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Abstract
We construct for the first time examples of non-frustrated, two-body, infinite-range, one-
dimensional classical lattice–gas models without periodic ground-state configurations.
Ground-state configurations of our models are Sturmian sequences defined by irrational
rotations on the circle. We present minimal sets of forbidden patterns which define Sturmian
sequences in a unique way. Our interactions assign positive energies to forbidden patterns
and are equal to zero otherwise. We illustrate our construction by the well-known example
of the Fibonacci sequences.

Keywords Lattice–gas models · Non-periodic ground states · Sturmian systems ·
Most-homogeneous configurations · Fibonacci sequences

1 Introduction

Since the discovery of quasicrystals [47], one of the fundamental problems in statistical
mechanics is to construct microscopic models of interacting atoms or molecules for which
there exist thermodynamically stable, non-periodic, quasicrystalline equilibrium phases.
Here we discuss one-dimensional, classical lattice–gas models without periodic ground-
state configurations and with unique translation-invariant measures supported by them. In
such systems, called uniquely ergodic, all (to be precise almost all) ground-state configu-
rations locally look the same. It is known that one-dimensional systems without periodic
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ground-state configurations require infinite-range interactions [14,38,45]. On the other hand,
every uniquely ergodicmeasure is a ground-statemeasure of some classical lattice–gasmodel
[7,44], but in general these might entail arbitrarily-many-body interactions.

One-dimensional two-body interactions producing only non-periodic ground-state con-
figurations were presented in [4,9]. Hamiltonians in these papers consisted of strictly convex
two-body repelling interactions between particles and a chemical potential favoring parti-
cles. The competition between two-body interactions and the chemical potential (a source
of frustration for the particles) then gives rise to what is known as a devil’s staircase for the
density of particles in the ground state as a function of the chemical potential—the set of
chemical potentials for which ground states have irrational density of particles is a Cantor
set.

In [21], a non-frustrated, infinite range, exponentially decaying four-body Hamiltonian
was constructed, with the unique ground-state-measure supported by Thue-Morse sequences.
Here we present non-frustrated two-body (augmented by some finite-range interactions)
Hamiltonians producing exactly the same ground states as in the frustrated model of [4,9,
28,29]. These are the first examples of classical-lattice gas models with such a property, the
main result of this paper.

We would also like to understand what are the most important differences in the non-
periodic spatial order present in the Thue-Morse and in the Sturmian sequences, of which
Fibonacci sequences are the best known examples, with respect to their stabilities.

To do sowe discuss spatial order in one-dimensional bi-infinite sequences of two symbols,
0 and 1. The most ordered ones are of course the periodic ones. Every periodic sequence is
characterized by a finite pattern, that is an assignment of symbols to a finite number p of con-
secutive sites ofZ, which is repeated to the right and to the left;p then of course is the period of
given sequence. Here we are concernedwith non-periodic sequences which are in some sense
“most ordered” or “least non-periodic”. Various definitions of “order” have been put forward
in the mathematical literature. In particular, Sturmian systems (symbolic dynamical systems
with minimal complexity) and balanced systems have been extensively considered, see e.g.
[2,8,20] and references therein. In the physics literature, most-homogeneous sequences have
appeared as ground states, that is minimal-energy configurations, in certain systems of inter-
acting particles: one-dimensional analogues of Wigner lattices [27], the Frenkel-Kontorova
model [3,6], the Falicov-Kimball model of itinerant electrons [32] where actually the term
“most-homogeneous” was introduced, and classical lattice–gas models [4,5,9,28,29,36]. We
will show here that these three notions (Sturmian, most homogeneous, balanced) are equiv-
alent. We will also show that such configurations have the property of quick convergence
of pattern frequencies to equilibrium values which is also called the strict boundary condi-
tion [1,37,42]. The importance of this property for stability of non-periodic ground states is
discussed in [37].

The sequences considered here give rise to uniquely ergodic dynamical systems. Namely,
when we take any such sequence and form an infinite orbit under lattice translations, then the
closure of this orbit supports a unique translation-invariant ergodicmeasure. It follows that all
(rather than almost all) sequences in the support of this measure look locally the same—they
have the same frequencies of all finite patterns. Such systems are called uniquely ergodic.
Sequences with a single defect, which are not in their orbit closure, are therefore excluded;
we obtain in this way a strictly ergodic -minimal and uniquely ergodic- system. See e.g. [17].

