
FULL DESCRIPTION

1. Research Project Objectives

(scientific problem aimed to be solved by the proposed project, project’s research hypotheses)

One of the fundamental problems of physics, the so-called crystal problem, is to understand causes of crys-
talline symmetry in low-temperature matter [1–7]. More precisely, why at sufficiently low temperatures and
high pressure, atoms or molecules of macroscopic bodies tend to organize themselves to form periodic arrange-
ments of perfect crystals? A fundamental law of statistical physics states that equilibrium behavior of systems
of interacting particles results from the competition between energy and entropy of a system, that is the mini-
mization of its free energy. At very low temperatures, the probability distribution on the set of particle space
configurations is concentrated on those configurations with (almost) minimal energy since the entropy contribu-
tion to the free energy is negligible. At this point the basic question is: why should particle configurations with
the minimal interaction energy necessarily be periodic or exhibit at least some sort of long-range order or, in
other words, why will configurations minimizing energy functionals of translation-invariant interactions break
that symmetry? A typical example is the phase transition at the freezing temperature of water, where liquid
water with a full translational and rotational symmetry turns into ice crystals which break those symmetries.

It was traditionally accepted that realistic physical interactions force particles to form periodic arrays. How-
ever, this was never proved; rather, it was an axiom of solid state physics. This situation changed dramatically
with the discovery of quasicrystals by Dan Shechtman in 1982 [8]. He showed that a certain alloy exhibits five-
fold rotational symmetry which cannot appear in periodic arrangements of atoms. So the old question became
rephrased: how to deduce aperiodic long range-order (crystalline, quasi-crystalline or else) from translation-
invariant interactions between particles? A natural first specific problem is to construct models of interacting
particles such that only non-periodic particle configurations (called ground-state configurations) minimize the
energy. A follow-up problem is then to show that such configurations are stable in an appropriate sense. Here
stability refers to two different aspects: first, we need that small perturbations of interactions (which in reality
are inevitable) do not change ground-state configurations (zero-temperature stability) and, second, that non-
periodic ground-state configurations are stable against thermal fluctuations (low-temperature stability), in the
sense that they typically change only by a small amount, that is, on sets of low density. Such stability questions
are the leitmotif of this grant proposal.

We will focus on lattice-gas models of interacting particles. In such models every site of an infinite regular
square or cubic lattice is occupied by at most one particle. We assume that there is a finite number of particle
types and that particles located at lattice sites interact through nearest-neighbor or longer range translation-
invariant interactions. It is worth emphasizing here that the underlying lattice is periodic; the objects of our
interest are non-periodic particle configurations (i.e., assignments of particle types to lattice sites). We are in-
terested in examples of interactions for which only non-periodic configurations minimize energy of the system,
that is all ground-state configurations are non-periodic (the precise definition of a ground-state configuration
will be provided later). At non-zero temperatures, to minimize the free energy of a system one constructs Gibbs
measures (called grand-canonical ensembles by physicists or simply Gibbs states) on the space of all particle
configurations (with an appropriate σ -algebra of measurable sets). There is a natural action of lattice transla-
tions on measures and therefore one can define non-periodic measures. Now we can state precisely the main
open problem we would like to address.

Main Open Problem: Does there exist a translation-invariant finite-range interaction on a regular lattice for
which there exists a non-periodic Gibbs measure at all sufficiently low temperatures?

The answer to this problem may depend on the dimension of the lattice. There is a long standing conjecture
that any two-dimensional lattice-gas model with finite-range interactions and a finite number of particle types
has only a finite number of extremal Gibbs states. A construction of a three-dimensional model with the
desired property thus seems more plausible. We should notice here the possible relevance of the work of Peter
Gács who claims to construct an infinite number of stationary measures in a certain one-dimensional cellular
automaton [9–11]. The connection between stationary measures of one-dimensional cellular automata and
Gibbs states on space-time trajectories was presented in [12]. We will explore this connection in one of our
research tasks.

Some of our models are based on non-periodic tilings which brings us back in time to one of David Hilbert’s
problems posed in 1900. The second part of his 18-th problem can be stated in the following way: Does there
exist a polygon which can tile the plane but only in a non-periodic way? In any tiling, all points of the plane



are covered and tiles do not overlap except their boundaries. A more modest version of this problem was put
forward by Hao Wang in 1961 [13] in the context of decidability in computer science. He asked if there exists
a finite number of prototiles — squares with notches and dents (sometimes called dominoes) — that can be
used to tile the plane so that all tilings are non-periodic. The tilings necessarily arrange in the form of the
square lattice with notches and dents of adjacent tiles forced to fit together by suitable matching rules. Wang’s
question was answered affirmatively by Robert Berger in 1966 [14]. Berger’s example uses over 20 thousand
prototiles; this was improved in 1971 by Raphael Robinson’s example of 56 prototiles [15]. The number of
prototiles which cover the plane but only in a non-periodic way was further brought down by many people; the
last most recent construction involves only 11 prototiles [16].

