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Abstrac t .  The object of this work is to study the properties of dynamical 
systems defined by tilings. A connection to symbolic dynamical systems defined 
by one- and two-dimensional substitution systems is shown. This is used in 
particular to show the existence of a tiling system such that its corresponding 
dynamical system is minimal and topological weakly mixing. We remark that for 
one-dimensional filings the dynamical system always contains periodic points. 

w Introduction 

The interest in questions concerning non-periodic tilings of the plane stems 
from the work of Hao Wang [7]. Wang, in connection with some decision 
problems of the predicate calculus, was interested in the decidability of the 
following problem: 

T h e  T i l ing  P r o b l e m .  Given a finite set of unit square domino tiles with 
certain adjacency rules (called a tiling system), is there a tiling of the entire plane 
using copies of these tiles? 

Wang has shown that this problem is related to the following question: Given a 
tiling system, such that it is possible to tile the entire plane ~/ith its tiles, is there a 
periodic tiling of the plane using these tiles? 

Wang proved that an affirmative answer to the latter question would imply the 
decidability of the Tiling Problem. Wang conjectured that the answer is indeed 
affirmative. 

This conjecture was disproved by Berger [ 1 ], who both proved the undecida- 
bility of the Tiling Problem and gave a complicated construction of a system of  
tiles that admits only non-periodic tilings of the plane. 

Later Robinson [6] gave a construction of a smaller set of tiles with only non- 
periodic tilings of the plane and also a simpler proof of the undecidability of the 
Tiling Problem. 

Notice that, given a tiling system, we may consider the set of all tilings of the 
entire plane as a topological space and there exists a natural action o f Z  2 on it by 
translations. Thus we have a dynamical system. This dynamical system is a two- 
dimensional symbolic dynamical system of  finite type. The existence of a 
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periodic tiling corresponds to the existence of a finite orbit in this system. We 
remark that a one-dimensional symbolic dynamical system of finite type always 
contains a periodic point. Thus the constructions of Berger [ 1 ] and Robinson [6] 
show a difference between the two- and one-dimensional cases. However, when 
one examines the dynamical system corresponding to Robinson's tiling system it 
is seen that it is almost periodic. 

The object of this work is to study the properties of dynamical systems defined 
by tiling systems; mainly to check what classes of dynamical systems may be 
realized by tiling systems. In particular, we check whether there exist tiling 
systems such that their dynamical systems (and their minimal subsystems) are 

not almost periodic. 
We define two-dimensional substitution systems, which are a generalization of 

the known one-dimensional substitution systems, and their dynamical systems. 
For a certain class of two-dimensional substitution systems we show how to 
construct a tiling system such that the dynamical system corresponding to the 
tiling system is isomorphic to the one defined by the substitution system. Then 
using results about one-dimensional substition systems we are able to show the 
existence of tiling systems with different dynamical properties. In particular, a 
tiling system with a dynamical system that is minimal and topological weakly 
mixing (hence not almost periodic) is constructed. 

We remark that the construction of the tiling system is based on the ideas of the 
tiling system constructed by Robinson [6]. 

Section 1 contains background and definitions concerning symbolic dynamical 
systems, tiling systems and substitution systems. Section 2 describes the con- 
struction of a tiling system for a given two-dimensional substitution system. 
Section 3 examines the structure of the possible tilings of the plane by the tiles 
constructed in Section 2. In Section 4, the relations between the dynamical 
systems of the tiling system and the substitution system are proved. Section 5 
deals with a more restricted class of substitution systems. Stronger relations 
between the dynamical systems are proved for this class. Section 6 describes 
modifications needed to deal with products of one-dimensional substitution 
systems. These enable us to represent many one-dimensional dynamical systems 
defined by one-dimensional substitution systems in dynamical systems defined 
by two-dimensional tiling systems. Section 7 contains several examples. Section 8 
contains a brief description of a new proof of the undecidability of the Tiling 
Problem based on our construction of tiling systems. 

w Symbolic dynamical systems 

In this work we are interested in one- and two-dimensional symbolic dy- 
namical systems. Let S be a finite set of symbols endowed with the discrete 
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topology. A one-dimensional symbolic dynamical system is a pair (f~, Z) where i2 
is a closed subset of  the compact space S z (with the product topology) invariant 

under the action of  Z by translations. A two-dimensional symbolic dynamical 
system is a pair (A, Z 2) where A c S v is a closed set invariant under the action of  
Z 2 by translations. 

A symbolic dynamical system is determined by the closed set ~ c S z (A c SZ'). 

This set f l  can be characterized by the set U of  all the finite words in symbols of  

S appearing as subwords of  elements of  f~ (in the case of two-dimensional 

systems, U is the collection of  all rectangular blocks appearing in it). Given U we 
can reconstruct f~ (A). The elements of  U are called legal words (or blocks). 
Since we will deal only with symbolic dynamical systems we will omit the 
word "symbolic". 

D y n a m i c a l  s y s t e m s  o f  f in i te  type  and  t i l ings .  Let C be a collection of  
words of length k over S. Define U to be the set of  all finite words over S such that 

any subword of them of  length k belongs to C. The symbolic dynamical system 

defined by U is called a one-dimensional symbolic dynamical system of finite 
type. Similarly, a two-dimensional dynamical system of finite type is determined 
by a collection C of m • n rectangular blocks where U is the collection of  all finite 
blocks such that every subblock of  size m X n of  them belongs to C. We will use 

the term "legal word (block)" to refer to the elements of  C and U. 

T i l i n g  s y s t e m s .  A (geometrical) tifingsystem is a finite collection of  tiles in 
R 2 such that every tile is a homeomorphic image of  the unit disk. A tiling of  the 

plane is a cover of the plane by sets, each of  which is a translation of  some tile, 
such that the interiors of  the sets are disjoint. 

A two-dimensional symbolic dynamical system of  finite type determined by a 

set C of  2 X 2 blocks over a finite set of  symbols S is said to satisfy the tiling 

condition if: 

The til ing condition 
1. Whenever a b, a c, d c are legal adjacencies, then so is d b. 
2. Whenever ~, ~ ~ are legal adjacencies, then so is b , d "  

A two-dimensional symbolic dynamical system satisfying the tiling condition 
may be "realized" geometrically by defining for each symbol x E S  a "geometri- 
cal" tile which is a unit square with small perturbations allowed at the mid-third 

of  every edge such that two symbols may be adjacent if and only if the 

corresponding tiles may be adjacent (Fig. 1). 
Starting from a general two-dimensional symbolic dynamical system of  finite 

type, defined by a set C of  n X m blocks over a finite set of  symbols S, we can 
construct an isomorphic tiling system. This is done as follows: 
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f 1 
Fig. 1. 

Define a new set of  symbols consisting of  all the m • n blocks over S appearing 

in C. Define the legal adjacencies as follows: two such new symbols may be 

horizontally or vertically adjacent if  the corresponding m X n blocks are 

such that the left m - 1 columns of the one on the right are the right m - 1 

columns of  the other, or the lower n - 1 rows of  the upper one are the upper 

n - 1 rows of  the other. 

It is easily checked that this system satisfies the tiling condition and may be 

realized as a geometrical tiling system, and that the two dynamical systems are 

isomorphic. Based on this observation, we will use the notion "tiling" to denote 

any symbolic dynamical system of  finite type. 

S u b s t i t u t i o n  Systems 

One-dimensional  substitution systems 

Definitions.  (1) A one-dimensional substitution system is a pair ( d ,  ~ )  

where: 

.~ m The alphabet, a finite set of  symbols or letters. 

m The derivation rules, a finite set of rules of  the form: a - -*x~ . . -x , ,  

a, x~ E M. Such a rule will be said to belong to a.  k is the length of  this 

rule. 

(2) A substitution system will be called deterministic if for every letter there is 

at most one rule belonging to it. 

(3) A one-dimensional substitution system is called of  size r if  all its rules have 

length r. 

One-dimensional substitution systems will serve as a means of  defining one- 

dimensional symbolic dynamical systems (f/, Z). We have to define the set of  

words derived by the system. 

Definition. Let a E .r162 be a w o r d ,  -- a~. �9 �9 a , ,  a~ ~ . ~ .  Define the collection 

of  words derived from ot: 

w may be obtained from a by replacing each letter a ~  

~(~) - -  {w I of~  by the right side of  some rule belonging to it. J 
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Define 

v0= , U v= U vn. 
a ~ V  n • ~ ' 0  

The set U of all the subwords of  words in V is used to define the closed invariant 

set f l  c d z. (f~, Z) is the dynamical system defined by (~/, ~).  The derivation 

process of a word a E V may be described by a derivation tree of the form shown 

in Fig. 2. In this tree we find that a underwent the substitution a ---. x l x 2 .  �9 �9 Xk and 

x~ underwent the substitution x~ -~ y~ Y2" " " Y l ,  etc. 

XI X2 X k 

f i / \  /IX /1\ 
Yl Y2 Yl 

Fig. 2. 

T w o - d i m e n s i o n a l  s u b s t i t u t i o n  s y s t e m s  

D e f i n i t i o n s .  ( 1 )  A two-dimensional substitution system is a pair ( ~ ,  ~') 
where: 

- -  the alphabet, a finite set of symbols called letters. 

~' - -  a finite set of derivation rules of the form 

xkt �9 �9 - x ~  

a -~  : : a , x ~ j E ~  

X l  I " " " X l l  

k is called the h e i g h t  of the rule and l its w i d t h .  Such a rule is said to b e l o n g  to a .  

(2) A substitution system is called d e t e r m i n i s t i c  if for any a E ~t there is at 

most one corresponding rule. 

(3) A substitution system is called o f  s i z e  k • I if  all its rules are of the form 

d 

with k, I fixed. 

X k l  �9 . . Xk j  

; 

�9 ~11 " " " X l l  

In order to define the two-dimensional symbolic dynamical system generated 

by a two-dimensional substitution system, we have to define the set of  all blocks 
(two-dimensional arrays) derived by the substitution system. 
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Def in i t ion .  Let 

Xnl " . �9 X n r  a 

XII - . .  Xlm 

be a block, x~j -- M. 

A legal derivation from a is choosing for every x~j, 1 < i < n, 1 < j < m a 

derivation rule belonging to it and replacing every x U by the fight-hand side of the 

chosen derivation rule. This process of  choosing must be done so that for all the 

letters x~j, 1 < j  < m in one row, the derivation rules chosen all have the same 

height. For all the letters x 0, 1 < i < n in one column, the derivation rules chosen 

all have the same width. These requirements ensure that for a block a, if it is 

legally derived, we get a rectangular block ft. This process of replacing each letter 

according to some derivation rule is called blowing up. As in the one-dimensional 

case, we define the collection of  blocks generated by the system to be the 

collection of all blocks for which there is a finite legal derivation sequence from a 

single letter. As in the one-dimensional ease, there is a derivation tree for any 

block generated by the substitution system. Define the set of  all blocks appearing 

as subblocks of a block generated by (~r ~ )  to be the set of legal blocks. The 

dynamical system (fl, Z 2) defined by the substitution system (.~r ~ )  is obtained 

by setting f l  = fl(M, ~ )  to be the set of  all the elements of  ~r such that any 

finite subblock of  them is a legal block. 

D e f i n i t i o n .  A two-dimensional substitution system (.~t, ~ )  will be called oJ 
type A or having property A if for any block U generated by it 

u = (uo)  
I<i<_n 
1 ~ j ~ m  

and for any quadruple 

L =(u~+~j u~+t,j+t I 
\ Ui, j  U i , j+I  ] 

appearing in U, the following holds: 

If there is a sequence of legal derivations L ~ = L, L ~ . . . . .  L" where L i+1 is 

legally derived from L i, then there is a sequence of  legal derivations U ~ -- 

U, U', U 2 . . . . .  U' such that U ~ +~ is legally derived from U ~ and, in this deriva- 

tion sequence, looking at the blocks derived from L, we see the derivation 

sequence L ~ L I . . . . .  L ' .  

D e f i n i t i o n .  For a two-dimensional substitution system (a/,  ~) ,  define the 

collection of  legal quadruples Q = Q(ad, ~ )  by 
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Q = { ~ l a, b, c, d U ~t there is a block generated by (~, ~) containing ~ } . 