In the case of configurations on d-dimensional lattices, d ≥ 2, an important class of
uniquely ergodic systems consists of dynamical systems (subshifts) of finite type (“SOFTs”).
In such systems, all configurations in the support of an ergodic measure are uniquely charac-
terized by a finite family of forbidden patterns. Typical examples here are two-dimensional
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834 A. van Enter et al.

tiling systems [24,46] where forbidden patterns consist of two neighboring square tiles with
decorated edges which do not match.

As noted before, it can be shown that one cannot have one-dimensional dynamical systems
of finite type of which the support contains only non-periodic configurations [14,38,45]. Here
we show that Sturmian systems can be uniquely characterized by an infinite set of forbidden
distances between 1’s, augmented by some finite-range condition involving 0’s (for example
the absence of three consecutive 0’s is part of the characterization in the case of the Fibonacci
system). These are exactly the forbidden distances in the most-homogeneous description of
a given Sturmian system.

Once we find a characterization of a uniquely ergodic measure by such a “minimal” set
of forbidden patterns, we may then construct a relatively simple Hamiltonian which has this
measure as its unique translation-invariant ground state. This implies that the configurations
in its support, which are ground-state configurations, have minimal energy density (and
moreover, we cannot decrease their local energy by a local perturbation). We simply assign
in this construction positive energies to forbidden patterns and zero energy to the other ones.

We emphasize that our aim of getting a “minimal” set of interactions is to have no more
than two-body interactions in the infinite set of interactions we will always need. We achieve
this aim, up to a single extra term. We also mention that our aim is to find out what general
properties are needed from interactions to generate non-periodic order. The interaction exam-
ples we find lay no claim to being physically realistic; rather they show -and/or constrain-
what the possibilities are.

It is known that Sturmian sequences (most-homogeneous sequences) are ground-state
configurations of frustrated interactions, as we mentioned before—repelling interactions
between particles (1’s in sequences) and a chemical potential favoring particles [4,9,28,29].
Here we construct Hamiltonians which are not frustrated and have Sturmian sequences as
ground-state configurations. By combining different interaction terms in frustratedmodels, or
byusing the general results of [7,44], non-frustrated interactionsmight be foundproducing the
same ground states. However, in general such constructions will not provide pair interactions.
Our main new result therefore shows that in one dimension non-periodic order can occur for
non-frustrated pair interactions.

In Sect. 2, we discuss various notions of order in non-periodic sequences and show their
equivalence. Section 3 contains a proof that Sturmian sequences satisfy the strict-boundary
condition for all finite patterns. In Sect. 4 we uniquely characterize Sturmian systems (most-
homogeneous configurations) by the absence of 1’s at certain distances (augmented by the
absence of some finite-range patterns). In Sect. 5, Sturmian systems are seen as ground states
of certain non-frustrated Hamiltonians in classical-lattice gas models. A discussion follows
in Sect. 6.

Warning: As the issues we discuss have been treated in different scientific communities
(e.g. ergodic theory, condensed matter physics, computer science), different terms for the
same object occur. Thus an infinite Sturmian word is an infinite symbol sequence is an
infinite-volume particle configuration is an infinite one-dimensional tiling, etc. Different
interpretations suggest also different generalizations, such as varying the number of symbols,
the dimension, etc. As our question originated in physics (what is needed to produce non-
periodic order) but the answer draws on mathematics, we will use sometimes different terms,
originating from those different sources. We trust this will not lead to misunderstandings.
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2 Order in Non-periodic Sequences

We will consider here families of bi-infinite non-periodic one-dimensional sequences of two
symbols {0, 1}, which are such that all members of a given family look locally the same. Let
X ∈ � = {0, 1}Z and let T be a shift operator, that is (T X)( j) = X( j − 1). We assume
that X is such that the closure (in the product topology) of the orbit {T i (X), i = 1, 2, . . .}
supports a unique ergodic probability measure. Such a measure, ρ, is a limit of normalized
sums of point probabilities,

ρ = lim
n→∞

1

2n + 1

∑

k−n≤i≤k+n

δT i (X), (2.1)

where δT i (X) is a probability measure assigning probability 1 to the configuration T i (X),
and the limit is uniform with respect to k ∈ Z.

It means that any local pattern appears with the same frequency in all sequences in the
orbit closure. In particular, every local pattern present in X appears again within a bounded
distance. This property was named “weak periodicity” in [7]. In Section 4, we will discuss
the rate of convergence of pattern frequencies to their equilibrium values.

First we will discuss various concepts of regularity and complexity of non-periodic
sequences.

Definition 2.1 The factor complexity of an infinite word X ∈ � is the function pn counting
the number of its factors (finite subwords) of length n.