In the mean time, Roger Penrose addressed the Hilbert problem and found tiles — the now famous kite and
dart — that can be used to cover the plane but only in a non-periodic fashion [17]. Accidentally, the diffraction
pattern associated with Penrose’s tilings has a five-fold symmetry ( which is forbidden in translation-invariant
crystals) just as the one observed several years later in Shechtman’s work. It is also worth noting that just before
the publication of the discovery of quasicrystals, in his influential book [4], Nobel laureate Philip Anderson
offered a ”mathematical” proof that every translation-invariant interaction should have periodic ground-state
configurations. This illustrates why it is important to study mathematical models of quasicrystals. Indeed,
mathematics gives proper tools to deal with infinities that are present here in a natural way in the concept of
non-periodicity.

One of the leading themes of this grant proposal is an investigation of the rigidity of non-periodic tilings.
We use examples of a finite family of prototiles that tile the plane only in a non-periodic way and construct
examples of lattice-gas models with translation-invariant nearest-neighbor (or next nearest-neighbor) interac-
tions that do not possess any periodic ground-state configurations. Our general approach is as follows: first we
identify different prototiles with types of particles, then we translate matching rules into interactions by assign-
ing positive energy, say 1, to any pair of mismatched tiles while giving energy zero to all pairs of matching
tiles. The resulting lattice-gas model has only non-periodic ground-state configurations corresponding to non-
periodic tilings. The rigidity of tilings can be then seen as zero and low-temperature stability of corresponding
classical-lattice gas models.

On our way towards the main aim of our project we will investigate various mathematical properties of
non-periodic tilings and non-periodic structures in general. We will often work in the general framework of
symbolic dynamical systems. In all of our models, all ground-state configurations (or just configurations of
interest) are non-periodic. Notwithstanding, there is a unique translation-invariant probability measure, also
called a ground state, that is supported by the closure of the orbit under action of translations of any chosen
configuration. We remark that non-periodicity does in no way mean disorder. There are in fact many ways
to quantify order in non-periodic structures such as almost periodicity, non-mixing of ground-state measures,
etc and one may also define some other types of order depending on the context. The basic question we will
address here is if some kind of order survives at non-zero temperatures.

The non-periodic ground-state measure is uniquely ergodic in the sense that any local pattern appears with
the same frequency in all configurations. However, a more quantitative version of this limit statement seems
to be needed in order to control low-temperature stability of non-periodic ground states. One such version,
the strict boundary condition, was formulated in [18]. It roughly states that in any finite region, the number of
occurrences of any finite pattern differs from the product of its frequency and the volume (area) of the region by
the contribution proportional to the boundary of the volume (for definitions see Section 4). It is our hypothesis
that such a property forms a necessary and sufficient condition for low-temperature stability of non-periodic
ground states.

We will investigate overlap distributions [19] of non-periodic measures of uniquely ergodic systems and
their connections with spectral properties of such measures. Both overlap distributions and the spectrum (either
the spectrum of the translation operator in an appropriate L2 space or a Fourier transform of a correlation
function; see [20]) might be signatures of non-periodic order [21–24].

We will also study substitution dynamical systems, where non-periodic sequences on a one-dimensional
lattice are generated by substitution rules, Fibonacci or Thue-Morse for example [25]. Tiling dynamical systems
are examples of systems of finite type in which uniquely ergodic measures, and thus also the configurations in
their support, are completely characterized by the absence of a certain family of finite patterns. One can
prove that there are no one-dimensional non-periodic systems of finite type [26]. However one can try to find
minimal sets of forbidden patterns which characterize such systems. It is one of our goals to find such minimal
sets for various classes of substitution dynamical systems; an example of such a construction for the Thue-
Morse substitution rule was provided in [27]. Any system of finite type can be seen as a classical lattice-gas



model with finite-range interactions assigning positive energy to forbidden patterns (as was showed in [28], the
reverse correspondence is not always possible). In an analogous way, given a minimal set of forbidden patterns
one can easily construct one-dimensional Hamiltonians whose unique non-periodic ground state is exactly the
(implicit) uniquely ergodic measure avoiding the forbidden patterns. One of our goals will be to see whether
extending such one-dimensional models by ferromagnetic Ising-type interactions in (at least) two other spatial
directions — the so called stacking — produces non-periodic Gibbs measures that are only small perturbations
of the original uniquely ergodic measures. It is worth to mention here that some substitution systems can be
represented by appropriately constructed two-dimensional tilings [29].