Clearly Q is finite. 

w Construct ion o f  a t i l ing system for a 
two-d imens ional  subst i tut ion system 

We will describe in this section a procedure for constructing for a given 
two-dimensional substitution system ( ~ ,  2 )  a tiling system (3-, A/'), where 3- is 
the set of  tiles and f f  the set of  adjacency rules. The substitution system should 
satisfy the following condition: 

(1) Every derivation rule 

Xkl �9 �9 �9 Xk/ 

a - - ~  

X l l  � 9  X l l  

of  the system (.d, 9*) satisfies k > 2, 1 > 2. 
Let Q -- Q(~/, 2 )  denote the set of  legal quadruples of the substitution system 
(~' ,  2) .  

The  Ti les  ,~- 

The tiles 3- of  the tiling system will belong to several classes. 

Class  I: l e t t e r  t i les .  This class consists of  tiles in which letters of  ~ are 
written. The tiles of  this class will be of two types: type 1 and type 2. A tile in this 
class (of both types) will hold, in addition to the letter, the following information: 

(1) The derivation rule (from 2 )  in which the letter appears in the fight side of 
the rule. 

(2) The letter position in this rule. 
The information in (1) and (2) must be consistent with the letter of  the tile. 

(3) A tile which, according to the information in (1) and (2), is positioned at 
one of  the four corners of  the derivation rule will designate also a legal quadruple 
belonging to Q such that: 

Let "a"  be the letter from which the rule is derived. If the tile is the upper left 
corner of the derivation rule, then "a" is the lower right letter of  its quadruple. If 
the tile is the upper right corner of  the derivation rule, then "a"  is the lower left 
letter of  the quadruple. If the tile is the lower left corner of the derivation rule, 
then "a"  is the upper right letter of  the quadruple. If the tile is the lower right 
corner of the derivation rule, then "a"  is the upper left letter of  the quadruple. 

E x a m p l e s .  Are shown in Fig. 3. 
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0 

pos i t ion (2,3) 

in the rule 
1 1 1 1  

1 - - - " 0 1 0 1  

0 1 1 1  

1 

pos i t ion  (3, 3) 

in the  rule 

0 0 1  

0 -----* 0 0 0  

0 0 0  

quadruple 11 

Fig. 3. 

C l a s s  II: arrows ,  junc t ions  and  l ines  t i les .  Each tile of  this class 
contains several items of information. The items are o f  the following kinds: 

(1) Line. 
(2) Arrow. 
(3) Junction. 
(4) "A", "B", "R", "L". 

A tile of  this class contains some combination of  items o f  these kinds. The 
allowed combinations will be explained after the description of  each of  the above 
kinds. 

G e n e r a l  r e m a r k s  
(a) Items of  the kind "Line", "Arrow" or "Junction" contain a line, arrow or 

junction and some information. The line, arrow or junction is used to give 
"orientation" to the information associated with it. We describe such situations 
by saying that the line, arrow or junction holds this information. 

(b) We refer to items like the above as "tiles". Thus by "line tile" we mean a tile 
of  this class containing a line. 

Line .  A line is either horizontal or vertical. The information of  a line may be 
one of the following: 

(1) For a horizontal line: "I link positions ( i , j )  and ( i , j  + 1) in the rule 

Xkl " ' ' X  M 

a - - *  

X l l  �9 . . Xll 

where 1 _-< i < k, 1 =< j _-< 1 - I, except for the pairs (1, 1) and (k, 1). 
(2) For a horizontal line: "I link positions (i, l) in the rule 

X k !  " " "  Xk l  

a - - *  

X i l  " " " X l l  
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and position (i, m)  in the rule 

Y k  I " " " X k m  

b .  : : " 

Yil  " " " Xlm 

where 1 _-< i _-< k. 

(3) A line, as in (2), such that i = 1 or  k holds also a quadruple  such that for 
i = 1 the upper two letters o f  it are " b a "  and, for i = k, the lower two letters o f  it 
are " b a ' .  

(4) For a vertical line: "I link positions ( i , j )  and (i + 1, j)  in the rule 

X k l  �9 . . X k l  

a - . - ~  

X l i  �9 . . X l l  

where 1 _-< i _-< k - 1, 1 _-<j _-</except for the pairs (1, 1) and (1, l). 
(5) For a vertical line: "I link position (1, j )  in the rule 

X k /  -~k  I " " " 

a " *  

~ -  . . .  
X l l  I 

and position ( r , j )  in the rule 

Zrl  " , .  Zrl 

C - . - }  

Z l !  ~  Zl l  

where 1 < j =< 1. 

(6) A vertical line, as in (5) such t h a t j  = 1 o r / h o l d s  also a quadruple  such that, 
for j = l, the right half  o f  the quadruple  is "ca" and f o r j  = l the left half  o f  the 

quadruple  is "ca" 
The lines described in ( l )  and (4) are called interior lines. The lines described in 

(2), (3), (5) and (6) are called exterior lines. 

A r r o w s .  There are two kinds o f  arrows: 

S i m p l e  a r r o w .  An arrow of  this kind holds the following information:  
( l )  A horizontal right directed arrow: "I originate at posit ion (i, l) in the rule 
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X k l  . ~ k  I " " " 

a - . ~  

X l l  " " " X l l  

where i = 1 or k. 
(2) A horizontal left directed arrow. "I originate at posit ion (i, 2) in the rule 

X k i  " " " X M  

. i ))  
a - - - .  

X l l  " " " X I I  

where i = 1 or k. 
(3) A vertical upward directed arrow: =I originate at posit ion (1, j )  in the rule 

xk~ �9 �9 �9 Xk2 
a - - - ~  

X l  i �9 " �9 X l l  

where j - -  1 or l. 
(4) A vertical downward directed arrow: "I originate at posit ion (2 , j )  in the 

rule 
Xkl �9 �9 �9 X l d  

a - -  

X I I  �9 . . X I I  

where j = 1 or I. 

C o m b i n e d  a r r o w s .  This kind o f  arrow holds the fol lowing information: 
(1) A vertical upward directed arrow: "I originate at the junct ion between 

positions (1, 1) and (1, 2) o f  the rule 

X k  t " " " X,l 

a - - ;  

X I I  �9 . . X l l .  

(2) A vertical downward directed arrow: "I originate at the junct ion between 
posit ions (k, 1) and (k, 2) o f  the rule 

X k ~  " " " X k i  

a - . - ~  

xii  � 9  x l / .  



DYNAMICAL SYSTEMS DEFINED BY TILINGS 149 

(3) A horizontal left directed arrow: "I originate at the junction between 
positions (1, 1) and (2, 1) of  the rule 

X k  ~ �9 �9 �9 X k 2  

C l - *  

X l l  " " " X l l .  

(4) A horizontal right directed arrow: "I originate at the junction between 
positions (1, l) and (2, l) o f  the rule 

Xkl �9 . . Xt2 
: : . a - *  

X l l  " �9 " X l l .  

(5) Any combined arrow holds also a counter counting interior lines crossed. 

T h e  J u n c t i o n  T i l e s .  These tiles contain three arrows; two meeting simple 
arrows ending in this tile and one combined arrow perpendicular to the other two 
starting in it. There are four types, shown in Figs. 4-7. 

originate at  the junc t ion  (1 ,1)  and  (1 ,2)  of  the  rule 

a----* i 

x . . .  x l t  

c o u n t e r = l  

I 

originate at  posi t ion [ originate at posit ion 

(1 ,1)  of  t he  rule (1 ,2)  of  the  rule 

xk 1 . . .  z l ~  Zkl  " "  Z k t  

a ' - - - - *  .; " a- . - - -*  i : 

XlI . . -  Xlt Xll - . .  Xlt 

Fig. 4. 

"A', "B", "R", "L" Tiles 
A tile containing "A", "B' ,  "R" or =L" always contains also an exterior line. 

There are four kinds of  "A", "B", "R ' ,  "L" tiles. 
(1) A -  =Above". Here the exterior line is vertical. 

"A" means that this tile is above the intersection of  the line with a 
horizontal combined arrow. 

(2) B - -  =Below". Here the exterior line is vertical. 
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originate at position 

(k, 1) of the rule 
Xkl ... Zkl 

a.........~ i " 

211 ... Xll 

originate at position 

(k, 2) of the rule 

Xkl  ' ' .  ~k l  
a---+ ! 

X l l  . . .  Xl l  

originate at the junction ( k ,  1) a n d  ( k , 2 )  of the rule 

t Xk 1 . . .  Zkt  a + : 

X l l  . . .  Z I ~  

counter=k 

Fig. 5. 

originate at position 

(2,1) of the rule 

x k l  . . .  Zkt  
a---+ ! 

X l l  . . -  g l t  

originate at the junction 

(1,1) and (2,1) of the rule 

)rlglnate at position 

(1,1) of the rule 

Xkl . . .  Xkl 

a----t  i 

i l l  . . .  x t t  

x k l  . . .  Xkt 
a------+ ! 

Z l l  . . .  Xlt  

cotmter=l 

Fig. 6. 

"B" means that this tile is below the intersection of  the line with a 
horizontal combined arrow. 

(3) R - -  "Right". Here the exterior line is horizontal. 
"R" means that this tile is to the fight of  the intersection o f  the line with a 
vertical combined arrow. 

(4) L - -  "Left". Here the exterior line is horizontal. 
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originate at the junction 

originate at position 

(2, e) of the rule 

X k l  . . .  X k l  

a - - . . ~  

g l l  - - -  X l l  

(1,t) and (2,~) of the rule 

X k l  . . .  X k l  

a -----~ : 

a : l l  . . .  X l l  

eounter=t 

originate at position 

(1,~) of the rule 

X k l  . . .  Z k l  

a -----~ i 

x 1 1  . . .  X l t  

Fig. 7. 

"L" means that this tile is to the left of  the intersection of  the line with a 

vertical combined arrow. 

Combinat ion o f  "A", "B", "R", "L" t i les  
A tile may contain up to two of "A' ,  "B", "R" or "L". The possible pairs are: 

( 1 ) "A" and "R", 

(2) "A" and "L ' ,  

(3) "B" and "R ' ,  

(4) "B" and "L". 

Combinat ions  o f  l ines,  arrows and junct ions  in one tile 
As mentioned earlier, a tile may contain more than one arrow or line, according 

to the following rules: 
(1) No more than one arrow in each direction. 

(2) No two parallel lines in a tile. 
(3) Two perpendicular lines in a tile are possible only in one of  the following 

cases: 
(a) One, at least, of  the lines is an exterior line. 

(b) The horizontal line links positions in columns 1 and 2 of a rule. 

The vertical line links the letter from which the rule of  the horizontal 

line is derived. 
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(c) The vertical line links positions in rows l and 2 of  a rule. 
The horizontal line links the letter from which the rule of  the vertical 
line is derived. 

(4) A simple arrow and a line perpendicular to each other. This satisfies the 
same conditions as in (3) replacing one line by a simple arrow. 

(5) A combined arrow and a line, perpendicular to one another, is possible 
only in one of the following cases: 
(a) The line is an exterior line. 
(b) A horizontal line linking positions in columns 1 and 2 at height i > 2 in 

the rule. The combined arrow is directed downwards and its counter 

value is i. 
(c) A vertical line linking positions in rows 1 and 2 at column j->_ 2 of  

the rule. The combined arrow is directed to the left and its counter 
value is j .  

(6) A junction tile and a line linking a letter (in the direction of  the combined 
arrow) from which the rule of  the junction is derived. 

(7) A line and an arrow parallel to each other must be one of the following 

cases: 

(a) The arrow is a combined arrow and the line links in the direction of the 
arrow a letter from which the rule of  the arrow is derived. 

(b) The tile is a junction tile like case (6). 
(8) Two parallel arrows. One of  them must be a simple arrow and then the 

situation is like (7) but with "simple arrow" replacing "line". 
(9) A tile containing a combined arrow rmtst contain also a line or a simple 

arrow in opposite directions, such that the line or the simple arrow contains 
information like in (7) or (8). 

C l a s s  I I I :  b l a n k  ti le.  This tile doesn't contain any information and is used 
to "fill holes". 

T h e  Adjacency  Rules  ~4/" 
(A) Let ~ be a letter tile (of either type) such that the letter written in it is y and 

it is positioned at ( i , j )  in the rule 

Xkl " ' ' X ~  

a - .  : : ( x , j  = y) 
/ 1 1  " " ~ X I I .  

I f ( i , j ) $  {(1, 1), (1, 2), (1, 1), (2, 1), (2, 1), (k, 1), (k, 2)} then its four neighbours 
are line tiles such that the lines are directed from this tile. The information in the 
lines is consistent with that of  the letter tile a; that is, each of  them links position 
(i, j )  of  rule 
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X k  l �9 �9 �9 x ~  

a " *  

X I I  " " " X l l  
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to the position that should be in its direction in the derivation rule, or to a 
neighbouring rule in the case that ( i , j )  is at the border of  the rule. 