It is a classical fact (see e.g. [41]) that if pn ≤ n for some n, then X is eventually periodic
(one-way periodic beginning from some i ∈ Z). It is thus the case that for each n and each
non-periodic word X we have pn ≥ n + 1. The words with this minimal factor complexity
have a special name.

Definition 2.2 An infinite word X is called Sturmian if pn = n + 1 for every n. Taking a
Sturmianword X , and then the closure (in the product topology) of its orbit (T n(X))∞n=1 gives
a dynamical system, which we can further equip with the unique ergodic measure obtained
as the limit (2.1). We call this system the Sturmian (dynamical) system.

Another concept of order is given in the following definition.

Definition 2.3 Denote by |x | the length of a finite word x , and by x(a), a = 0, 1 the number
of occurrences of the symbol a in x . A set of words SW is balanced if for every x, y ∈ SW
with |x | = |y| one has |x(a) − y(a)| ≤ 1. A bi-infinite word X ∈ {0, 1}Z is balanced if all
its factors are balanced.

Balanced sequences are also called two-distance sequences [33].
We now quote the following theorem [20, Theorem 6.1.8].

Theorem 2.4 Let X ∈ {0, 1}Z. The following conditions are equivalent:

(i) X is Sturmian and not eventually periodic
(ii) X is balanced.

Note that in the above theorem, non-periodic and Sturmian sequences in (i) is not enough,
in view of the example of the sequence with 0’s on negative integers and 1’s on non-negative
integers which is both Sturmian and non-periodic but not balanced.

In the physics literature [3–6,9,27–29,32,36] the following concept of homogeneity was
considered:

123



836 A. van Enter et al.

Definition 2.5 Let X ∈ {0, 1}Z and xi ∈ Z be the position of the i-th 1 in the configuration
X . X is most homogeneous if there exists a sequence of natural numbers d j such that
xi+ j − xi ∈ {d j , d j + 1} for every i ∈ Z and j ∈ N.

Remark 2.6 It trivially follows that asymptotically the average distance between two particles
equals D = lim j→∞ 1

j d j . The “most homogeneous” condition implies that not only the
distance between two particles with k − 1 particles between them will be approximately Dk,
but that it will be close to that value up to very small, bounded, fluctuations. Fluctuations of
local patterns in most-homogeneous configurations are discussed in Sect. 3.

Theorem 2.7 A sequence X ∈ {0, 1}Z is balanced if and only if it is most homogeneous.

Proof (1) Let us assume that X is not most homogeneous. Then we will show that it is not
balanced.
It follows from the assumption that there is j ∈ N and two words in X with 1’s at their

boundaries, and j −1 1’s in between them, such that the distances between the two boundary
1’s are d j and d j + i respectively, with i ≥ 2. (Notice that the lengths of these words then are
d j + 1 and d j + i + 1.) Consider the following two subwords of the above words, of length
d j + 1:

(a) including the positions of two boundary 1’s in the d j case, the number of 1’s in such a
word is equal to j + 1,

(b) excluding the positions of two boundary 1’s in the d j + i case, the number of 1’s in such
a word is not bigger than j − 1.

The numbers of 1’s in these two words differ by at least 2. This shows that X is not
balanced.

2) Now let us assume that X is not balanced and we will show that it is not most homoge-
neous.

Since X is not most balanced, for some n and j there are two words of length n, such that
there are j 1’s in the first word, V , and j + i , i ≥ 2, 1’s in the second word, W .

Firstly, we find a subword of X such that it contains the word V , ends and begins with
1’s, and the number of 1’s between the first and the last 1 is exactly j . (Essentially, use
10 . . . 0V 0 . . . 01, adding the appropriate number of 0’s in between to make the word legal.)
But then the distance between two 1’s at the beginning and end is at least n + 1. Hence, in
the definition of most homogeneous, d j ≥ n.

On the other hand, consider a subword of X contained in the second word W , beginning
and ending with 1’s which have exactly j 1’s between them. Then the distance between the
beginning and the end cannot be bigger than n − 1. This implies that in the definition of
most homogeneous, d j ≤ n − 1, which is a contradiction. It follows that X is not most
homogeneous. ��

We have therefore shown that the Sturmian property is equivalent to the most-
homogeneous property. We can also see the correspondence between Sturmian and most
homogeneous systems in a direct way.