To motivate a final class of questions, we would like to mention numerical results [30–33] indicating phase
transitions in classical lattice-gas models without periodic ground states. Here new “aperiodic-order-sensitive”
observables were introduced that vanish at high-temperatures for which Monte-Carlo simulations showed (e.g.,
by analyzing suitable overlap distributions [30]) non-zero value at low temperatures. While the existence of
non-periodic Gibbs states is not necessarily claimed there, the existence of some sort of phase transition is quite
apparent. We will check how the possible existence of non-periodic Gibbs states is consistent with results of
the above mentioned papers.

The present project has a strong interdisciplinary flavor drawing ideas from statistical physics, ergodic
theory, substitution and tiling systems, and computer science. The principal goal is to develop rigorous under-
standing of fundamental questions about the origins of aperiodic long-range order in physical systems and to
explore mathematical structures that are relevant for breaking of translation invariance due to collective effects
in physical materials.

2. Significance of the project

(state of the art, justification for tackling specific scientific problems by the proposed project, pioneering nature
of the project, the impact of the project results on the development of the research field and scientific discipline,
economic and societal impact)

Mathematical investigations of non-periodic structures have been conducted for a long time. These efforts
intensified after the discovery of quasicrystals. Indeed, several branches of mathematics were provided with
new motivations and problems to be tackled. Various constructions of non-periodic structures were no longer
just abstract toy models and it begun to be obvious that careful mathematical study of the these constructions
might provide new insights into physics of real materials, the quasicrystals.

The first classical lattice-gas model without periodic ground state-configurations was constructed by Charles
Radin in [34]. A series of papers by Radin and the author of this proposal followed dealing with stability prop-
erties of such models. It was proven that generically (in the sense of the Baire category) lattice-gas models
with long-range interactions do not have periodic ground-state configurations, yet, on the other hand, gener-
ically ground-state measures are not mixing [35, 36]. Lack of mixing may be interpreted as the presence of
long-range order. In [37] we constructed a model with a unique translation-invariant ground-state configura-
tion which is not stable at any low temperature. That served, in fact, as a counterexample to a hypothesis due
to Dobrushin and Shlosman [38]. The presence of non-periodic ground-state configurations corresponding to
Robinson’s tilings was essential in the construction of a counterexample. The best result for finite-range in-
teractions known up till now is the construction of a model with an infinite sequence of phase transitions of
Gibbs states with period-doubling at an infinite sequence of critical temperatures [39], see also [40]. Unfor-
tunately this sequence of temperatures converges to zero so the true non-periodic order is present only at zero
temperature. Recently an analogous result has been shown in the physics literature [41].

It was shown in [42] that any uniquely ergodic measure can be seen as a ground-state measure of some long-
range arbitrarily many-body interaction — again, assigning positive energy to patterns (decaying sufficiently
fast to zero with the size of the patterns) which have zero frequencies in the given ergodic measure. The
other extreme are systems (subshifts) of finite type which are characterized by the absence of finite number
of finite patterns. Then uniquely ergodic measures are ground-state measures of finite-range interactions. We
showed in [28] that the class of uniquely ergodic ground-state measures of finite-range interactions in lattice-
gas models is larger than the class of uniquely ergodic measures of subshifts of finite type. In other words,
there are ground-state measures which minimize the energy functional of finite-range interactions that cannot
be uniquely characterized by the absence of any finite set of patterns.

W. H. Gottschalk and G. A. Hedlund proved in 1964 [43] that Thue-Morse sequences of two symbols are
uniquely characterized by the absence of blocks BBb, where B is any block of symbols and b is the first symbol
of the block B. We proved in [27] that to characterize Thue-Morse sequences it is enough to forbid patterns



consisting of four symbols only. Then we showed that the uniquely ergodic Thue-Morse measure i s the unique
ground-state measure of the one-dimensional Ising model with exponentially-decaying four-spin interactions.
As one of our research tasks, we would like to find minimal sets in the sense of minimizing the number of
symbols in forbidden patterns which characterize other substitution dynamical systems. That would enable us
to construct one-dimensional Hamiltonians with non-periodic ground-state measures and then to investigate
low-temperature stability of such measures.