I f ( i , j ) E  {(1, l), (1, 2), (1, 1), (2, 1), (2, 1), (k, 1), (k, 2)}, the neighbours are the 
same, except that one or two of  them is a simple arrow (or a junction) instead of  
a line. 

I f ( i , j ) E  {(l ,  l), (1, l), (k, l), (k, l)}, that is, it is a corner tile, t h e n ,  contains 
also a quadruple and the exterior lines adjacent to it contain this quadruple too. 

An E x a m p l e  is shown in Fig. 8. 

link position (1,3) and (1 ,2 )  

of ru le  1 . - - ,  0 1 1  1 1 0  

T 
originate at poaition(1,3) 
or" the  rule 1 ----4 0 1 1  1 1 0  

0 

poaltion (.1,3) of the 
ru le  1 _-. ,  0 1 1  110  

qu d ple I 0 

link position (1,3) of 
rule  1 --.-, 0 1 1  

1 1 0  
and (4, 3) of 

I l l  

quadruple I 0 11  

link position (1,3) of rule 

1 ----* 0 ] 01 and (1,1) 

of  ru le  0 ----* 11  11 

quadruple ~0 

Fig.  8. 

(B) A horizontal line tile must meet on its right and its left one of  two possible 
tiles: 

(1) A horizontal line tile containing the same information. 
(2) A letter tile holding information consistent with that o f  the line. 

The neighbours above and below a vertical line tile satisfy analogous re- 
quirements. 

(C) A simple arrow tile must meet in the direction of  the arrow a simple arrow, 
holding the same information, or a junction tile such that the arrow in its 
direction contains the same information. 
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In the opposite direction it meets a simple arrow with the same information or 

a letter tile holding information consistent with that of  the simple arrow. 

An E x a m p l e  is shown in Fig. 9. 

originnte at pon(1, 2) 1 
p os  (1,2) of 

1i~ p,~ (1,2) 
and (1, 3) of 
rule 

1 __._~ o o o  
1 1 1  

link pos (1, 2) 
~ad (i,3) of 
rule 

I_...,OO0 
i l l  

Fig. 9. 

(D) A junction tile has the same adjacency rules on the side pointed by the 

combined arrow as a combined arrow tile. It has the same adjacency rules as a 

simple arrow on the two sides from which the simple arrows come. 

(E. I )  A combined arrow directed downwards or to the left with counter 

reading 2 meets in the direction of  the arrow either a combined arrow containing 

the same information, or a letter tile of  type 2 such that the letter written in it is 

the letter from which the derivation rule of  the arrow is derived. If  the counter is 

>_- 3 then the tile meets in the direction of  the arrow either a combined arrow with 

the same information or a combined arrow intersected by an interior line of that 

rule. In this case the combined arrow in the adjacent tile contains the same 

information except that the counter is decreased by 1. See also the paragraph 

describing the combination of arrows and lines in one tile. 

If  the rule of  the combined arrow is of size k • l, then for a horizontal 

combined arrow with counter = I or a vertical combined arrow with counter = k, 

the tile adjacent to the tile in the direction opposite to the combined arrow may 

be either a combined arrow with the same information or a junction from which 

such a combined arrow tile starts. For a horizontal combined arrow with counter 

j < 1 or a vertical combined arrow with counter i < k the adjacent tile in the 

direction opposite to the direction of  the combined arrow contains a combined 

arrow with the same information unless our tile has an interior line in it. In this 

case the adjacent tile contains a combined arrow with the same information 

except that the counter is increased by 1. 

(E.2) A combined arrow directed upwards or to the right, meets in the 

direction of  the arrow a combined arrow containing the same information, or a 

letter tile of  type 2 such that the letter written in it is the letter from which the 

derivation rule of  the arrow is derived. In the direction opposite to that of the 

arrow such a tile meets a combined arrow with the same information or a 

junction in which a combined arrow with the same information is generated. 
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(F) A letter tile o f  type 2 requires all its four neighbours to contain combined 
arrows (including junctions at which such combined arrows are generated) 
directed towards itself. And the letter written in the letter tile is the one from 
which the common derivation rule o f  the combined arrows is derived. The 
counters o f  the four arrows must be 1 for the arrows below and left o f  the tile and 
2 for the arrows above and to the right o f  it. 

An E x a m p l e  is given in Fig. 10. 

originate at junction (k, 1) 

l 
and (k, 2) of the rule 

X k l  . . .  X k l  

a ' - - - - -+ : 

Z l l  . . .  Z l l  

counter  = 2 

original at junction 

a 

pos (1,1) of the rule originate at junction 

(1,1) and (2, 1) of the rule 

Z k l  . . .  Z k l  

a - - - - - 4  

Z l l  . - .  Z l s  

counter = 1 

W t l  . . .  tWtr 

b---~ ! 

W l  1 . . .  W l r  

quadruple e b f a  

(1,s and (2,s of the rule 

X k  1 . . .  X k  t 

: a - - - - - ~  

X l l  . . .  X l l  

counter = 2 

• originate at junction 
(1 ,1)  and  (1,2)  of the  rule 

X k l  . . .  X k l  

: 

: r l l  . . .  X l l  

c o u n t e r  = 1 

Fig. 10. 

(G) A tile containing a horizontal combined arrow intersecting a vertical 
exterior line has above it either a letter tile o f  type 1 or a tile containing "A'. 
Similarly it has below it either a letter tile o f  type 1 or a tile containing "B'. 

Analogously, a tile containing a vertical combined arrow intersecting a hori- 
zontal exterior line has on its right either a letter tile o f  type l or a tile containing 
"R'. Also, it has on its left either a letter tile o f  type l or a tile containing "L". 

(H)  (1) A tile containing "A" has above it either a letter tile or a-tile containing 
"A". It has below it either a tile containing the intersection o f  a horizontal 
combined arrow and a line, or a tile containing "A'. 
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(2) A tile containing "B" has below it either a letter tile or a tile containing "B' .  
It has above it either a tile containing the intersection of  a horizontal combined 
arrow and a line, or a tile containing "B". 

(3) A tile containing "L" has on its left either a letter tile or a tile containing 

"L". It has on its right either a tile containing the intersection of  a vertical 
combined arrow and a line, or a tile containing "L' .  

(4) A tile containing "R" has on its right either a letter tile or a tile containing 

"R ' .  It has on its left either a tile containing the intersection of  a vertical 
combined arrow and a line, or a tile containing "R ' .  

(I) Now we use the observation that every system of  finite type is a tiling. 
Further, we require that in every square of  3 • 3 tiles, if  we paint the letter tiles of  

type l black and all the other tiles white, we will see one of  the patterns in Fig. I I. 

Fig. 11. 

Notice that this rule ensures that the letter tiles of  type 1 are arranged in a 
2Z • 2Z lattice. 

( J )  The blank tile may appear at any place where the above rules don't force 
the appearance of  some other kind of  tile. 

This completes the definition of  the tiling system built for a certain substitution 
system. 

Terminology. We will use the term "a straight lattice" or simply "lattice" to 
denote a subset of  Z 2 of  the form U • V where U, V are infinite subsets of Z. 

w (,~-, JV')- t i l ings 

In order to determine the collection of  all possible tilings by (~r, v~) we will 
look at the tiling as a process such that, at any stage of  the process, the content of  

the tiles arranged in some straight lattice is revealed (determined). These tiles will 
all be letter tiles. We will see how their contents force a certain structure of  a 

system of  lines, arrows and junctions which induce restrictions on the contents of  
the tiles of  the current lattice and determine the lattice of  the next stage of  the 
process. We will call the lattice determined at stage k "a k-level lattice". 

As mentioned earlier, the letter tiles of  type l are arranged in a straight lattice 
2Z X 2Z. This is the l-level lattice shown in Fig. 12. 



D Y N A M I C A L  SYSTEMS D E F I N E D  BY T I L I N G S  157 

D [ 2 D D  
x 

D 
/2 

DQD  
Fig. 12. 

Let each of  these letter tiles choose the information written in it. Look at any 
one of  them, say or. By the adjacency rules its four neighbours u, v, w, x must be 

lines, arrows or junctions holding information about a. Notice that since the tiles 

of  this lattice are arranged on 2Z X 2Z, the four neighbours of  a meet r ,  y, J and e 
respectively and these are letter tiles. It is easily seen from the adjacency rules of  

the tiling system that this forces a "synchronization" between a and its neigh- 
bours in the lattice. Suppose, for example, a contains the information "0, position 

(1, 3) of  the rule 1 ~ 0 I ~, quadruple I 01 ". This will force 
(i) u to be an exterior line and p to be the lower left corner of  some rule of  

height 2 with the same quadruple as a, 
(ii) v to be an exterior line and ~, the upper right corner of  some derivation rule 

of  width 3 with the same quadruple as a, 
(iii) w to be an interior line and J to be: "1, pos ( 1, 2) of  the rule 1 ---- t o Ii ~ ", 

1 (iv) x to be a junction between positions (1, 3) and (2, 3) of  the rule 1 ~ 0  1 0 

and e is "1, position (2, 3) of  the rule 1 ~ to I ~, quadruple ~ ~" 
We see that all the tiles in the l-level lattice are grouped in this way into 

rectangular blocks, each belonging to some derivation rule, and that these blocks 
are arranged in a lattice. Furthermore, looking in a row, all the tiles are at the 

same height in their rules, and looking at a column we see tiles in the same 
horizontal position in their rules. This is illustrated in Fig. 13 (dotted lines denote 

exterior lines). 
Consider such a rectangular block belonging to some derivation rule. We see 

that there are four junctions such that the combined arrows in them point to one 
particular tile. Look, for example, at the junction at a in Fig. 13. Moving in the 

direction of  the arrow we must see by the adjacency rules a combined arrow with 
the same information or a letter tile of  type 2. Since if we continue in this 

direction we meet the opposite junction of  the same rule, the sequence of  arrows 
must terminate and meet a letter tile. We claim that this tile must be the tile at the 

intersection of  the four arrows from the four junctions, in our example at c~. The 
reason is that the other tiles between the opposite junctions are either line tile, 

like 7, hence not a letter tile, or have, like r ,  a neighbour above it which is a line 
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I ~ r l ~ - I ~  ...... 1~*;~1~ ...... I ~  
t t t 

I B a ~ F F - ~ I  ..... S~rFN ..... I ~  
! I I I I I 

� 8 9  ..... I ~ - I ~  ..... I ~  

Fig. 13. 

tile linking columns other than 1 and 2. By the adjacency rules, above a letter tile 

of  type 2 there is a combined arrow directed towards it and no line tile as that 

above fl may contain such an arrow. 
We see that in any block belonging to some derivation rule there is one tile 

forced to be a letter tile of  type 2 and the letter written in it is the letter from which 

that derivation rule is derived. From the "synchronization" of  the tiles of  the l- 
level and of  their blocks, it follows that the letter tiles of  type 2 described above 
are arranged in a straight lattice. These tiles are the 2-level lattice. Notice also that 

the counter information along a combined arrow is determined by this process. 

The situation at this stage is as in Fig. 14. 

f ' ~  "1 t t ~ _ ' t  t 

i i i . ~ : 

I N ~ r E 3 - 1 Z ]  .... s  ..... IZ] 
I l l  I / ~ 1  ! 

E ] + N - F N  ..... FFtI-I ..... E3 

Fig. 14. 
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Def in i t i on .  A rectangular block of tiles is called saturated if in no position in 

it can one add a letter tile, an arrow, a junction, a line o r "  "A' ,  "B' ,  "L", "R .... 

tile not already there. 

Obviously, a single letter tile is saturated. We now wish to show how to 

continue the process of unravelling the tiles by induction. Our induction hypothe- 

sis is as follows: 

Induct ion  h y l m t h e s i s ,  Assume we have already formed m lattices of letter 

tiles: level l, level 2 , . . .  till level m. The letter tiles of each level k, l _-< k _-< m - 1 

are grouped into rectangular blocks each corresponding to some derivation rule. 

These blocks are arranged in a straight lattice. In the "convex hull" of each such 

block in a certain position there is a letter tile of the (k + l)-level lattice such that 

the letter written in it is the one from which the block of the k-level letter tiles 

containing it is derived. Moreover, for each letter tile of the k-level lattice 

2 < k =< m there corresponds a unique block of  letter tiles of the (k - 1)-level 

lattice derived from it by some derivation rule. Starting from a letter tile in the k- 

level lattice we can follow the sequence of  derivations from it until we reach the 

l-level lattice; we get a legal derivation tree of  the substitution system. The letter 

tiles in the l-level lattice we reached in such a way starting from some letter tile in 

the k-level lattice form a rectangular array. The convex hull of this rectangular 

array is a rectangular block caled "the block belonging (or corresponding) to the 

letter tile we started with". 