Remark 2.8 It is well-known (see, e.g. [41] or [2, Theorem 10.5.8]) that Sturmian systems
can be generated by rotations on a circle. Any such system can be associatedwith an irrational
γ < 1. Namely, letψ ∈ [0, 2π) and let Tγ be a rotation on a circle by 2πγ . We can construct
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a sequence Xψ in the following way: Xψ(i) = 0 if T i
γ (ψ) ∈ [0, 2πγ ), otherwise Xψ(i) = 1,

for all i ∈ Z. The closure of the orbit of Xψ does not depend onψ and it consists of Sturmian
infinite words with frequency of 1′s equal to 1− γ . From now on, without loss of generality,
we will assume that γ > 1/2.

Let ψ = 0. Then X0(0) = 0 and X0(1) = 1. Let us denote by d j , j = 1, 2, . . .,
distances between 1 at position 1 and following 1’s in X0, that is d j are distances between
two 1’s separated by j − 1 1’s. This shows that Sturmian sequences are most-homogeneous
configurations with specific distances between 1’s.

Example 2.9 (Fibonacci sequences) Let us choose γ to be equal to the reciprocal of the
golden mean, γ = 2/(1 + √

5). we choose ψ = γ , then Xψ(i), i = 1, . . . is the classical
Fibonacci sequence 0100101001001, . . . produced by the substitution rule 0 �→ 01, 1 �→ 0.
Fibonacci sequences are all Sturmian (see, for example, [20, Example 6.1.5]—it follows from
the fact that 11 is a forbidden word). Furthermore, by Theorems 2.4 and 2.7 they are most
homogeneous.

It is easy to see that here d j = [ j(2 + γ )], where [y] denotes the floor of y, that is, the
largest integer smaller than y. The allowed distances are therefore equal to di and di + 1,
i ∈ N. Hence the distances d j are as follows: 2, 5, 7, 10, 13, 15, 18, 20, . . .. They correspond
to the sequence of allowed distances d j , d j + 1: 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18,
19, 20, 21, . . ., which appear as distances between pairs of 1’s. This leaves a list of forbidden
distances: 1, 4, 9, 12, 17, 22, 25, . . . which never appear as distances between pairs of 1’s.

Let us observe that distances d j appear either in pairs with a difference 2 between them
or as singletons. They can be read from X0: X0( j) = 0, X0( j + 1) = 1 corresponds to the
pair (d j , d j + 2) and X0( j) = 0 followed by X0( j + 1) = 0 corresponds to a singleton d j .
Furthermore, notice that similarly for every j , either d j −1 or d j +2 is a forbidden distance.
We may also observe that there are no consecutive three 0’s; in fact two neighboring blocks
of two 0’s are separated either by 1 or by 101. We denote by SF the set of all Fibonacci
sequences, that is the closure of the orbit of any Xψ .

Remark 2.10 Inspired by theFibonacci example, let us nowanalyze the allowed and forbidden
distances for the general Sturmian sequences (general most-homogeneous configurations).

If d1 = 2 (as in the Fibonacci system), then d j ’s appear in blocks: dk, dk +2, . . . , dk +2n
and dl , dl + 2, . . . , dl + 2m (|n − m| = 1) separated by one forbidden distance, such that
dk − 1, dk + 2n + 2 and dl − 1, dl + 2m + 2 are forbidden distances. For comparison,
n = 1,m = 0 in the Fibonacci system.

If d1 > 2, then all d j ’s are singletons and d j , d j+1 are separated by d1 − 2 or d1 − 1
forbidden distances.

3 Strict Boundary Condition: Rapid Convergence of Pattern
Frequencies

A frequency of a finite pattern in an infinite configuration is defined as the limit of the number
of occurrences of this pattern in a segment of length L divided by L as L → ∞. All sequences
in any given Sturmian system have the same frequency for each pattern. We are interested
now whether the fluctuations of the numbers of occurrences are bounded (bounded by the
boundary of the size of the boundary, which in one-dimensional systems is equal to 2). If
that is the case, configurations are said to satisfy the strict boundary condition [37] or rapid
convergence of frequencies to their equilibrium values [1,42].
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Definition 3.1 Given a sequence X = (xn) ∈ {0, 1}Z and a finite word w, define the fre-
quency of w as

ξw = lim
N→∞

#{|n| ≤ N | xn . . . xn+|w|−1 = w}
2N

.

Furthermore, for a segment A ⊂ Z, denote by X(A) the sub-word (xn)n∈A. We say that a
sequence X satisfies the strict boundary condition (quick convergence of frequencies) if
for any word w and a segment A ⊂ Z, the number of appearances of w in X(A), nw(X(A)),
satisfies the following inequality:

|nw(X(A)) − ξw|A|| < Cw,

where Cw > 0 is a constant which depends only on the word w.