In [18] we formulated the so-called strict boundary conditions that characterize (as already noted above) the
speed of convergence of empirical density of finite patterns to their infinite-volume limit; precise definitions will
be given in Section 4. We also proved that these are necessary and sufficient conditions for zero-temperature
stability of ground states. Non-periodic ground-state configurations of lattice-gas models based on Robinson’s
tilings do not satisfy the strict boundary conditions even for one-site patterns; i.e., the density of particle types.
In [44] we proved that the ground-state configurations of a lattice gas-model based on Robinson’s non-periodic
tilings are unstable with respect to the addition of a chemical potential. One of the goals of this grant project is
to check if the strict boundary conditions are necessary and sufficient conditions for low-temperature stability
of non-periodic ground states. So far, we do not know of any examples of non-periodic ground states that
satisfy the strict boundary conditions. Recently, there have been some examples of non-periodic structures with
such properties [45]. However it is not known if they result from some local matching rules. To investigate the
possibility of such a formulation is one of the goals of this project. There also appeared some new constructions
of aperiodic tilings for which their authors claims some sort of rigidity [46–48]. We will plan to examine if this
rigidity helps to establish zero and low-temperature stability.

In one-dimensional long-range Hamiltonians one can force non-periodicity by methods not providing con-
trol over the tail of an interaction. In [49] we constructed a non-periodic low-temperature Gibbs measure in a
lattice-gas model with summable interactions having Thue-Morse ground-state configurations. It was the first
example of such a measure and the first microscopic model of a quasicrystal, see also [50]. The construction
is based on identifying Gibbs measures and tangent functionals, and using a convex-analysis argument. For
exponentially decaying interactions which are extended in two other spatial dimensions by ferromagnetic inter-
actions we used cluster expansions to construct non-periodic Gibbs measures [51]. The two above approaches
are quite abstract; in particular, they do not produce non-periodic Gibbs measures for the original Thue-Morse
interactions introduced in [27].

In probabilistic cellular automata, lattice-gas configurations evolve in discrete moments of time. The prob-
ability of having a particular particle at a particular lattice site at time t depends on the states of neighboring
sites at time t− 1. A basic problem in probabilistic cellular automata is to describe their stationary states in
the infinite-volume limit. There is a correspondence between stationary states of d-dimensional cellular au-
tomata and Gibbs states on d+1 dimensional space-time configurations (stationary states are space projections
of Gibbs states) [12]. There was a long standing hypothesis ( the so called positive-rate conjecture) in one-
dimensional cellular automata, that if all transition probabilities are positive, then there is a unique stationary
state. The conjecture was refuted by Peter Gács [9–11] who constructed a one-dimensional cellular automaton
with (at least) two stationary states. In such a non-ergodic system, the initial conditions are “remembered.”
In a subsequent work, Gács [10] claims a construction of an automaton in which in a certain sense any initial
condition is remembered. This would give rise to an infinitely (uncountably) many extremal Gibbs states, some
of them being non-periodic. Thanks to the above identification, this would provide a counterexample to the hy-
pothesis that in two-dimensional models there are always finite number of extremal Gibbs states. In particular,
cellular automata may give us another way of constructing non-periodic Gibbs states.

In our research project we address several hypotheses which concern non-periodic structures. They are
connected with the fundamental question: How does global (non-periodic) order arise from local rules? Stabil-
ity of non-periodic configurations will make possible constructions of machines (in a computer-science sense)
which are tolerant to errors and noise.

3. Work plan

(outline of the work plan, critical paths, state of preliminary and initial research indicating feasibility of re-
search objectives)

In our project we will plan to address the fundamental problem of the existence of non-periodic Gibbs measures
in classical lattice-gas models with short-range interactions. We plan to explore certain paths towards our main
goal with clear checkpoints. As a guiding framework we will use the strict boundary conditions; we will analyze
to what extent they form sufficient and necessary conditions for stability of non-periodic ground states.



We begin by calculating spectral measures and overlap distributions for certain substitution as well as tiling
systems. Both the spectrum and the overlaps may be seen as signatures of non-periodic order. We will in-
vestigate relations between these two objects. For example, in the so-called paper-folding system, the spectral
measure equals the overlap distribution [52]. Are there other systems with that property? A fundamental ques-
tion is: Do results obtained for abstract non-periodic structures still hold if we restrict ourselves to structures
which are ground states for certain short-range interactions? Do they hold for generic interactions in certain
spaces? Here we will follow the ideas presented in references [35, 36].

A special attention will be given to the so called most-homogeneous sequences (known also as Sturmian or
balanced systems) [53]. These are the ground-state configurations of infinite-range convex repelling interactions
between particles additionally subject to a chemical potential [53–55]. The competition between repelling pair
interactions and the chemical potential favoring the presence of particles produces ground-state configurations
with all possible particle densities, including irrational ones. Ground states as function of chemical potential
form a Cantor set also known as the Devil’s staircase. Two-dimensional analogues of most-homogeneous
configurations realized as ground states of a finite-range lattice-gas model were presented in [28]. Properties of
such two-dimensional models were discussed in physics literature in [56].