We assume also that each block corresponding to a letter tile of the 

(m - l)-level lattice is saturated. (In case m = 2 this block is just the letter tile of  

the l-level lattice and is clearly saturated.) 

Further, we assume that looking at the rectangular arrays of letter tiles in the 

(rn - 1)- level lattice grouped according to the derivation rules, then between any 

two adjacent such arrays there is exactly one "free" row or column, where by 

"free" we mean that at this stage of the process only exterior lines appear in it, and 

these exterior lines have not intersected any combined arrow yet. 

Furthermore, if we draw a picture of the situation where the blocks belonging 

to the tiles of the (m - l)- level are represented by rectangles, we see a picture like 

in Fig. 15. 

The squares a, fl are letter tiles of level m. The counter information of the 
combined arrows in the picture is fixed and each of  them intersects the required 

number of interior lines. It is easy to check that the induction hypothesis holds for 
m = 2 .  

In the proof of the induction step we show how the tiles which are the letter tiles 

of  the (m + 1)-level lattice are determined, and how the information in them and 

other tiles is completed so that the induction hypothesis holds for m + 1. 
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/q F-E I 
i i r 
I i i I 
i I 

Fig. 15. 

Suppose it holds for m. Each of  the letter tiles o f  the m-level lattice has to 

complete the information in it consistently with the letter already in it. After this 

completion, four lines or arrows according to the letter's position in the rule it 

chose, start from the tile in the four directions. We want to show how the 

information they carry reaches the neighbouring letter tiles in the m level lattice. 

For simplicity of  explanation, we show it for horizontal neighbours like a and fl in 

the above picture (Fig. 15). Suppose first that a is position (i , j)  in a rule such that  

to the fight o f  a starts an interior line. Continuing to the right we must see a line of  

the same information or a letter tile corresponding to position ( i , j  + 1) in the 

same rule. Continuing to the fight, starting at a, we eventually reach ft. In p there 

is a letter tile, hence the sequence o f  line tiles startir, g to the right of  a cannot  

continue indefinitely and must  meet a letter tile corresponding to position 

(i, j + 1) at a position not beyond ft. Let q be this tile. Since all the tiles between a 

and y contain a combined arrow directed towards a, they cannot be letter tiles. 

Suppose that  r/is between ~, and e including e. The letter tile must be of  type 2 

since all the letter tiles of  type 1 are in the 2Z • 2Z lattice o f  the first level and this 

row does not  contain any of  them. A letter tile of  type 2 must  have a combined 

arrow leading to it from every direction. Follow the one on the left of  r/ 

backwards. We see a sequence o f  such rightward directed combined arrows. This 

sequence must  end before reaching 7 and it ends (actually starts) in a junction.  

This junct ion forces an arrow or a letter tile above it, but  that  tile is in a saturated 

block v belonging to some (m - 1)-level letter. 

A similar argument following the sequence of  combined arrows pointing to r/ 

from the right shows that r /cannot be between e and ft. ~/cannot be between t~ and 

fl since all the tiles there contain a combined arrow. Hence we see that the 

sequence o f  line tiles starting at a to the right must lead to fl and is a line linking a 
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and ft. This forces the synchronization of  a and ft. Notice that the case of an 
exterior line is completely analogous. 

We analyze now the case in which a is position, say, (1,1) in a rule and then to 
the fight of  it starts a sequence of  simple arrows. As before, because in fl there is a 

letter tile, the sequence of  arrows from a cannot continue indefinitely. Such a 

sequence must end in a horizontal junction tile. Let r /be the position of this 
junction. Since the tiles between a and ), contain combined arrows, F/cannot be in 

this range, r/cannot be between 7 and e (excluding e) since such a junction tile 

forces an arrow or a letter above it in v and v is saturated. (Notice that the tile it 
forces is not already in v. This is seen by looking at the induction process.) For 
similar reasons r/is not between e and ~ (excluding e), and since the tiles between 

and/3 contain a combined arrow directed toward fl it is not in that range too. 
Hence the junction must be in e. Now to the fight of  such a junction we see a 
sequence of  left directed simple arrows containing the information that they 

originate at position (1,2) of  the same rule. Following this sequence of  arrows we 
must reach a letter tile with consistent information (again the letter tile at fl 

prevents the possibility of  an infinite sequence of  arrows). This letter tile cannot 
be positioned between e and c~ since it must be a letter tile of  type 2 and hence will 

force a combined arrow above it in ( which is a saturated block. This letter tile 
cannot be positioned between c~ and fl since the tiles there contain combined 

arrows. Hence this letter tile must be the one in fl and this forces the synchroniza- 

tion of  the tiles in a and ft. 
The foregoing discussion, with obvious changes, applies also to arrows and 

lines starting from a in any other direction. This shows that the letter tiles of  the 

m-level lattice are grouped into rectangular arrays each corresponding to some 
derivation rule. These arrays are arranged in a straight lattice and between any 
two adjacent such arrays thereis  exactly one free column or row. 

Take now a letter tile ot of  the m-level lattice, and look at the sequence of  
derivations from this letter until it reaches the l-level lattice. Look at the 
"convex-hull" of  these tiles. It forms a rectangtdar block of  the form (Fig. 16). 

 iiiiiiiiiiiiiiiiiiii B 

::: ..ii.i~i:~.:~i.~i.i.i.i..::~i.~i.~:.:.~:.:, 

E 

Fig. 16. 



162 s. MOZES 

Suppose for simplicity that the rule derived from the letter in a is of  size 2 • 3, 

where A, B, C, D, E, F are saturated blocks belonging to the letters in the (m - l)- 
level lattice derived from the letter in a. 

It is easily seen by the induction hypothesis and by the rules of the tiling that 

the only seemingly possible places to add some arrow, line or letter are in the 

shaded areas. To see that the rectangle is saturated, notice first that no letter tile of  

type 1 may be added to it since these tiles form a 2Z X 2Z lattice. Next, notice 

that adding a letter tile of  type 2 or a combined arrow tile or a junction tile to the 

shaded area forces a sequence of  such tiles that eventually try to penetrate one of  

the saturated blocks A, B, C, D, E or F or to place such a tile on some existing 
combined arrow tile or an interior line or simple arrow which is impossible. The 

case of  an interior line tile or simple arrow is handled by observing that it forces a 
sequence of  interior line tiles which may end in a letter tile. By the previous 

discussion it cannot reach a letter tile in the shaded area. Hence the sequence of  

line tiles forced by it either tries to penetrate A, B, C, D, E or F which is 
impossible, or it crosses one of  the four combined arrows which is also imposs- 

ible, either because the specific interior line cannot cross a combined arrow like 

the one in the rule or because the counter information along the combined arrow 

is already fixed and a new intersection will lead to inconsistency. We have to show 
the impossibility of  the addition of  some exterior line. To prove the impossibility 

of  such addition we have to consider two neighbouring blocks belonging to 

adjacent m-level lattice tiles. We illustrate the proof for a vertical exterior line. 

Since no letter tile may be added to the block and since A, B, C, D, E, F are 
saturated, the vertical line tile must force a sequence forming a vertical line 

crossing the whole block and intersecting the combined arrow as in the diagram 
in Fig. 17. 

i 
EEl, 
I' 

Fig. 17. 
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Consider the tile at ft. It may be either a letter tile of  type 2, in which case it 
forces a combined arrow in e, which is impossible, or an exterior vertical line. In 

the latter case the tile in y is either a letter tile or an exterior vertical line. The 

former is impossible by the same reasoning as above, applied to the adjacent 

block. In the latter case the same line of  reasoning shows that it forces a sequence 

of  vertical exterior line tiles crossing the horizontal combined arrow in t~. Now 

notice that we have a vertical exterior line crossing two combined arrows. But the 

crossing forces along the line segment between r /and t~ the occurrence of  the 
symbols "A" and "B" and no tile can contain both of  them; hence a contradiction. 

The last case to check is the addition of  some "A", "B", "L", "R" tile. Such an 
addition is impossible by the fact that such a tile necessarily contains some 

exterior line too. If  this exterior line already exists, it either already contains an 
"A", "B", "L", "R" tile or the exterior line links two letter tiles without 

intersecting a combined arrow. Such a situation is impossible, since it forces the 
same symbol "A", "B", "L" or "R" along it and we get an illegal adjacency of  an 

"A", "B", "L", "R" tile and a letter tile. 

This completes the proof  of  the saturation of  the block belonging to a tile of  the 

m-level lattice. It should be noticed that we have tacitly used in the above 
discussion the fact that if we have two adjacent tiles a and fl and some content x 

in a forces some content y in fl, then the content y in fl forces either content x in a 

or some content z in a that cannot appear together with x'in one tile. 
We now concentrate on some rectangular group of  m-level lattice tiles belong- 

ing to some derivation rule. We have the following picture where the rectangles 

denote the saturated block belonging to the m-level lattice tiles belonging to this 

derivation rule (Fig. 18). (Suppose for example the rule's size is 3 • 3.) 

t G 

l~ H 

Fig. 18. 

T 

C 
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The four junction tiles are placed in a row and a column and the combined 

arrows are directed towards the tile fl common to the row and column. In order to 

complete the induction step we have to show that there are sequences of  
combined arrows starting from each of  the four junctions leading to a letter tile of  

type 2 positioned at fl containing the letter from which the rule is derived. We 

show this, for example, for the junction at a. The reasoning for the other three 

junctions is completely analogous. Starting from ~ going downwards we see a 

sequence of  combined arrows such that each of  them may be followed by a 
combined arrow with the same information or by a letter tile holding the letter 

from which the rule is derived. Because there is a junction in e, the sequence of  
downward arrows cannot continue indefinitely and a letter tile as required must 

be situated somewhere between a and e. Notice that such a letter tile is 

necessarily of  type 2 and forces a combined arrow directed towards it from the 

left. For this reason it cannot be placed at some position like ~ between the 
saturated blocks of the m-level lattice letters. Trying to place the letter tile at 

some position like ~ also leads to a contradiction. For then, following the 
sequence of  combined arrows leading to it from, say, the left, we either reach a tile 

( containing an interior line, or we meet before reaching ( a junction tile and try 

to penetrate a saturated block belonging to some m-level lattice tile. In each case 
we get a contradiction. Hence we see that the only possible place for the letter tile 

is indeed ft. 
Reasoning similarly for the other junctions, we get a picture like in Fig. 19. 

I I1 
t 

11 l 
t 

Fig. 19. 

The letter tile fl we obtained belongs to the (m + 1)-level lattice, which is 

indeed a lattice by the synchronization of  the m-level lattice tiles. Notice that the 
counter information along the combined arrows is determined and it crosses the 

required number of  inner lines. Also, each of  the four combined arrows intersects 

some exterior lines which have not already been intersected and the intersections 
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force "A", "B", "L", "R" tiles along these lines. We have now completed the proof 
of  the induction step. 

For the sequel, it is important to note at this point that, from the above 
discussion, it follows that looking at a letter tile belonging to the m-level lattice 
we can follow the sequence of derivations from it down to the l-level lattice and 
we see a legal derivation tree of  the substitution system (~', ~) .  Furthermore, it is 
important to note that looking at a 2 • 2 quadruple of letters at the m-level 
lattice, and looking at the four adjacent corners of  the four rules derived from 
them in the (m - 1)-level lattice, the quadruple appearing in the (m - 1)-level 
tiles at the corners is the right quadruple from which they were derived. 

w The  relation of (~- ,  JV') to ( ~ ,  2 )  

Theorem 4.1. Let ( ~ ,  ~ )  be a substitution system satisfying: 
( 1 ) Every derivation rule 

X k  l �9 �9 �9 X k l  

a - - "  

X l l  ~ " " X l l  

satisfies k >-_ 2, l >_- 2. 
(2) (~r 9*) has property A. 
Let (fL Z 2) be the dynamical system defined by (~r ~) .  
Let (,~', .,~) be the tiling system described above for (.at, 9*) and (A, Z 2) the 

dynamical system defined by (~r, jv'); that is, A is the collection of  all possible 
tilings by (~r, jtr). 

Define a map ~o : A ~ ~t z' by matching to each tiling 2 E A the two-dimensional 
lattice of the letters written in the l-level lattice. 

