− x)2 ≥ 2
3 , one deduce

that FR(x) ≥ 1
2 . This completes the proof of part (ii) of the theorem.

Now, assume that τA > τB which implies that α > 1. In this case, it is convenient to
change variables. Let

y = 1 − x

x
⇐⇒ x = 1

1 + y
.

The problem of finding solution of FL(x) = FR(x) for x ∈ (0, 1) transforms to the problem
of finding solution of GL(y) = GR(y) for y > 0, where

GL(y) = − α

τA
ln

(
4y + y2

1 + 2y2

)
, GR(y) = 1 + 2y2

(1 + y)2

(
4y + y2

1 + 2y2

)α

.

It is very easy to calculate limits of GL and GR at 0 and at +∞ and get

lim
y→0+GL(y) = +∞, lim

y→+∞GL(y) = α

2
ln 2,

lim
y→0+GR(y) = 0, lim

y→+∞GR(y) = 21−α.

We calculate the derivative of GL and we get

G ′
L(y) = 2α

τA
· 4y2 − y − 2

y(4 + y)(1 + 2y2)
.

It is easy to see that for α > 1, the function GL is decreasing for y ∈ (0, ỹ) with ỹ =
1 + √

33

8
, and it is increasing for y > ỹ. Note also that

GL(ỹ) = − α

τA
ln

(
2 ỹ(ỹ + 2 ỹ2) + ỹ(2 + ỹ − 4ỹ2)

1 + 2 ỹ2

)
= − α

τA
ln(2 ỹ) < 0,
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while GR(Y ) > 0 for y > 0. Now, we prove that GR is increasing on (0, ỹ). We calculate
the derivative of GR with respect to y and we obtain

G ′
R(y) = 2(4y + y2)α−1

(1 + 2y2)α(1 + y)3
g(y)

with

g(y) = (1 + 2y2)(2 − y) + (1 + y)(2 + y − 4y2)(α − 1).

Because ỹ < 2 and α > 1, we easily see that g(y) > 0 for y ∈ (0, ỹ). Thus,GR is increasing
in (0, ỹ), and therefore, there exists exactly one solution of GL(y) = GR(y) in (0, ỹ).

One can see that GL(x) = 0 for ŷ1 = 2 − √
3 and ŷ2 = 2 + √

3. As ŷ2 > 2 > ỹ, we
see that g(y) < 0 for y > ŷ2, thus GR is decreasing while GL is increasing for y > ŷ2.
Thus, the second solution to GL(y) = GR(y) exists in the interval (ỹ,+∞) if and only if
GL(+∞) > GR(+∞), that is α ln 2 > 21−α . Some simple algebra finishes the proof of the
theorem. �	

Formula Used for Drawing Stationary Solutions

Here, we derive a formula that gives us a better relation between τA, τB , and x̄ than the
equation F(x) = 0. As before, let us denote

α = τA

τA − τB
, UA = x2 + 2(1 − x)2, UB = 4(1 − x)x + (1 − x)2.

The equation F(x) = 0 is then equivalent to

1

τA
α ln

UA

UB
= UA

(
UA

UB

)α

⇐⇒ τAUA = ln

(
UA

UB

)α

exp

(
ln

(
UA

UB

)α)
.

Thus,

ln

(
UA

UB

)α

= WL(τAUA) ⇐⇒ α = WL(τAUA)

ln UA
UB

,

whereWL is a LambertW function, that is x = WL(x) exp
(
WL(x)

)
. Now, using the definition

of α we get

τA

τA − τB
= WL(τAUA)

ln UA
UB

⇐⇒ τB = τA

(
1 − ln UA

UB

WL (τAUA)

)
.

In this manner, we get a relation between τA and τB at the stationary state x , namely

τB = τA

(
1 −

ln x2+2(1−x)2

4(1−x)x+(1−x)2

WL
(
(x2 + 2(1 − x)2)τA

)
)

. (17)

In an analogous manner—denoting β = τB
τA+τB

—we get another relation between τA and τB
at the stationary state x , namely

τA = τB

(
1 +

ln x2+2(1−x)2

4(1−x)x+(1−x)2

WL
(
(4(1 − x)x + (1 − x)2)τB

)
)

. (18)

We used formulas (17) and (18) to draw Fig. 2a.
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25. Miȩkisz J, Matuszak M, Poleszczuk J (2014) Stochastic stability in three-player games with time delays.

Dyn Games Appl 4:489–498
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