As another direction of effort, we will explore the existence of stratified non-periodic Gibbs measures in
lattice gas-models with one-dimensional interactions having as ground-state configurations most-homogeneous
configurations and other non-periodic structures. The idea behind this is as follows. We extend a one-
dimensional system in two other spatial dimensions by ferromagnetic Ising-type interactions. In the absence
of one-dimensional interactions we have uncoupled Ising models. Below the Curie temperature, these models
exhibit magnetic order; in each plane there are two two-dimensional extremal Gibbs measures with up and
down magnetization. In particular, the uncoupled system possesses uncountably many Gibbs measures corre-
sponding to all double-sided sequences of pluses and minuses. Now we would like to enforce by energy our
non-periodic structure by an appropriate one-dimensional interaction. But we should not forget about entropy.
As a conceptual starting point one can take interactions corresponding to Thue-Morse systems [27]. Unfortu-
nately, the Thue-Morse sequences do not satisfy strict boundary conditions and, as we have shown in [49], a
simple 4-body interaction based on the minimal set of forbidden patterns extended in two other directions by
ferromagnetic Ising-type interactions does not produce non-periodic Gibbs states. The reason is that there are
periodic configurations which have more low-energy excitations than the Thue-Morse sequences such that the
entropy contribution to the free energy is larger than the energy cost. This shows why it is important to look for
non-periodic structures satisfying the strict boundary conditions.

The above discussion leads us in a natural way to models with finite-range interactions. To follow the above
idea we have to construct four-dimensional models. But first we have to look for tiling that satisfies the strict
boundary conditions. Some encouraging results have recently been presented in [45]. The author constructed
some structures with the strict boundary property. We will examine thoroughly this construction to see if these
structures can be forced by some local matching rules. There appeared recently some other constructions of
non-periodic systems with new interesting properties [46–48]. We will examine whether such properties are
relevant to zero and low-temperature stability.

The construction presented in [48] is based on Kleene’s fixed-point theorem. It is worth mentioning that
similar ideas were used by Peter Gács in his construction of cellular automata violating the positive-rate con-
jecture [9–11]. We will explore connections between non-periodic tilings and error correcting automata of
Gács. We plan to address a general question of stability of non-periodic structures in the framework of non-
equilibrium statistical mechanics. We would like to see whether the dynamic character of systems helps to
stabilize non-periodic structures.

Research tasks:

1. Spectral measures and overlap distributions

Computation of spectral measures and probability distributions of the overlaps of one-dimensional substi-
tution and other non-periodic systems, Sturmian systems in particular, and also of some two-dimensional
tiling systems.

Generic dynamical systems are weak mixing but not mixing [57, 58] and generic operators have singular
spectrum (Simon’s wonderland theorem [59]). We hope to check if the same holds for ground states in an
appropriate sense.



Let the diffraction spectrum not contain an absolutely continuous part. We would like to prove that the same
holds for the dynamical spectrum. Note that this statement, without the “absolutely”, was proven in [23].

Characterization of systems for which the spectral measure equals to the overlap distribution. This prop-
erty is known to hold for paperfolding sequences. Mendès-France has raised the question, in how much
generality this is true [52].

2. Stratified Gibbs measures of fast-decaying interactions

Construction of Hamiltonians based on one-dimensional non-periodic structures with minimal sets of for-
bidden patterns. We extend such Hamiltonians by ferromagnetic Ising-type interactions in two other spatial
dimensions. Constructing Gibbs measures for such three-dimensional Hamiltonians. Looking for sufficient
conditions for the existence of non-periodic Gibbs measures for such Hamiltonians.

3. Non-periodic Gibbs measures of finite-range interactions

Construction of Gibbs measures for finite-range interactions based on recent examples of non-periodic
tilings. Proving the existence of non-periodic Gibbs measures for abstract systems satisfying strict boundary
property. Construction of tiling systems with strict-boundary property.

4. Gibbs measures in probabilistic cellular automata

Given a tile set, we ask whether there is a (deterministic) cellular automaton that ”washes out” finite islands
of errors (as in Toom’s cellular automata [60]) from any valid tiling. An argument of Gács would ensure
then the recovery from sufficiently weak Bernoulli noise: starting with a valid tiling modified at the points of
a low-density Bernoulli set, the CA converges to the set of valid tilings. We would like to get stability even if
there is noise at each step (in the sense of Toom’s CA) hence getting some sort of 3-dimensionl quasicrystal.

We will check usefulness of the Gács construction in [10] in constructing 2-dimensional quasicrystals.

We will study models of stacked cellular automata (as presented in [61]) in the context of non-periodic Gibbs
states.