Then ~o is a map from A to fL 

Proo f .  Let ;t CA be a legal tiling of the plane by the system (~-, ~/'). Denote 
~0(2)---(Yo)ijez, V i , j E Z ,  y u ~ s / .  It suffices to show that for every block Y = 
yt~) = (y~j), u < i < v, r < j  =<_ s, u, v, r, s E Z  there exists a legal derivation tree of  

the substitution system (.~r ~ )  that derives a block containing Y~> as a subblock. 
Look at the tiles of  the l-level lattice corresponding to yt~). Each of  them is 

part of  some derivation rule. The tiles of  the 2-level lattice from which the tiles 
of  Y~I are derived form a rectangular array. Denote this array by yt2). Notice 
that the derivation from y~2) as described in the tiling 2 is a legal deriva- 

tion of  the substitution system (~r 9~) and the block derived contains yt~) 
Each of  the tiles corresponding to yt2) belongs, in the tiling 2, to some deriva- 
tion rule. Let y~3) be the rectangular array of tiles from the 3-level lattice from 
which these rules are derived. We get in this way a sequence of rectangular blocks 
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ym, y~2) . . . .  , ytn~,.., such that from each block 1 "~n) there is a sequence of  legal 

derivations in (,~r 2 )  of  length n - 1 at the end o f  which we get a block Z,  
containing Y~'). 

L e m m a .  I f  the width (height) of  the block yti) is >-_ 3 then the width (height) oJ 
the block Y~ + ') is strictly smaller than that of  yv>. 

P r o o f .  Define a mapping from yto to yti + ~) by mapping each letter in yto to 

the letter from which it is derived in yti+,). By the definition of  y~+l) this 

mapping is onto. Furthermore, this mapping maps the letters in a row (column) of  
ym to letters in a row (column) of  yv + 1). Hence the width (height) of  yt~ +,~ is 

smaller than or equal to the width (height) of  yto. 

In the case that the width of  ~ )  is >___ 3, there are three adjacent letters y}~), 

YI~, YI9 in a row of yt~. Since all the derivation rules are of  width >_-2 it 
follows that the derivation rule from which YI~ is derived, derives y[~) or YI'~ too. 

Hence the mapping is not one to one and the width of  Y~'+ 1) is strictly smaller 
than that of  yt,). 

The proof  of  the assertion for height is analogous. �9 

We return to the proof of  Theorem 4.1. 

By the lemma, we see that the sizes of  the blocks in the sequence 1 '~1), yt2) . . . .  , 

ytn) . . . .  are strictly decreasing until they reach one of  the sizes: 1 X 1,2 • 1, 1 • 2 
o r 2 •  

If we reach yt~ such that its size is 1 • 1, that is Y~) is a single letter, then by the 
above there is a legal derivation of  length n - 1 from yt~) deriving a block 
containing I+<,) as needed. 

Supose the minimal size is 1 • 2, 2 • I or 2 • 2. Denote it by d • d '  and let ~ )  
be a block in the sequence of  this size. We have that yt~ + l) is of  this size too. From 

this it is easily seen that all the d .  d '  tiles in yt~) are border tiles in the derivation 
rules from Y~+') to yt~. Remember  that at corner tiles a quadruple, q, also 

appears from Q = Q(sr ~') and the same quadruple appears in the d . d '  
neighbouring corner tiles of  the d .  d '  derivation rules deriving Y~) from Y~ § 1). 

(In the case that d .  d '  = 2 there are two possible such quadruples. I f d .  d '  = 4 only 
one is possible.) Notice now that this quadruple q is either yt~ + ,) i f d .  d '  -- 4 or is 
~ + ,7 with two neighbours of  it in the n -t- 1 level lattice i f d .  d '  = 2, and we have 

a sequence of  legal derivations of  length n starting from q deriving a block 
containing yt,>. Since every quadruple in Q, in a particular q, appears in a block 

derived from some single letter, we are in the situation of  property A. Since 

(~r 2 )  has, by assumption, property A, there is a legal derivation tree deriving a 
block containing ym. �9 

T h e o r e m  4.2.  Let (sd, ~ )  be a two-dimensional substitution system and 
(t), Z 2) the dynamical system defined by it. For every element x = (xo)~. jez~ 
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there exist y ~ ,  y = (Yo)~,j~z, such that x may be derived from y by replac- 

ing each Yo by some derivation rule belonging to Yo in :~ and the derivation is a 

legal one. 

P r o o f .  We shall assign to each letter xo, i , j E Z  in x a derivation rule 

deriving some rectangle containing it. The assignment will be made  in a con- 

sistent way, the element y = (y0)E.~cz2 consisting of  the letters deriving each 

rectangle belongs to f l  and  the derivations form a legal derivation of  x from y.  

Denote by X N = (X0)trl~U, ljl,~U, N>___ 1 the square of  size 2 N +  1 •  

centered at the origin. 

Order Z 2 in a sequence {(m,, n,) [i = o, 1 , . . . } .  

Since x E fL for every N >_ 1 there exists some derivation tree TN of  the system 

(.~r ~ )  deriving a block containing X N. 
Define S O = { T~ ] N > 1 }. 

Now, look at Xlm~l. There are infinitely many  trees TN in S O deriving blocks X N 

containing xt,,~,0). In each such tree there is a derivation rule from which xl,~o) is 

derived. Since the set ,~' of  derivation rules is finite and the number  o f  such trees 

is infinite, there is some derivation rule a E  ~ used to derive xt,,~,0) in the same 

way infinitely many times. 

Define S ~ c S O to be the collection o f  all the trees in S O in which xt,~o) was 

derived by the rule a. Look at xt, ,~) and all the other letters in x forming the block 

derived by this rule a and assign to each of  them the derivation rule a. Notice that  

in all the derivation trees in S ~ these letters are derived by this rule a. 

Continue the induction.  At the k-th step let (m,  n) = (mj,, nj~) be the first pair 

in the sequence {(mr, n,)[ i > 0} for which a derivation rule deriving xt,~..~ has 

not  been determined yet. Look at the trees in the infinite set S k deriving blocks 

containing Xt,,,n~. AS above, there is some derivation rule fl deriving x(m,.) in 
infinitely many such trees. Define S k +~ c S k to be the collection of  all the trees in 

S k in which xt,~,,) is derived by ft. Assign to xt,~,,) and the other letters derived by fl 

the derivation rule ft. Notice that all the trees in S k § ~ contain the derivations o f  

all the xtj.j) for which derivation rules were already determined. Hence: 

(1) The neighbours of  Xtm,,) were not previously grouped to some derivation 

rule. 

(2) The derivation fl o f  xt,,,,~ and its neighbours is consistent with the other 

derivations already determined such that  the derivation is legal. 

We proceed thus for all k > 0 and this process defines a division of  all the 

infinite array x into rectangular derivation rules arranged in a straight lattice o f  

the form shown in Fig. 20. 

Define y = (yaj) to be the infinite array of  the letters from which the above 

derivation rules were derived. It is clear that  x may  be legally derived f rom y. We 

have to show that y E f~, that is, for every finite block z appearing in y there is a 
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Fig. 20. 

legal derivation tree of(M, 2 )  deriving a block containing z. Look at such a block 

z appearing in y. From z is derived a finite block w appearing in x. There is a 

k > 0 such that the set {(mg, n,)l o <__ i <= I,) contains all the positions of w. 
Looking at a tree T~ E S k § ~ we see a tree deriving a block containing w and all the 

derivation rules for w are the same as those from z to w. Hence if we omit the last 

level of derivations from this tree, we get a legal derivation tree deriving a block 

containing z as required; so y E f~. �9 

T h e o r e m  4.3, Under the assumptions o f  Theorem 4.1, the map q~ defined in 
Theorem 4.1 from the tilings A o f  the tiling system (,~-, ~ )  to ~ - -  the dynamical 
system defined by (~1, 2) ,  is onto. 

Proof .  Let X E ~ .  Denote Y~) = X = (x~j)~.jEz. We follow the tiling process 

described after the construction of  ( J ' ,  ~.f'). Write the letters x,j in the l-level 

lattice tiles. According to Theorem 4.2 there is yt:)E f~ such that yt~) = X may be 

legally derived from it by the rules of (~r 2) .  Fill in each of the l-level tiles with 

the rest of  its information according to the derivation of Y~I) from yt2) and 

complete the system of lines, arrows and junctions forced by this information as 

in the description of the tiling process. Notice that since X = yt~> is legally 

derived from yt2) and ~2)Efl ,  the process of filling the arrows, junctions and 

lines may be carried out satisfying the tiling rules. In this process the tiles of the 2- 

level lattice are determined and filled with the letters of yt2). We continue by 

induction. At step i we have letters of an infinite array y t o ~ f l  written in the 
/-level lattice. By Theorem 4.2 there is an array yt~ + ~)E f~ from which ~;) may be 

derived. We fill the information of the i-level lattice according to this derivation 

of  yo~ from Y~ + i). Complete the system of arrows, lines and junctions induced by 

it and form the (i + l)-level lattice tiles with the letters of 1 "t~+ ~) written in them. 

Againthis process may be carried out in compliance with the rules of the tiling 

system since yt,) is legally derived from yt~+ t) which belongs to f~. (The fact that 

~ ,  + i)E [~ ensures that the quadruple appearing in the tiles are legal ones.) We see 
that in this way we get a tiling 2 CA such that r = X. �9 

D e f i n i t i o n .  A substitution system (~r 2 )  will be said to have unique 
derivation if for every x E f~ the element y ~ [~ whose existence is ensured by 
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Theorem 4.2 is unique and there is a unique way of  deriving x from y by legal 

derivation rules. 

Let (z/,  ~') be a two-dimensional substitution system with unique derivation. 

Let x E f~ = D ( ~ ,  ~) .  
As in the proof of  Theorem 4.3, there is a sequence of elements y" )~  f~, i > 0, 

y(0) = x such that y(i) may be derived from y(~+ i) by legal derivation o f ( ~ ,  ~) .  By 

the unique derivation property of  ( ~ ,  ~ )  this sequence, as well as the deriva- 

tions, is unique. We look at the infinite derivation tree consisting of  the yt~), i > 0 

and the derivations. Notice that this tree is either 

(1) connected, or 
(2) it has two components and if we look at the two parts of  x = y(0), one in 

each component, they are two complementary half planes separated by a 

vertical or horizontal line, or 
(3) it has four components and their parts in x = yC0) form four quadrants of  

the plane, separated by a vertical and a horizontal line. 

We will refer to this infinite tree as the derivation tree of x. 

L e m m a .  Suppose (~t, ~ )  has unique derivation. Let D C D = [~(~/, ~ )  be 
the set o f  all x E ~ such that their derivation tree is not connected. Let tz be anyZ  2 
invariant probability measure on f~. Then #(D ) = O. 

P r o o f .  By the discussion above, for every x E D there is some "separating 
line" separating two components ofx .  Let D h C D be the set of  those elements for 

which there is a horizontal separating line, and D~ C D the set o f  those with a 

vertical separating line. Clearly D --- Dv U Dh. Define 

D~ = {x ~Dv I the separating line is between columns i and i + 1 }, 

D~ ~- { x ~ - D  h I the separating line is between rows i and i + l}, 

Then 
D =  U D],U U D{.  

iEz  j E z  

i E Z .  

It suffices to show/z(Dl)  = 0,/z(D~) = 0 for all i E Z .  We prove/z(D~) = 0. The 
proof  o f / ~ ( D ~ ) = 0  is analogous. By the unique derivation it follows that 
D~ n D{ = ~ for i e j .  It is easily seen that (0, k)D~ = D~ +k, ((0, k)D~ is the 
translation of  D~ by the action of  (0, k ) ~  Z:.) Since/~ is Z 2 invariant we have 

lz(D~)=lz(D~) for every i , j ~ Z .  In a space of  finite measure, a countable 
collection of  disjoint sets having equal measure is possible only if each of  them 

has measure 0. We get/~(D~) = 0. Similarly #(DI ) = 0 and/z(D) = 0. �9 

The proof of  the following lemma is completely analogous. 
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L e m m a .  Let (.~', JI/') be the tiling system for (..~r ~) ,  (..~r ~ )  having unique 
derivation, and let (A, Z 2) be its dynamical system. Let A = r with D as in 
the preceding lemma. For every Z 2 invariant probability measure v we have 
v(A) = O. �9 

Theorem 4.4. I f  the substitution system (~r ~') has unique derivation and 
satisfies the conditions o f  Theorem 4.1, then the map ~o defined in Theorem 4.1 is 
one to one almost everywhere with respect to any Z 2 invariant measure. 