We will show that Sturmian sequences satisfy the strict boundary condition.
The following elementary fact can be found in many places in the literature. One of the

earliest instances [33] connects balanced (or two-distance) sequences to cutting sequences,
which is easily seen to be equivalent to the definition below.

Lemma 3.2 Let γ ∈ (0, 1) and ψ ∈ [0, 2π), and consider the Sturmian word Xψ . Denote
by Cn the collection of subintervals of [0, 2π) \ {−k2πγ | k = 0, . . . n}. Then the length-n
sub-word at the position i in Xψ , that is, the word Xψ(i) . . . Xψ(i + n − 1) is uniquely
determined by the subinterval C ∈ Cn for which T i

γ (ψ) ∈ C. We can assume without loss of
generality that the orbit of ψ is never at an endpoint of an element of Cn.

In other words, hitting a particular component interval is the same as seeing a particular
word of length n. This gives us enough tools to prove the following theorem. Results of
this type have long been studied under various names. As an example, for related results in
more general symbolic systems, see [11], and classically [25] in the context of Diophantine
approximation. For completeness we provide the straightforward proof.

Theorem 3.3 Sturmian sequences satisfy the strict boundary condition.

Proof Let Xγ (ψ) be Sturmian, and let w be a word of length n. We will suppress ψ in the
notation below. Let C ∈ Cn be the component interval from Lemma 3.2 corresponding to the
word w. Now, by Lemma 3.2 and the irrationality of γ ,

ξw = lim
N→∞

#{|n| ≤ N | T n
γ (ψ) ∈ C}

2N
= |C |,

where |C | is the Lebesguemeasure ofC (ergodic measure for the irrational rotation). Further,
given a segment A ⊂ Z,

nw(Xγ (A)) =
∑

n∈A

χC (T n
γ (ψ)),

where χC is the characteristic function of C .
It follows from Kesten’s theorem [31] that C is a bounded remainder set; that is, it has

bounded discrepancy, or

|nw(Xγ (A)) − |A|ξw| ≤ Cw

with a constant Cw that might depend on w. This is exactly the strict boundary condition. ��
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4 Forbidden-Pattern Characterization of Sturmian Systems

Let (O ⊂ �, T , ρ) be a uniquely ergodic dynamical system. The uniquely ergodic measure
ρ can be characterized by the absence of certain patterns [7,44]. In general, the family of all
forbidden patterns is rather big and it typically consists of patterns of arbitrarily large sizes.
If the family of forbidden patterns characterizing the dynamical system can be chosen to be
finite, then we say that the corresponding dynamical system is of finite type.

We are especially interested in uniquely ergodic measures which are non-periodic. In
two dimensions, that is, for subshifts of {1, . . . .,m}Z2

, non-periodic systems of finite type
are given for example by non-periodic tilings by Wang tiles [10,24,46]. Forbidden patterns
consist of nearest-neighbor and next-nearest-neighbor tiles that do not match.

However, it is well known that one-dimensional non-periodic systems of finite type do
not exist. The proofs given in the physics literature actually show the equivalent formulation
that any finite-range lattice–gas model with a finite one-site space has at least one periodic
ground-state configuration, see for example [14,38,45].

Hence, in order to uniquely characterize one-dimensional non-periodic systems we will
always need to forbid infinitely many patterns. We are therefore looking for minimal families
of forbidden patterns which uniquely characterize non-periodic uniquely ergodic measures.

In the following we will be concerned with Sturmian sequences. The closure of the trans-
lation orbit of any given Sturmian sequence supports a uniquely ergodic translation-invariant
probability measure. Hence it gives rise to a uniquely ergodic dynamical system called a
Sturmian system. As usual, the reader may find it helpful to keep the Fibonacci system in
mind as a typical example.

Theorem 4.1 Elements in any given Sturmian system are uniquely determined by the absence
of the following patterns: d1+1 consecutive 0’s and two 1’s separated by forbidden distances.

Proof We first show that periodic configurations cannot satisfy the above conditions.
Let us note that the homogeneous configuration of just 0’s obviously satisfies the conditions
of not having the forbidden patterns of 1’s. This is the reasonwhywe need a specific finite-site
condition of the absence of 0′s which excludes such a configuration.

Let X ∈ � be a periodic configuration (a bi-infinite sequence) with a period p. We will
show that there is a natural number i (in fact infinitely many such i ′s) such that i p is a
forbidden distance.