4. Research Methodology

(underlying scientific methodology, data reduction and treatment schemes, type and degree of access to the
equipment to be used in the proposed research)

Classical lattice-gas models

All our research tasks concern discrete models. We investigate properties of non-periodic arrangements of
symbols or particles to regular lattice sites. We construct minimal Hamiltonians for which such arrangements
are ground-state configurations which minimize the energy of interacting particles. We work in the framework
of classical (non-quantum) lattice gas-models. To deal with non-periodicity one has to consider infinite systems.
Now we introduce formally lattice-gas models of interacting particles.

In classical lattice-gas models every site of Zd , d ≥ 1 is occupied by one particle. There are n types of
particles. Ω = {1, ...,n}Zd

is the set of all particle configurations. For a finite subset Λ⊂ Zd , ΩΛ = {1, ...,n}Λ.

Interaction potential Φ is a family of functions indexed by finite subsets Λ

Φ = {ΦΛ}Λ⊂Zd ; ΦΛ : ΩΛ→ R.

Φ is a potential of a finite range r if ΦΛ ≡ 0 for diam(Λ)> r.

Φ is a translation-invariant potential if ΦΛ+a(τaX) = ΦΛ(X)
for every a ∈ Zd , where τa is translation by vector a that is (τaX)i = Xi−a.

a Hamiltonian in a finite volume Λ is a function HΦ
Λ
= ∑

V⊂Λ

ΦV .

Y ∈Ω is a local excitation of X ∈Ω, X ∼ Y if |{i ∈ Zd : Yi 6= Xi}|< ∞.



For Y ∼ X , a relative Hamiltonian is defined as
HΦ(Y |X) = ∑

Λ⊂Zd
(ΦΛ(Y )−ΦΛ(X)).

A basic notion in the statistical physics of interacting particles is the notion of a ground-state configuration.
Intuitively it is a configuration of the minimal energy. However, as we have already written, we have to consider
infinite systems and usually the energy of an infinite configuration is infinite. We might then consider the energy
density.

e(X) = liminf
Λ→Zd

HΦ
Λ
(X)

|Λ|
is the energy density of configuration X ∈Ω.
We would like to define ground-state configurations as those having minimal energy density. Let us notice
however that if X is a ground-state configuration then any local excitation has the same energy density so it
would be also a ground-state configuration which obviously is absurd. To avoid the above problems we define
ground-state configurations in the following way.
X ∈Ω is a ground-state configuration for potential Φ

if for every local excitation, Y ∼ X , HΦ(Y |X)≥ 0.

One can prove that every translation-invariant finite-range interaction has at least one ground-state config-
uration. It may happen however that none of them are periodic. Anyway ground-state configurations minimize
the energy density.

In the project we will study systems without periodic ground-state configurations or generally systems
without periodic configurations but with a unique translation-invariant probability measure supported by them.

Let δτaX is a measure assigning 1 to the configuration τaX and X ∈Ω is a ground-state configuration.

1
|Λ| ∑a∈Λ

τaX → µ as Λ→ Zd

In other words, there is a unique translation-invariant measure supported by the closure of the orbit {τaX ;a ∈
Zd}.

In other words, let X be any ground-state configuration in the support of µ and let ar any local arrangement of
particles, nar is the number of appearances of ar in X in a box of size L centered at a ∈ Zd . Then

nar

Ld → war uni f ormly in a ∈ Zd

Such µ is called uniquely ergodic.

Substitution dynamical systems

Thue-Morse double-sided sequence of two symbols, 0 and 1 (a configuration on Z), is generated by the follow-
ing substitution,

0→ 01

1→ 10

Let µT M be the uniquely ergodic measure supported by the closure of the orbit of the above Thue-Morse
sequence generated by the above rule [25]. It was proved in [43] that all sequences in the support of µT M are
uniquely characterized by the absence of patterns BBb, where B is any sequence of 0’s and 1’s, and b is its first
symbol. We proved in [27] that Thue-Morse sequences are also uniquely characterized by the absence of 4-site
patterns

b...b........b...b, b = 0,1,

where b’s within pairs are at a distance 2r and pairs are at a distance (2p+1)2r, r, p≥ 0.



It allowed us to construct an exponentially decaying 4-spin Hamiltonian with the Thue-Morse measure µT M

as its unique ground state. We would like to find minimal sets of forbidden patterns for other substitution
dynamical systems and for Sturmian (most-homogeneous) systems.

Strict boundary conditions

Let H be a two-dimensional finite-range non-frustrated Hamiltonian (for example based on non-periodic tilings)
with a uniquely ergodic ground-state measure. The absence of frustration means that all interactions can be
minimized simultaneously.
For Y ∈Ω, B(Y ) is the set of broken bonds of Y that is B(Y ) = {Λ,ΦΛ(Y )> minZΦΛ(Z)}

X(A) is a local ground-state configuration on a finite set of lattice sites A if it does not have broken bonds in A.
Let us emphasize that such configuration may not be extendable to an infinite ground-state configuration.