Proof .  Suppose 2, 2 ' E A \ A  are two legal tilings and r = fP0.') = X E f l .  
Then by the definition of ~0 it follows that the letter arrays written in the l-level 
lattices of  both tilings 2 and 2' are identical to X. Let Y be the array of letters 
written in the 2-level lattice of~,  and Y' the array of  letters written in the 2-level 
lattice of  2'. In the same way that we proved that the array of  letters in the l-level 
lattice of a tiling belongs to f~, it may be shown that the array of letters in the 
k-level lattice of  a tiling belongs to f~ for every k >_- I. In particular, Y, Y ' E  [2. 
From the tiling properties it follows that X may be derived both from Y and 
from Y'. 

By the unique derivation property of  (~r ~ )  this shows that Y = Y' and that 
the derivation of  X from Y = Y" is identical in 2 and in ;t'. This means that the 
letter tiles of  the l-level lattice and the systems of lines, arrows and junctions 
induced by them are identical in ;t and in 2'. Further, the letters in the 2-level 
lattices of  both tilings are identical. 

Now, as is easily seen we may proceed by induction and show in the same way 
that the equality of the letters in the k- level lattices in both filings forces, by the 
unique derivation property, the equality of the tiles of  the k-level lattices, and the 
system of  arrows, lines and junctions generated by them as well as the equality of  
the letters in the k + 1 level lattices. 

Now notice that the assumption that 2, 2 '  ~ A guarantees that each tile belongs 
to some saturated block belonging to some k-level lattice tile and hence the above 
process determines all the tiles in 2 and 2'. Thus 2 -- 2'. 

To check the remark that every tile belongs to some saturated block, take four 
letter tiles of  the l-level lattice touching its four corners or sides. For letter tiles of  
the l-level lattice it is obvious. Since 2, 2 ' ~  A the derivation tree is connected, 
hence there is some letter tile in some k-level lattice such that all the four or two 
letter tiles surrounding our tile are derived from it. Therefore the tile belongs to 
the saturated block belonging to this letter tile. �9 

Remark.  For x E D  c [2 the set ~-~(x) is finite: The only tiles which were 
not determined by the above process are those in a separating line and it is easy to 
see that the only possibility of  fiUing the tiles in this separating line is some line or 
arrow containing the same information all along it. Or, ff there are a vertical and 
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horizontal separating lines, then there may be a letter tile in their intersection and 
four lines or arrows with the same information along the four "rays" from it. 
Hence there are a finite number of  possibilities. 

We would like the map ~0 : A ~ fl to be a homomorphism of dynamical systems 
~0 : (A, Z 2) ~ (fL Z2). To achieve this we have to make some small changes in the 
tiling system: 

The tiles of the modified system will be all the 2 • 2 quadruples of tiles of,~" 
satisfying the adjacency rules and such that the lower left tile of  it is a letter tile of  
type 1. The adjacency rules of the modified system will be those it inherits from 
the unmodified one. For example the adjacency 

t I ' 61 
4 3 8 7 

is legal if [ - ~  and [ ~  could be adjacent in the old tiling system. 

is a legal adjacency if 

were legal adjacencies in the old system. For simplicity we will use ( ~ ,  .AP) again 
to denote the new system. 

The correspondence of  the tilings of the modified and the unmodified tiling 
systems is clear. 

T h e o r e m  4.5. Let 
satisfying: 

(I) All the rules in ~ ,  

(,~r ~') be a two-dimensional substitution system 

X k l  �9 . . Xkd 

a - - - ~  

X l l  " " " X l l  

have k >= 2 and l >= 2. 
(2) (~r ~) has property A. 
Let (fL Z 2) be the dynamical system defined by (~r 9'). Then there is a tiling 

system (3r, X )  such that, denoting by (A, Z 2) the dynamical system defined by 
(~Z, jIr), there exists an epimorphism of  the dynamical systems ~o : (A, Z 2)--- 
(fl, Z2). Further, if  the substitution system ( ~1, ~)  has unique derivation, then ~o is 
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an a.e. isomorphism of the dynamical systems (almost everywhere for any 
invariant probability measure). 

Proof .  This theorem is an immediate corollary of Theorems 4.1, 4.3, 4.4 and 
the changes made in the tiling before this theorem. �9 

w Further ref inement  of  the t i l ing sys tem 

We have shown that for a two-dimensional substitution system (.~, ~') satisfy- 
ing the conditions of Theorem 4.5 having unique derivation, there is a tiling 
system (~r, X )  such that the two dynamical systems defined by them are measure 
theoretic isomorphic. Thus the tilings of the tiling system enjoy the same measure 
theoretic properties of the corresponding dynamical system defined by the 
substitution system. 

We want to show that for substitution systems satisfying additional conditions, 
we obtain a tiling system such that the corresponding dynamical system reflects 
certain properties of the dynamical system of the original substitution system. 
The properties we wish the tiling to reflect are: (1) minimality, and (2) topological 
weak mixing. 

To achieve this we suppose that the substitution system (~/, ~') satisfies also 
the following conditions: 

(1) (~ ,  ~ )  satisfies the conditions of Theorem 4.5. 
(2) (~ ,  ~ )  has unique derivation. 
(3) (.~, ~') is deterministic. 
(4) There are four fixed letters of .~ (not necessarily distinct) denoted by 

coo, Co,, c,0, ell E ~  such that in every derivation rule of (~ ,  ~'), coo is the 
lower left comer, el0 is the upper left comer, c01 is the lower right comer and 
c .  is the upper right comer. Such a system is said to have fixed comers. 

(5) Denote by Dv the set of elements from f2 whose "infinite derivation tree" is 
not connected and separated by a vertical line. D h is the set of those 
elements with a horizontal separating line. We require that the following 
condition is satisfied: For all x, yEDv every pair of adjacent letters 
appearing in x separated by the vertical separating line appears also in y 
separated by the vertical separating line of y. The analogous condition is 
imposed on the elements of Dh and pairs of adjacent letters separated by the 
horizontal separating line. 

(6) (~r ~ )  defines a minimal dynamical system (f~, Z2). 
A substitution system satisfying these conditions will be called of type R. 

In order to achieve our goal we make some modifications in the laws of the 
tiling system (~', ~V) concerning the combinations of lines, arrows and "A', "B',  
"L' ,  "R" in a tile. The notation (~-, .At) refers to the old tiling system; (A, Z 2) is its 
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dynamical system. (~-', JV') refers to the modified tiling system. (A', Z 2) is its 

dynamical system. 
The changes are as follows: 

(1) We look at all the tilings in A. In every such tiling 2 CA we look at all the 
saturated blocks of some letter tile in some m-level lattice. In these saturated 
blocks we see tiles containing combinations of  arrow lines and "A", "B", "L", 
"R". Define the set of  all those tiles to be the only allowed such combinations in 
(~r,, ~r,). 

(2) Look again et all the saturated blocks in elements of A and let Kbe  the set of  
all the 3 • 3 squares appearing in them. In the new tiling system we require that 

any 3 • 3 square will be one of the squares in K. 

This defines the new tiling system (5"', X ' ) .  

We claim that all the previous theorems concerning ( ~ ,  ~ ' )  hold for (~", J~'). 
The only non-trivial fact is that the mapping ~' : A ' ~  ~ is onto. Notice that 
A' CA,  ~' = ~ I^'- Since ~ : A ~  is onto the set, P = ~ - ' (x )  c A is not empty. 
We have to show that P N A' ~ ~ .  Suppose on the contrary that P N A' -- ~ .  
Then in every 2 ~ P there is some tile or group of  9 tiles contradicting the two new 
laws (1) and (2) above. Since P is finite there is some finite rectangular block a 
containing a position of  such an illegal configuration from every element of P. 
Look at the derivation described in a, in any element of P (by the unique 
derivation it is the same for every 2 ~ P), as in the proof of Theorem 4. I, we get 
that this derivation is part of  some derivation tree of  depth m of  the substitution 
system ( ~ ,  ~) .  Let z be the letter from which this tree was derived. Take some 
tiling/~ ~ A. Look at the m-level lattice of  letters of  it. It describes an element of  
~ .  Necessarily the letter z appears in it (this follows from the minimality). Look at 
the derivation tree of  depth rn starting from z in / l .  By the determinism of  the 
substitution system ( ~ ,  ~ ) ,  this is the same tree as above. In particular it 
contains the derivation described in a. Now notice that x may be such a 
problematic element only if it belongs to the set D c ~ and the separating line, or 
lines, pass through the block a. Furthermore, the elements of P = ~ -  '(x) differ 
only in tiles in the separating line or lines and the illegal tiles may appear only in 

this column and row. 
Return to the proof of  Theorem 4.3 and take the tiling r/constructed there for 

x.  By our assumption there is a separating row and column (or just one of  them) 
in ~/. The row and column pass through the block a. Look at the block in the tiling 
/t colliding with a. The only difference between the two blocks is in the separating 
row and column where the block in/~ contains some additional information. Add 
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this information to the block a. It is seen that we can continue it along the rest o f  

the row and column. We get some element of P in which all the block a is legal for 
the tiling system (3r', we") and hence there is a contradiction. We have proved: 

T h e o r e m  4.3 ' .  I f  (sr ~') is o f  type R then the mapping ~' : A ' ~ f 2  is 
onto. �9 

The main tool in showing the minimality and weak mixing of  the system 
(A', Z 2) is the following: 

L e m m a  5.1 .  Let ;~ ~ U c A be a nonempty open set. Then U contains 
some cylindrical open set determined by some saturated block belonging to some 
m-level lattice letter. 

P r o o f .  It suffices to prove the lemma for cylindrical sets Up determined by 

some rectangular block ft. Fix some x E U~. Look at the derivation described in x. 
There are several possibilities: 

(1) There is a letter tile z in some m level lattice from which ]~ was derived. 
(2) There are two separating lines, a row and a column, in x and by enlarging 

the b lock / /we  may assume they pass through it. 
(3) There is only one separating line (a row or a column) in x and it passes 

through p. 
In case (1), we clearly get the saturated block we need by looking at the block 

derived from z. Suppose case 2 holds. Then by further enlarging the block fl we 
get a block a that is derived from the quadruple 

Cot Coo 

Ctt Ct0 

and looks like Fig. 21. To see that the situation is indeed as in the picture, observe 
that looking at the m-level lattice there is a quadruple $ ~ such that the separating 
row and column pass between the letters in it. Since lines between two adjacent 
letters of  the m-level lattice crossing the separating row or column must be 

exterior lines, the four letters must be comers of  the rules deriving them and by 
the fixed comers property of  (~r ~ )  we get a situation like in the picture. 

Look at the 3 • 3 square centered around 1 (in Fig. 21), the intersection of  the 
separating row and column. By the laws of  the tiling system (,~", .A/") it appears in 

some saturated block derived from some letter "a". Let the depth of  the 
derivation tree described in this block be l. Let the depth of  the derivation trees 

appearing in each of  the four blocks derived from the cij, i, j -- 0, 1 in the above 

picture be m. It is now readily seen, by the determinism and property A, that if we 
take some tiling v EA '  and look at a letter tile belonging to the (m + 1 -- l)-level 
lattice containing "a" and then at the saturated block derived from it, we see in 
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coo 

Col coo 

l t l l t  CII~ Clo 
CII CI0 

separating column 

Fig. 21. 

separating row 

this block our block a. Notice that there is a letter tile containing "a" in the 
(m + 1 - l)-level lattice because the array of  letters in the (m + 1 - l)-level 
lattice is in l) and (i), Z 2) is minimal. We can now translate the tiling v so that the 
block a in it will be similarly positioned and we get a saturated block as required. 
We have to deal next with case (3). Without loss of  generality we may assume that 
the separating line is a column. Since the separating column passes through the 
block ~ we have a pair of  horizontally adjacent letters in some m-level lattice 
separated by the separating column such that the block derived from this pair of  
tiles (including the part from the separating column) contains the block ft. Notice 
that we used the assumption that there is no separating row. Denote these two 
letters by " a ' ,  "b ' .  They are derived from a pair of  letter tiles "c ' ,  "d" in the 
(m + l)-level lattice. Look at the (m + 1)-level lattice. It is easy to see that the 
"infinite derivation tree" of  the element of f l  written in it is not connected and 
has a vertical separating line passing between the pair "c", "d" defined above. 
Looking at the element of  f~ written in the 2-level lattice we see that its infinite 
derivation tree is not connected, and has a vertical separating line passing 
between the two columns separated in x by the separating column. (M, ~ )  is of  
type R, hence by condition (5) we conclude that the pair "c ' ,  "d" appears 
somewhere in the 2-level lattice of x separated by the separating column. By the 
determinism of the substitution system (~r ~) ,  looking at the two blocks derived 
from the "c ' ,  "d" of  the 2-level lattice, we see in the l-level lattice a pair of  
adjacent letter tiles/z, v containing "a", "b", and these two tiles are linked by a 
horizontal exterior line containing the same information as the line linking the 
pair "a ' ,  "b" of the m-level. We deduce that since the "vertical" information 
along the separating column is constant, the intersection ( of  the line between/z 
and v with the column is the same as the intersection of  the line linking the m level 
"a", "b ' .  Looking at the 3 • 3 square centered at ( we see Fig. 22. By the laws of 
(a-', .,Or,) there is some tiling y E A' such that there is a tile in its l- level lattice 
containing the letter "e". Looking at the saturated block derived from this tile we 
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I 
a b 

Fig. 22. 

see in it the above 3 • 3 square. As in case (2) we see that, looking at a letter tile 

containing "e" in the (m + ! - 1)-level lattice, the saturated block derived from it 

contains our  block ft. This completes the proof  of  the lemma. �9 

T h e o r e m  5.2.  Let (~t, ~ )  be a substitution system of  type R and (gr', .~V') 
the tiling system built for it. Then the dynamical system (A', Z 2) defined by 
(o*", .r is minimal. 