We first show that there is i such that i p = d j for any j ≥ 1. Consider the Sturmian
systemon the sub-lattice kpZofZwithγp = kpγ mod 1,whereγ characterizes our original
Sturmian system and k is chosen such that γp > 1/2. LetY ∈ {0, 1}pZ be given by Y (i p) = 0
if T i

γp
(γ ) ∈ [0, 2πγp), otherwise Y (i p) = 1. Observe that Y (i p) = X0(i p), i ≥ 1, where X0

is the sequence generated by Tγ (γ ) (see the definition of the Sturmian systems inRemark 2.8).
Obviously, there are infinitely many 0′s in the sequence Y (i p) and therefore in X0(i p). It
means that for any such i , i p = d j for any j ≥ 1.

The above argument shows more, namely that there is a natural number i (in fact infinitely
many such i’s) such that Y (i p) = X0(i p) = 0 and X0(i p − 1) = 0. For such i ′s we have
that i p − 1 = d j and therefore both i p = d j and i p = d j + 1 for any j ≥ 1 hence i p is a
forbidden distance.
Now we have to show that the only non-periodic configurations which do not have any for-
bidden patterns are Sturmian systems. We begin by proving that non-periodic configurations
without forbidden patterns have 1’s appearing at distances d j and d j + 1 for all j . We begin
with the following lemma. ��
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Lemma 4.2 If two 1’s in X are at distance di or di + 1, then there are (i − 1) 1’s between
them.

Proof This can be proved by induction on i . The claim is immediate for i = 1. Assume that
it is true for i . Now consider 1’s at a distance di+1, say X(k) = 1 and X(k + di+1) = 1.
By the definition of the sequence (d j ), we have that di+1 = di + d1 or di+1 = di + d1 + 1,
therefore di+1 − di and di+1 − di − 1 are either forbidden distances or are equal to di or
di + 1 and at least one of them is equal to di or di + 1. In either case there are i 1’s between
X(k) and X(k + di+1). This finishes the induction. An analogous argument can be applied
in the case of two 1′s at a distance di+1 + 1. This finishes the proof of the lemma. ��

This is used to prove the following lemma.

Lemma 4.3 Any sequence X which does not have any forbidden patterns has the following
property: if X(i) = 1, i ∈ Z, than for every j ∈ N, either X(i+d j ) = 1 or X(i+d j +1) = 1.

Proof If d1 > 2, then d j ’s are singletons. Therefore if both X(i+d j ) = 0 and X(i+d j+1) =
0, then X would have 0’s at sites {i + d j − (d1 − 1), . . . , i + d j + 1 + d1 − 2} or at sites
{i + d j − (d1 − 2), . . . , i + d j + 1+ d1 − 1}. It would mean that X has 2d1 − 1 successive
0’s which is forbidden (cf. Remark 2.10).

If d1 = 2 and d j ’s appear in pairs or as singletons (as in the Fibonacci sequences), then
if both X(i + d j ) = 0 and X(i + d j + 1) = 0, then X would have 3 successive 0’s at sites
{i + d j , i + d j + 1, i + d j + 2} or at sites {i + d j − 1, i + d j , i + d j + 1} which is forbidden.

Now we will deal with the case when d1 = 2 and d j ’s appear as blocks of size larger than
2 (cf. Remark 2.10). Obviously if X(i + d j ) = 0 and X(i + d j + 1) = 0 and d j is at the end
of the block, then the argument from the previous paragraph applies.

Hence, let us assume that d j is not at either end of the block d
, d
 + 2, . . . , d
 + 2n
and further, that it is the smallest number in the sequence (d j ) having the property that
X(i + d j ) = 0 and X(i + d j + 1) = 0 for some i ∈ Z. This means that for each pair
X(i + dk), X(i + dk + 1), with k = 
, . . . , j − 1 exactly one 1 appears. Hence between
X(i+d
) and X(i+d j+1), there are ( j−
) 1’s. Further, to avoid the forbidden pattern of three
consecutive 0’s, it must be the case that X(i + d j+1) = X(i + d j + 2) = 1. By Lemma 4.2,
there should be exactly j 1’s between X(i) and X(i + d j+1). Again by Lemma 4.2, there
are exactly (
 − 1) 1’s between X(i) and X(i + d
) or X(i + d
 + 1) (whichever of the
two happens to be 1). By the above count, this leaves only ( j − 1) 1′s between X(i) and
X(i + d j+1) (or X(i + d j+1 + 1), which is one too few, a contradiction. This ends the proof
of the lemma. ��
By Lemma 4.3, for all j , at least one of d j and d j + 1 must repeatedly appear as a distance
between 1’s. Further, for all j > 0, both distances d j and d j +1 must appear in X , otherwise
(by Lemma 4.2) X would be a periodic sequence and by the first part of the proof it would
then have forbidden patterns.
We have shown that in any X which does not have forbidden patterns, any two 1’s appear at
distances d j or d j + 1 and in both cases there are ( j − 1) 1′s between them. It was proven in
[36] that for any 0 < r < 1, there exists a unique sequence d j such that the corresponding
most-homogeneous configurations have r as their density of 1’s [36, Proposition 1]. Fur-
thermore, there exists a unique translation-invariant probability measure supported by the
most-homogeneous configurations such that r is the density of 1’s [36, Theorem 2]. It fol-
lows that the above-described conditions of absence of certain patterns uniquely characterize
Sturmian systems. ��
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5 Sturmian Systems as Ground States of Lattice–Gas Models