Condition 1: The lattice-gas model satisfies the strict boundary condition for all local ground-state configura-
tions and a local arrangement ar if for some Car

|nar(X(A))−ωar|A||<CarP(A),

where ωar is the frequency of ar in the ground-state measure, nar(X(A)) the number of ar appearances in
X(A), |A| is the number of lattice sites in A, and P(A) is the length of the boundary of A.

Now let X be a ground state-configuration and Y ∼ X , nar(Y |X) the difference of the number of ar appearances
in Y and X .

Condition 2: The lattice gas-model satisfies the strict boundary condition for local excitations and an arrange-
ment ar if there exists Car such that for any ground-state configuration X and Y ∼ X ,

|nar(Y |X)|<CarB(Y ).

We have proven in [18] that Condition 1 and Condition 2 are equivalent and that a uniquely ergodic ground-
state measure of non-frustrated Hamiltonian is stable against perturbations of range r if and only if the above
strict boundary conditions are satisfied for arrangements of range r.

Open Problem: Construct a non-frustrated classical lattice-gas model with a finite-range interactions and with
a uniquely ergodic non-periodic ground-state measure which satisfies strict boundary conditions for all finite
arrangements of particles.

Spectral measures and overlap distributions

We will use spin language here. At every site i of the one-dimensional lattice Z there is a spin variable σi which
can attain the values±. An infinite lattice configuration is an assignment of spin orientations to lattice sites, that
is an element of Ω = {−1,1}Z . We will consider uniquely ergodic measures on Ω. The support of such mea-
sures can be realized by appropriate substitution systems, tiling systems or in particular ground-state measures
of certain Hamiltonians. There are many ways to describe positional long-range order in noncrystalline struc-
tures such as quasicrystals. Two main approaches involve spectral properties. One can consider the spectrum
of translations acting as unitary operators on an appropriate Hilbert space, the so-called dynamical spectrum.
In our case it is L2(µ), where µ is a uniquely ergodic measure. To be precise we look for a spectrum of a shift
operator T on L2(µ), where T f (i) = f (T (i)) for a function f ∈ L2(µ). Let C f (n) = µ( f T n) By Bochner’s
theorem one can write C f (n) =

∫ 2π

0 exp(i2πλn)m f (dλ ), where m f are measures on the interval [0,2π]. If for
any choice of f , m f has a pure point, singular continuous, or absolutely continuous part in its Lebesgue decom-
position we say that the spectrum of the shift has a pure point, singular continuous, or absolutely continuous
component, respectively. If the point spectrum consists solely of finitely many points, one interprets this as a
crystal; if one has a dense point spectrum, one has a quasicrystal. In the second approach one considers the
diffraction spectrum of atoms placed at lattice sites, that is one takes f = f (0) in spectral measure. Dynamical
and diffraction spectra in many examples were discussed in [20–23], see also [24] and references therein.

Another characterization of order is given by overlap distributions. Let X and Y be configurations in the
support of µ . The overlap of X and Y is defined by



qXY = lim
N→∞

1
N

N

∑
i=1

σi(X)σi(Y ).

The Parisi overlap distribution p(q) is the distribution of qXY with respect to the product measure µ
⊗

µ .
It is known that weakly mixing measures have continuous dynamical spectrum. It is easy to see that such
measures have an overlap distribution concentrated at [µ(σ0)]

2. We will study relations between dynamical
spectra, diffraction spectra, and overlap distributions in the context of order in non-periodic structures. We
would like to emphasize that our investigations go beyond traditional ergodic theory - all concepts, relations
and theorems are considered for ergodic measures which are ground states of certain Hamiltonians.

Gibbs measures

Let X ∈ Ω be one of the non-periodic ground-state configurations of Hamiltonian H and ΛL be the square of
size L centered at the origin.

Ω
X
ΛL

= {Y ∈Ω,Y (Λc
L) = X(Λc

L)}

ρ
X
T,ΛL

(Y ) =
e−

H(Y |X)
T

∑Z∈ΩX
ΛL

e−
H(Z|X)

T

is a finite-volume Gibbs measure, T is the temperature of the system.

One can show the existence of the thermodynamic limit (with the weak* convergence of measures),

ρ
X
T,ΛL
→L→∞

ρ
X
T

We would like to prove that

ρ
X
T (Y ∈Ω,Y (0) 6= X(0))> 1− ε(T )

ε(T )→ 0 as T → 0.

ρX
T would be then a non-periodic Gibbs state, a small perturbation of non-periodic ground-state configuration

X . To achieve such a goal we plan to use Pirogov-Sinai cluster expansions [62, 63] in various models with
non-periodic ground states.