P r o o f .  Let x E A' be some legal tiling. We have to show that for every 

nonempty open set U c A' there is some translation o f  x belonging to U. By 

the preceding lemma there is some saturated block belonging to a letter tile o f  the 

m-level lattice such that the cylindrical open set determined by it is contained in 

U. Denote by "a" the letter in this m-level tile. Look at the m-level lattice 

in x.  The letters in it form an element o f  fL By the minimal i ty  o f  (fl, Z ~) we 

see that  the letter "a" appears in it. Look at the saturated block derived from it. 

This is the block determining the cylindrical set and we see that  some translation 

of  x is in U. �9 

L e m m a  5 .3 .  Let (~t, ~ )  be a two-dimensional substitution system having 
unique derivation. For every n > 1 there is N >= n such that for every m > N i f  we 
f ix  some square A o f  size m • m o f  letters which is a legal block of(M, ~'), then in 
all the derivation trees o f  any block containing A the derivation of  the n • n square 
B positioned at the center o f  A is unique. By "the derivation o f  the n • n square B," 
we mean the minimal block o f  letters in the last derivation step deriving the block B 
and the derivation rules used. 

P r o o f .  Suppose the assertion is false. Then for some fixed n >_- 1 we have a 

sequence o f  legal squares Am of  size m X m,  m --- ~ ,  such that  for each of  them 

there are two derivation trees deriving a block containing it and the derivation of  

the n X n midsquare Bm is different in each tree. 

It is seen by a straightforward argument  that  there is an infinite array o f  letters 

x ~ ~r such that every k X k square, k >_- l, centered around (0, 0) appearing in x 

is a k • k midsquare of  some Am, m = re(k). Clearly x E f t .  Let W denote the 

n X n square centered at the origin in x.  

By Theorem 4.2 we find a y ~ f~ such that x is derived from y. Look at the 

derivation of  the block Win  the derivation of  X from y.  Call this derivation ),. By 
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the construction o f x  we see that, using the notat ion of  the proof  of  Theorem 4.2, 

for each square X ~ centered at the origin, k > n, there are two derivat ion trees 

deriving a block containing it with different derivations of  W. Hence in one o f  

these trees the derivation is different from 7. Again using the notat ion of  4.2, 

denote the last tree by Tk. Now following the proof  of  4.2 we get an element z E 

deriving x and this derivation is necessarily different from the derivation of  x 

f rom y. Hence we get a contradiction to the unique derivation. �9 

L e m m a  5.4.  For every saturated block B appearing in some tiling, there is a 
legal block A of  letters such that i f 2  EA '  is a legal tiling in which the block A 
appears in some area in the l-level lattice, then in a specific place in 2, there 
appears the saturated block B. 

P r o o f .  This lemma is a corollary to the preceding lemma. Look at the 

derivation tree of  the saturated block B and let 

U ~  U I -" U 2 . . . . .  Ui-~-"  U l 

be the derivation described in it. U ~ is a single letter, and U ~ are the letters in the 

(1 + l - / ) - l eve l .  By the preceding lemma there is some M >_- 1 such that  a legal 

block of  size M determines the derivation of  any block of  size smaller than or 

equal to that of  U t in its center. 

Now by property A of  the substitution system, we can embed our derivation 

tree in a larger derivation tree such that i f  the derivation described by the latter is 

V0-, V l . . . . .  V p 

then U ~ is placed in the interior of  V p-I+~ and is surrounded by a block of  

size > M.  Moreover, since the derivation rules of  ~ have bounded size, we 

can take V p so big that for any derivation of  V p the sizes of  the last I blocks 

in the derivation are big enough to ensure that  we see there the derivation 

U ~ ~ U' . . . . .  U ~. We conclude that in every derivation of  V p the derivation 

of  the U j, i = 0, 1 , . . . ,  I is as in the saturated block B. Hence i f a  tiling 2 E A '  has 

the block V p appearing somewhere in its l-level lattice, it contains the saturated 

block B written in the convex hull o f  the tiles where U j is written. �9 

T h e o r e m  5.5.  Let (,~f , ~') be a substitution system o f  type R.  Suppose also 
that (~,  Z2), the dynamical system defined by (~t, ~) ,  is topologically weakly 
mixing. Then the dynamical system (A', Z 2) defined by the corresponding tiling 
system (~r,, JV") is topologically weakly mixing. 

P r o o f .  Let U~, U2, lit, V2 c A' be four open sets. We have to show the 

existence of  some (r, s ) ~ Z  2 such that, i = 1, 2, (r, s)Ui tq V, § ~ , where (r, s)U~ 
means the translation o f  U, by (r, s). By L e m m a  5.1 it follows that  it sutfices to 

prove the theorem for Ui, V~, i = 1, 2 cylindrical sets determined by saturated 
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blocks Bi for Ui, C~ for V~, i = I, 2. From Lemma 5.4 it suffices to prove the 
theorem for cylindrical sets determined by four blocks of  letters written in the 
l-level lattice Ei for Ui, /7,. for V,, i = l, 2. Notice that the blocks E~, F~, 
i = 1, 2 determine four open sets U;, V' c f~. By assumption (fl, Z 2) is weakly 
mixing. Hence there exist (r, s ) ~ Z  2 such that (r, s)U" N V; ~ ~ ,  i = 1, 2. Now, 
by the fact that ~':A'---, f l  is onto and commutes with the Z 2 action (we are 
applying here the changes made before Theorem 4.5 to the new tiling system 
(zlr,, ~.~',)), we get, observing that U, ~ ~'-~(U'), V~ D ~' -~(V:), i = 1, 2, the result 
(r,s)U~ f~ V~ v~ ~ ,  i =  1,2. �9 

w Represent ing a one-d imens ional  subst i tut ion sys tem 
by a two-dimens ional  ti l ing 

Def in i t ion .  Let $1 = (El, ~0~) and $2 = (~ ,  ~2) be two one-dimensional 
substitution systems, E~ the alphabets, ~0~ the derivation rules, i = 1, 2. Define 
their product which is a two-dimensional substitution system G = S 1 X S 2 whose 
alphabet is E = El • E2, and the collection of  derivation rules is ~ = ~'~ X ~2 
built as follows: For any two derivation rules: 

a ---a~a2a3. �9 �9 an of  ~ l  (called horizontal rule), 

b "-- b~b2b3. �9 �9 of  ~'2 (called vertical rule), 

we define a derivation rule in 2 :  

(a, b) --.- 

(al, bin) �9 �9 �9 

(al, b2) (a:, b2) 

(a,, bl) (a2, b,) 

(an,:bm)] 

/ " 

�9 "" (an, bl)J 

For a product substitution system defined like this, we modify slightly the laws 
governing a legal derivation of  the system to ensure that in any legal block the 
letter of  Y.~ in all the letters of  Y appearing in a column of  the block is fixed along 
the whole column, and that the letter ofT-.2 appearing in the letters of  Y in a row of  
the block is fixed along the row. 

To achieve this we require that when blowing up a legal block for all the letters 
in a column, the same horizontal rule will be chosen from (g~, ~1), and for all the 
letters in a row the same vertical rule from (%2, ~2) will be chosen. 

Theorem 6.1. The two-dimensional dynamical system defined by the 
product substitution system (E, ~ ' )=  if-i, ~ )  • bY-q, ~2) is isomorphic to the 
product o f  the two dynamical systems (fit, Z) and (f~2, Z) defined by (~.~, ~'~) and 
( ,v_q, ~ 2) respectively. 
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P roo f .  Let x E f~ be an infinite array of  letters. Since x ~f~, every finite 

subblock o fx  has the property that in every column the E1 letter in the I; letters of  

the column is fixed. The same holds for rows: the E 2 letter in the E letters of a row 
is fixed. For this reason it is possible to define a map 9'' f2 --- E z X E z by mapping 

x E f l  to 9"(x)=(9"~(x), 9"2(x))EY~z• y-z where 9"l(x) is the projection on 

the El coordinate along some row, r is the projection on the 5"- 2 coordinate 
along some column. Clearly 9" commutes with the Z 2 action on f~ and on g z X E z. 

It is also clear that 9" is one to one. We have to show that the image of 9' is 
exactly f~ • r2  = r -  Notice that in the derivation process of  legal blocks for 

the two-dimensional substitution system (E, 90) we actually create the product 

of  two one-dimensional derivation trees of  equal depth, one from the system 
(El, 90,) and the other belonging to (E2, ~'2)- Further, the product of  two 

legal derivation trees of  equal depth, one from each system, gives a legal 
derivation tree for (Y, ~) .  This shows that the collection of legal two-dimensional 

blocks defined by (E, ~ )  corresponds to the product of the collection of legal 

words of  (E,, 901) with the collection of  legal words defined by (Y--2, 902). 
To see this, suppose ui is a legal word defined by the system (Ei, 9~ i = 1, 2. 

Then there is a tree T~ deriving a word containing ui. Let d~ be the depth of  the 

tree T,, i = l, 2. It is possible to embed each of  these trees in a tree R~ of depth 
d >= d,, dE and then the product of  the two trees Ri gives a derivation tree of(E, 90) 

of  a block containing the product of the ui's. It follows that 9" is a map from 

onto ~ ,  X ~2. �9 

A modif ication o f  the til ing 

In order to represent a product substitution system of this kind by a tiling 

system, we use the construction of a tiling system described in the previous 

sections for a two-dimensional substitution system with small changes. 
(1) In a horizontal exterior line we require that the vertical derivation rule 

from (E2, 902) in each of  the two neighbouring rules is the same. 
(2) In a vertical exterior line we require the horizontal derivation rule from 

(El, 90,) in each of  the two neighbouring rules is the same rule. 
The rest of the tiling system structure is the same. These modifications guarantee 

that the derivation trees we see written in the tiling are indeed legal derivation 

trees of the product substitution system (E, 9 ~ = (E,, 901) • (Y-q, 902). 
Next we show that a product substitution system G = Sl X $2, for two one- 

dimensional substitution systems S~, $2, satisfies the conditions of  Theorems 4.1 

and 4.3. 

T h e o r e m  6.2.  Let S, = (Y-l, 901) and $2 = (~ ,  902) be two one-dimensional 
substitution systems satisfying the conditions: 

(1) The length of every derivation rule of  each of  them is at least 2. 
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(2) There is at least one derivation rule for each letter. 
Let G = (Y~, ~ )  = S~ • $2 be their product substitution system. Then the two- 
dimensional substitution system G satisfies: 

(1) Every derivation rule of  G is o f  height and width > 2. 
(2) G has property A. 