Once we know the set of forbidden patterns of a given symbolic uniquely ergodic dynamical
system, we may construct a one-dimensional Hamiltonian for which the unique translation-
invariant ground-statemeasure is given by the uniquely ergodicmeasure of the corresponding
dynamical system. In particular, we have the following general statement due to Aubry (see
[7, Theorem 3], also see [44]).

Theorem 5.1 (Aubry [7])For any weakly periodic configuration of (pseudo-)spins on a cubic
lattice, there exists a well-defined Hamiltonian for which the set of ground states is identical
to the closed orbit of this configuration under the translation group Zd .

In our setting, it suffices to say that a configuration of (pseudo-)spins on a cubic –here
linear– lattice is an infinite word X ∈ {0, 1}Z.Weakly periodicmeans that for any finite word
B appearing in X there is a number N such that any word of length N appearing in X contains
B as a subword.

We have the following theorem.

Theorem 5.2 For every Sturmian system there exists a one-dimensional, non-frustrated, arbi-
trarily fast decaying, lattice–gas (essentially) two-body Hamiltonian (augmented by some
finite-range non-frustrated interactions) for which the unique ergodic translation-invariant
ground-state measure is the ergodic measure of the Sturmian system.

Proof Sturmian words are weakly periodic (Sturmian words are known to be repetitive, see
[8]), so that Theorem 5.1 applies. The proof in [7] is constructive, and in particular, it can be
gleaned that by Theorem 4.1 for the Sturmian systems, the Hamiltonian simply penalizes the
forbidden patterns, that is it assigns to them positive energies, while the energy of all other
patterns is equal to zero.

The construction is as follows. For distances d j , d j+1, the pair-interaction energy between
two particles (1’s) is zero, otherwise it is positive. Moreover we forbid d1 + 1 successive 0’s.

So we have a lattice–gas model with a finite-range term (a positive energy assigned to
d1+1 successive 0’s) plus pair interactions

∑
i, j∈Z J ( j)nini+ j where J ( j) > 0 is a coupling

constant which may decay at infinity arbitrarily fast, ni = 1 if the lattice site i is occupied;
that is, we have 1 at a corresponding Sturmian sequence at site i .

The final statement on the ground-state measure follows from the fact that the Sturmian
system is uniquely ergodic. ��

We end this section with a comparison of the above theorem to relevant related results in
the literature and discussion on directions for future work.

To begin the discussion, wemention a similar result that holds for the Thue-Morse system.
A non-periodic Thue-Morse sequence is produced by the substitution rule 0 �→ 01, 1 �→
10, and is a canonical example of a one-dimensional aperiodic pattern. It was shown in
[22,23] that the Thue-Morse system is uniquely characterized by the absence of the following
forbidden patterns: BBb, where B is any word and b is its first letter. In [21], a minimal set
of forbidden patterns which involve only 4 lattice sites at specific distances was found. This
allowed the construction of a 4-bodyHamiltonianwith exponentially (or even faster) decaying
interactions for which the Thue-Morse sequences are the only ground-state configurations.

However, the above result is in stark contrast to the two-dimensional case. Namely, for
two-dimensional systems of finite type, the above construction gives us a classical lattice–
gas model with finite-range interactions, but it was shown in [36] that the reverse statement
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is not true in general: A classical lattice–gas model with finite-range interactions was con-
structed with the property that its uniquely ergodic ground-state measure is not equal to any
ergodicmeasure of a dynamical system of finite type. In fact uncountablymany such classical
lattice–gas models were constructed with ground state-measures given by two-dimensional
analogues of Sturmian systems. There are only countably many systems of finite type which
shows that the family of ergodic ground-state measures of finite-range lattice–gas models is
much larger than the family of ergodic measures of dynamical systems of finite type.