Classical lattice-gas models based on non-periodic tilings

Our starting point is a non-periodic tiling of the plane. As an example of our construction we will use here
Robinson’ tilings [15]. He designed 56 square-like tiles (Wang tiles or dominoes) - squares with notches and
dents on their sides. He proved that such tiles can tile the infinite plane but only in a non-periodic way. In
any tiling, centers of tiles form the square lattice and notches and dents of adjacent tiles match. One can show
that there is a unique translation-invariant probability measure supported by all such tilings, the support is the
closure (in an appropriate topology) of the translation orbit of any tiling. We construct a classical lattice-gas
model in the following way. We identify different tiles with types of particles. If two tiles do not match
then the interaction energy between corresponding particles is positive, say 1, if they match then the energy is
0. It is easy to see that any tiling gives rise to a ground-state configuration with the zero interaction energy.
Such a classical lattice-gas model (with nearest and next nearest-neighbor interactions) has only non-periodic
ground-state configurations and a unique ergodic translation-invariant ground-state measure. The model does
not satisfy the strict-boundary condition and it follows the ground state is unstable both at zero [44] and positive
temperatures [39]. Our goal is to look at other non-periodic tilings. In this context especially interesting is a
recent construction in [48]. This new tiling has two properties which might be useful in proving zero and low-
temperature stability. The first property called strong aperiodicity (α−aperiodicity) indicates that any tiling is
far from any periodic tiling. More precisely



X ∈ Ω is α-aperiodic if for every a ∈ Z2 there exists N such that in every square whose side is at least N, the
fraction of sites i such that Xi 6= Xi+a exceeds α .

It is easy to see that Robinson’s tilings are 0-aperiodic. The second property, resistance to sparse errors,
says that one can erase certain mistakes (non-matching tiles) and the created hole can be tiled giving rise to an
infinite-tiling. We will check if such a property is related to strict-boundary conditions and can it be used to
prove low-temperature stability of the corresponding ground-state measure. Moreover, the autors of [48] write
that their construction ”is flexible enough to achieve some additional properties of the tile set” We will explore
this possibility to construct tile sets with properties essential for low-temperature stability.

5. International collaboration

(significance of the project for international collaboration, benefits of international cooperation, value added
of collaboration with foreign partner(s), scope of cooperation)

The leading foreign partner of this project is Aernout van Enter. We have worked together for many years
on mathematical models of quasicrystals, we published together 8 papers, our results are discussed in this
proposal. Then for several years I was not working on this subject. Unexpectedly in 2011 I was invited to a
workshop in BIRS center in Canada to make a presentation of old open problems in mathematical quasicrystals.
It appeared that these problems are still unsolved. Moreover, some people in the workshop get interested to
get back to them. Then I was asked to co-organize ICQ12, 12th International Conference on Quasicrystals
in Kraków in 2013. I was a chairman of the mathematical session and again I learned the state of the art of
quasicrystal research. Finally I was invited in May 2016 to the workshop in Lorentz Center in Leiden to make
an introductory talk on quasicrystal problems. During these three meetings I discussed new ideas with Aernout
van Enter. We made a list of important research problems to tackle. With the second foreign partner, Marek
Biskup, I worked many years ago on the construction of non-periodic Gibbs states in finite-range classical
lattice-gas models, however without a success. I was visiting Marek Biskup at UCLA a year ago and we
started to work again on the main problem of quasicrystals. In meantime there appeared new tiling systems
with new properties which might be helpful in our constructions. Marek Biskup is a probabilist, a specialist
in rigorous statistical mechanics [64–67]. His technical skills in cluster expansions will be very helpful in our
tasks. Finally, there will be Siamak Taati in our team [68–70]. He is a former PhD student of Jarkko Kari,
who constructed a minimal set of non-periodic tiles and a former postdoc of Aernout van Enter. Kari and Taati
worked together on various problems in cellular automata. We would like to explore connections between non-
periodic Gibbs states and stationary states of probabilistic cellular automata. Siamak Taati has already obtained
some preliminary results in this direction. It is worth to add here that the connection between cellular automata
and lattice-gas models are due to Christian Maes and others [12]. Christian Maes is a foreign investigator in
Opus NCN grant on time delays in biological systems of which I am a principal investigator. Our topics there
concern non-related to this project non-equilibrium statistical mechanics but we can expect some synergy here.
Of course Christian Maes may also contribute to this project.

We will organize in Warsaw an opening meeting of our team. In the middle of the project a small working
group meeting within a frame of Banach Center activities will be organized. There will be also a couple of
pairwise meetings. The members of our team will communicate frequently through group skype conferences.
We will have a dedicated web page to promote our results.
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