P r o o f .  (1) is clear from the assumption that all the one-dimensional deriva- 

tion rules Of Sl and $2 are of length >= 2 and the height and width of  a derivation 

rule of G are the lengths of a rule from S~ and a rule from $2. 
Property A follows from the observation that the legal derivation trees of G are 

products of  two derivation trees of  equal depth, one from the substitution system 
S~ and one from $2. Suppose that W is a legal block generated by G. Let 

= ((a, u) (b, u)] 
\(a,  v) (b, v)/ 

be a quadruple appearing in W. Suppose there is a legal derivation in G of a block 
B from a. Then there is a legal derivation tree T in G deriving a block containing 

W. This tree is the product of  two derivation trees Tj and T2. T, is a derivation 

tree of  the substitution system Si. Look at the derivation of  B from a. We see that 
this derivation is the product of  a pair of  derivation trees Rf, R~ belonging to S~ 

from a, b by a pair of derivation trees R~, R~ belonging to $2 with roots u, v. 
Take the tree TI and attach at the vertex corresponding to a the tree Rf and at 

the vertex corresponding to b the tree R b. At each other leaf vertex attach some 

derivation tree of  the same depth like Rf; there is such a tree since there is a 

derivation rule for every symbol in YI. We get in this way a derivation tree T~. In 
the same way we attach R~, R~ to T2 at the vertices corresponding to u, v and trees 

of  equal depth at any other leaf vertex to get a derivation tree T~. Look now at the 
product derivation tree T '=  T~ • T~. This is a legal derivation tree of  the 
two-dimensional substitution system G = (Z, ~ )  and it gives the derivation 

required in property A. �9 

D e f i n i t i o n .  A one-dimensional substitution system S, = (E,, ~1) is said to 

have unique derivation if for every x ~ flL where (fl~, Z) is the dynamical system 
defined by $1, there exists exactly one y E fl~ such that x may be derived from y by 

substituting every letter in y according to some derivation rule of  ~ .  Further 
there is only one way of  deriving x from y. 

T h e o r e m  6.3 .  I f  the one-dimensional substitution systems S~ and $2 have 
unique derivation, then the product substitution system G = S~ X $2 also has 
unique derivation. 

P r o o f .  Let (fl, Z 2) be the dynamical system defined by G. Let x ~ fl  and 

y E ~ be such that x may be derived from y. Let ~, = (~vl, ~,~) : ~ - -  ~ X ~2 be the 
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isomorphism in the proof of  Theorem 6.1. Denote x~ = ~,l(x), x2 = g2(x), Yl = 

~l(Y) and Y2 = ~2(Y). 

Notice that by the definition of G it follows that x~, Yt E g~t, i = 1, 2 and x~ 
may be derived from y~ by substituting each letter in y~ by some derivation rule of  
St. Hence by the unique derivation ofSi,  Yi, i = l, 2, as well as the derivation of  
xi from Yt, is uniquely determined by xt. Furthermore, the derivation of x 

from y is the product of  the two derivations of  x~ from y~ and of x2 from Y2. 
Since these derivations are unique, we get that y is unique as well as the 

derivation of  x from y. �9 

T h e o r e m  6.4, Let Sx = (Y~t, ~'~) and $2 = (~ ,  ~'2) be two one-dimensional 
substitution systems satisfying: 

(1) The length of every derivation rule is > 2. 
(2) There is a derivation rule for every letter in Et. 

Let ( ~ ,  Z) be the dynamical system defined by St, i = 1, 2. Then there exists a 
tiling system (o~ at, .A/') defining a dynamical system (A, Z 2) such that there is an 
epimorphism (of dynamical systems) r  (A, Z 2) ~ (f~ X ~2 Z2) �9 Furthermore, i f  
S~ and $2 have unique derivation, then ~o is an a.e. isomorphism. 

P r o o f .  The theorem follows from Theorems 6.1, 6.2, 6.3 and from observing 
that Theorem 4.5 holds also for modified tiling systems and product substitution 
systems. The proof of  Theorem 4.5 in this form is analogous to the proof in the 

original form. �9 

We remark that the analogues of  Theorems 5.2 and 5.5 hold for product 
substitution systems. This is the form of these theroems used for our examples of  

tilings. 

T h e o r e m  6.5. Let S = (~., ~)  be a one-dimensional substitution system, 
(g~, Z) the dynamical system defined by it. Assume the following conditions hold: 

(1) S is deterministic. 
(2) The length of  all the rules is > 2. 
(3) S has unique derivation. 
(4) There is a derivation rule for every letter of  Y.. 
(5) There are b, e E E  such that every derivation rule o f  S is of  the form 

a - ' b x 2 . .  "Xk-~e, a,x~E~,. 

(6) (fl, Z) is minimal. 
(7) (fl, Z) is topologically weakly mixing. 

Then the product substitution system S X S satisfies the conditions of  Theorems 
5.2 and 5.5. Hence the tiling system constructed for the product substitution system 
defines a minimal topologically weakly mixing system. 
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Proo f .  Let ~r = E • Y, ~ = ~ • ~ be the product substitution system. By 
Theorem 6.2, (~r ~ )  has property A. Its rules have height and width _-> 2. by 
Theorem 6.3 it has unique derivation. Clearly (~', ~ )  is deterministic. The 
corners of  every rule in ~' are (b, b), (b, e), (e, e), (e, b), hence (~r ~') has fixed 
corners. Notice that two horizontally adjacent letters of  ~r separated by a 
vertical separating line in any x ~ - - - f l ( d ,  ~) ,  are of  the form (e, a), (b, a), 
a E Y.. Further, by the minimality of  (f~, Z) in every "disconnected" x E f~ with 
separating vertical line there is a horizontally adjacent pair (e, a), (b, a) separ- 
ated by the vertical line for every a E E. The minimality of  (~,  Z ) clearly implies 
the minimality of  (f~ • f~, Z2). The topological weak mixing property of  (fl, Z) 
implies that (f~ • f~, Z 2) is weakly mixing too. We see that the product  substitu- 
tion system (~r ~') satisfies all the conditions of  Theorems 5.2 and 5.5. The proof  
of these theroems can be directly applied to prove the same assertions for product  
substitution systems. Alternatively, one can easily check that  for deterministic 
substitution systems, the product  substitution system can be treated as an 
ordinary two-dimensional substitution system. �9 

w Applications and examples 

In this section we will give several examples of  one-dimensional substitution 
systems which enable us to show the existence of tiling systems with various 
dynamical properties. 

I.  The Morse  System. The Morse system is given by the substitution 
system with alphabet Y = {0, 1 } and derivation rules 

0 ~ 0  1 
1 "--" 1 0 

By results of  Martin ([3]) this system has unique derivation. Hence applying 
Theorem 6.4 there is a tiling system defining a dynamical system isomorphic to 
the product of  the Morse system with itself. 

I I .  A Minimal  Topological Weakly Mixing  System. In [4] Martin 
gives conditions for a deterministic one-dimensional substitution system over an 
alphabet with two letters assuring that  the dynamical system defined by it will be 
minimal and topologically weakly mixing. Martin proves also that the substitu- 
tion system has unique derivation. In particular he proves ([4], Example 2) that 
the substitution system S = ({0, 1 }, ~ )  with ~ :  

0 ~ 0 0 0 0 1  

1 ~ 0 1 1 1 1 1  
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defines a minimal topologically weakly mixing dynamical system. This system 
satisfies the conditions of Theorem 6.5 and we get a tiling system defining a 
minimal topological weakly mixing system. 

I I I .  T h e  C h a e o n  S y s t e m .  The Chacon system may be defined by the 
substitution system C (see Petersen [5], page 216): 

0---- 00  1 0 

1 ---~ 1 

In this form this substitution system does not satisfy the conditions of  Theorem 
6.4. However, by certain changes in the substitution system and in the tiling 
system built for its product with itself we can get a tiling system representing the 
product of the Chacon system with itself. Notice that in the system C there never 
appears a pair of successive l's, so that after every symbol 1 there appears 0. We 

i 

attach the symbol 1 to the 0 immediately succeeding it and form a new symbol 10. 
Define also a new symbol 0. The new derivation rules will be: 

(1) 0 - - 0 0 1 0 ,  
(2) lO o lO, 
(3) 0 - ~ 0 0 1 0 ,  
(4) 1 0 ~ 1 0 0 1 0 .  

Denote this substitution system by C'. We look at a product substitution system 
C' X C'. The alphabet Z is not all the possible pairs but 

Z = Z, U Z2, Z, = ((0, 0), (0, 1), (1, 0), (1, 1)), 

Y.: -- {(0, 0), (0, 10), (I0, 0), (10, 10)). 

This dictates that as rules of C' X C' we take only products of the rules (1), (2) 
with themselves and of rules (3), (4) with themselves. For this substitution system 
we build a tiling system such that letter tiles of  type 1 contain only letters of  the 
set Y.I. The letter tiles of  type 2 contain only letters of  the set ~ .  

Notice that looking at such a tiling from the "2-level lattice above" we see a 
tiling of the product substitution system of  the one-dimensional substitution 
system C" with itself, where C" has alphabet {0, 10} and derivation rules: 

0 0 1 0  

10 ~ 10 0 10 

This substitution system satisfies the conditions of  Theorem 6.4. Moreover, by 
the results of  Martin [3] it has unique derivation. 

We next notice that every derivation of the system C can be modified by 
i 

attaching each 1 to its successive 0, getting the symbol 10 and replacing each of 
the left O's by 0. We get in this way a legal derivation of the system C". Taking a 
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derivation tree of C" and performing a derivation according to rules (3) or (4) of 
C', we get a legal word derived by the original substitution system C. Moreover, 
every legal word of C may be derived in this way since, starting from a derivation 
tree of C, we can make the modifications described above only as far as the level 
from which the leaves (terminal vertices) of the tree are derived. Combining this 
observation with the fact that in the tiling we described we form in the 2-level 
lattice legal blocks of the product system C " •  C" and that from the 2-level 
lattice to the l-level lattice we pass using products of rules (3) and (4) by 
themselves, we get that the blocks appearing in the l-level lattice are exactly the 
legal block of the product system C X C. Hence ~o is a homomorphism from the 
tilings onto the product of  the Chacon system with itself. 

To see that this mapping is an a.e. isomorphism we use [4], page 217, Lemma 
5.5, which asserts that C has unique derivation and hence that the letters in the l- 
level lattice determine their positions in the derivation rules and the letters of  the 
2-level lattice. From the 2-level lattice upwards we have uniqueness by the unique 
derivation property of the substitution sysem C". 

w U n d e c i d a b i l i t y  o f  t h e  t i l ing  problem 

Hao Wang raised in [7] the following problem: 

T i l i ng  p r o b l e m .  Given a tiling system, is there a legal tiling of the entire 
plane by this system? Wang conjectured that there is a procedure for deciding 
whether such a tiling exists. This conjecture was proved false by Berger [1]. 

In this section we sketch how this undecidability may be proved using the tiling 
built for a substitution system. 

The idea of  the proof is to show the undecidability of an analogous ques- 
tion about two-dimensional substitution systems and then to show that this 
question can be reduced to a tiling problem. The question whose undecidability 
we show is: 

Derivat ion tree problem. Given a two-dimensional substitution system 
with rules of  height and width > 2, is there a derivation tree of every depth for it? 

The reduction to a til ing problem. Given such a substitution system 
(M, ~ )  we can effectively build a tiling system (~r, A/') for it as described above, 
omitting the information of legal quadruple in the corner tiles. It may easily be 
verified that the existence of legal tilings for (~-, .A r) is equivalent to the existence 
of derivation trees of  every depth for (sic, @). Thus this reduction step is 
completed. 

Undecidabi l i ty  o f  the derivation tree problem. The idea of  the proof 
of this undecidability is to show that the halting problem of  a Turing machine 
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with no input may be reduced to it. Sketch of the reduction: Given a Turing 

machine G = (Q, {0, 1},qt0,A> we define a two-dimensional substitution 

system such that, if we look at any derivation sequence of  it, starting from a single 
symbol U ~ U ~ ~ U 2 . . . . .  U t, then in each U i we get some set o f  symbols 

arranged at the corners of  some zigzagging line like that in Fig. 23, such that they 

! 

i 
Fig. 23. 

describe the state of  the Turing machine and its tape afterj  moves. The derivation 

rules are designed so that in the block U ~ § ~ derived from U ~ we see in the symbols 
derived from the symbols on the zigzagging line a similar configuration describ- 

ing the state of  the machine after one more move, unless there is no possible move 
from this state, in which case there is no possible derivation from U'. The key 

idea is that symbols arranged in such a zigzagging line can force a synchronization 
of  their derivation rules used, by the requirement that the rules for symbols in one 
row are of  the same height and symbols in one column all have the same width. 

The two-dimensional substitution system constructed for such a Turing machine 

has rules of  height and width >_- 2. 
From the above propery of  the substitution system it is seen that the existence 

of  derivation trees of  every depth implies that the Turing machine G does not 
halt. Further, the substitution system is constructed so that it can be shown that if 
the Turing machine G does not halt, there are derivation trees of  all depths and 

the reduction is complete. Hence the tiling problem is undecidable. 
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