Classical lattice–gas models corresponding to systems of finite type based on Robin-
son’s non-periodic tilings were the first examples of systems of interacting particles without
periodic ground-state configurations—microscopic models of quasicrystals [34,37,40,43].

The case of Sturmian systems has also been discussed in earlier works. One-dimensional
Hamiltonians with infinite-range, exponentially decaying, convex, repulsive interactions, and
a chemical potential favoring the presence of particles, were studied in [4,9]. It was shown
that the density of particles in the ground state as a function of the chemical potential is
given by a devil’s staircase, that is it has the structure of a Cantor set. Let us note that the
Hamiltonian in [4,9] is frustrated, so that ground-state configurations arise as a result of
the competition between repelling interactions and a chemical potential. In Theorem 5.2, in
contrast, we constructed non-frustrated Hamiltonians for most-homogeneous configurations,
therefore for Sturmian systems.

Another key property from the perspective of physical interpretations of non-periodic
patterns is the stability of the pattern under perturbations. It was shown in [37] that the
strict boundary condition is equivalent to zero-temperature stability of two-dimensional non-
periodic ground states of classical-lattice gas models. More precisely, non-periodic ground
states are stable against small perturbations of the range r if and only if the strict boundary
condition is satisfied for all local patterns of sizes smaller than r . We conjecture that the strict
boundary condition is equivalent to low-temperature stability of non-periodic ground states,
that is to the existence of non-periodic Gibbs states.

The situation is much more subtle in models with infinite-range interactions, whether
in one or in more dimensions. In one dimension, non-periodic ground states are obviously
not stable against interaction perturbations in which the tail is cut off so that the perturbed
interaction is finite-range, as then at the least new periodic ground states will arise.

Moreover, perturbing any coexistence of ground states orGibbsmeasures in any dimension
with an interaction with an arbitrarily small l1 norm can cause instabilities (see e.g. [15,
39]), which indicates that the interaction spaces with l1-like norm may be too large. Also,
existence statements for interactions with such a finite l1 norm, having prescribed long-
range order properties, can be derived via the Israel–Bishop–Phelps theorem [16,19,26]. In
particular in [19] Sturmian-like long-range order is derived for long-range pair interactions.
However, beyond there being no control on the long-range behaviour of the interactions, the
interactions obtained by this method are not frustration-free, and neither can we say much
about uniqueness of the translation-invariant Sturmian ground states or Sturmian-like Gibbs
measures.

Another pertinent observation is that if the interactions are sufficiently many-body and
long-range, non-periodic ground states can be stable even at positive temperatures (freezing
transitions may occur) [12,13].

Thus the appropriate stability properties of Sturmian, aswell asmore general non-periodic,
ground states are still a matter about which our knowledge is insufficient.
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6 Discussion

We have discussed various notions of complexity and order in non-periodic one-dimensional
sequences (lattice configurations), in particular Sturmian systems, balanced sequences, and
most-homogeneous sequences. We have shown that all these notions of “almost” periodicity
are equivalent.

Our main result is that most-homogeneous sequences (Sturmian sequences) are uniquely
characterized by the absence of pairs of 1’s at certain distances (augmented by the absence of
one other finite pattern, such as the absence of three consecutive 0’s in the Fibonacci system).
This then allowed us to construct one-dimensional lattice–gas models with exponentially
decaying two-body interactions which have a given Sturmian ergodic measure as a unique
ground-state measure. Our result provides the first examples of non-frustrated essentially
two-body Hamiltonians without periodic ground-state configurations.

It is a highly interesting but challenging question to see if we can find conditions which
cause such one-dimensional non-periodic ground states to be stable in some sense; for exam-
ple are they thermodynamically stable at sufficiently low but non-zero temperatures, that is,
do they give rise to non-periodic Gibbs states, either by adding extra dimensions in which
ferromagnetic couplings are present, as in [18], or by adding some explicit, sufficiently long-
range, interactions? Or can we say that they are stable at T = 0 , as discussed in [35]?

Short-range interactions in one dimension can never have ordered Gibbs states, so the
stability can either be at T = 0, or will necessarily require long-range interactions or extra
dimensions.
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34. Miȩkisz, J.: Many phases in systems without periodic ground states. Commun. Math. Phys. 107, 577–586

(1986)
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37. Miȩkisz, J.: Classical lattice–gas models of quasicrystals. J. Stat. Phys. 97, 835–850 (1999)
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